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BADE-PROPERTY; SURVEY AND COMPARISON WITH
λ-PROPERTY, RUSSO-DYE THEOREM AND EXTREMALLY

RICHNESS

H. M. TAHLAWI (1) AND G. M. ALSAHLI (2)

Abstract. In this article, we survey a geometric property, called Bade-property,

originally introduced by William Bade. First, we review Bade’s work in normed

linear spaces. Next, we illustrate various interesting results of Bade-property in

the spaces of convergent sequences established by Aizpuru. Then, we investigate

Bade-property in comparison with some other geometric properties, such as λ-

property due to Aron and Lohman, Russo-Dye Theorem and extremally richness in

C∗-algebras, JB∗-algebrs/triples and JBW ∗-triples.

1. Introduction

On his 1971 lecture notes [4], Bade proved an interesting theorem in the extremal

structure of the unit ball of spaces of continuous functions; the theorem states that

for a compact Hausdorff space K, the closed unit ball of the space of continuous

functions on K is the closed convex hull of its extreme points if and only if K is

0-dimensional. This result led him to define the Bade-property, a Banach space X is

said to have the Bade-property if BX = co(ext(BX)), where BX denotes the closed

unit ball of X and ext(BX) is the set of extreme points of BX .

The definition of Bade motivated Aron and Lohman [1] to introduce a stronger ver-

sion of Bade-property, called the λ-property. A Banach space is said to have the

λ-property if each element of its closed unit ball is a convex combination of an ex-

treme point of the ball with positive weight and a vector of norm at the most one.
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One of the open problems mentioned at the beginning, when Aron and Lohman de-

fined λ-property was the relation between Bade-property and λ-property which has

been recently treated in the early nineties.

Aron and Lohman showed that their λ-property is strictly stronger than Bade-

property. However, in 1990, Oates [18] proved that Aron and Lohman’s λ-property

coincides with the Bade-property in the class of spaces of continuous functions.

Later, Aizpuru showed a great admiration for the work of Bade. In his article ”The

Bade property and the λ-property in spaces of convergent sequences” [2], he sum-

marized all results about the relation between Bade-property and λ-property in the

space of convergent sequences. Later he introduced a new property, called the E-

property and proved that it lies in between λ-property and Bade-property.

In this survey, we review classical literatures in which Bade-property was introduced

and studied by mathematicians named up. In addition, we discuss the relations be-

tween the Bade-property and some other geometric properties such as Krein-Milman-

property, λ-property, the known Russo-Dye theorem and extremally richness property

in C∗-algebras, JB∗-algebras/triples and JBW ∗-triples.

In section two of this survey we give various preliminary concepts from theories of Jor-

dan structures (namely, algebras, Jordan triple systems and JB∗-algebras/triples),

Banach algebras and C∗-algebras along with some of their properties, which we need

for the sequel.

Third section contains results of Bade-property found in classical references.

A review of λ-property together with main results about this property in C∗-algebras,

JB∗-algebras/triples and JBW ∗-triples were included in section 4.

Section 5 and section 6 are devoted for looking into the relation between Bade-

property, Krien-Milman property, λ-property and the notion of extremally richness.

2. Preliminaries

This section contains the background material. First, we give a brief description

of some standard notions such as, extreme points of the closed unit ball, unitary ele-

ments, convex hull of extreme points, basic concepts from Jordan structures (namely,

Jordan triple systems/algebras and JB∗-triples/algebras) as well as some related re-

sults, which we will need for the sequel. Among other references given in the end,

[1, 6, 7, 8, 11, 13, 15, 16, 18, 20, 23, 24, 38, 39] are the main sources of information
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for us. The notion of extreme points goes back to H. Minkowski (([16]),Vol. II, p.

157-161). An element x of a convex set Y in a linear space X is described as an

extreme point of Y if whenever x = (1−λ)y +λz, with 0 < λ < 1 and y, z ∈ Y , then

y = z = x.

Thus if Y is a convex set, then x is an extreme point of Y provided x is not an

interior point of any line segment contained in Y .

Minkowski proved that if Y is a compact convex set in R3, then each point of Y

can be expressed as a convex combination of extreme points of Y . In fact, if K is a

finite-dimensional compact convex set in locally convex space, then

K = co(ext(K)).

This result known in Rn as Minkowski’s theorem.

In 1940, Krein and Milman extended Minkowski’s theorem to infinite dimensional

spaces as follows.

Theorem 2.1 ([13] Krein-Milman, 1940). Let K be a nonempty compact convex

subset of a Hausdorff locally convex space, then K is the closed convex hull of ext(K).

That is,

K = co(ext(K))

Recall [11] that a subset S of a linear space is said to be totally disconnected if

each pair of its points can be separated by sets that are both open and closed (clopen

sets). In case of real scalars, a set S is totally disconnected if the only connected

subsets of S are the singletons, the situation is quite different for the complex scalars.

A Banach space in which every point of norm 1 is an extreme point of the closed

unit ball is called strictly convex.

The symbols l1(X), l∞(X) and c(X) denote the space of all X- valued sequences

x = (xn) which are absolutely summable, bounded and convergent, respectively.

l1(X) is endowed with the norm ‖x‖ =
∑∞

n=1 ‖xn‖, while the norm in l∞(X) and

c(X) is given by ‖x‖ = supn ‖xn‖. If T is a compact Hausdorff space, CX(T ) denotes
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the space of continuous X-valued functions on T endowed with the sup norm.

An algebra A over a field K is a vector space A over K such that for each ordered

pair of elements x, y ∈ A a unique product xy in A is defined with the properties,

• x(y + z) = xy + xz

• (x + y)z = xz + yz

• a(xy) = (ax)y = x(ay) for all x, y, z ∈ A and scalars a.

An algebra A is called an associative (respectively, commutative) algebra if (xy)z =

x(yz) (respectively, xy = yx) for all x, y, z ∈ A. The associative axiom is frequently

incorporated in the definition of an algebra, especially in operator algebras. We call

an algebra A unital if it contains a non-zero element e ∈ A that we call a unit satis-

fying, xe = ex = x for all x ∈ A.

An algebra A over a field K with unit e is said to be a normed algebra when A

is a normed space such that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A, and ‖e‖ = 1. If A is a

Banach space relative to this norm, A is said to be a Banach algebra.

An involutions ∗ on a real or a complex algebra A, is a map ∗ : A → A such that

for all x, y ∈ A and λ, µ ∈ C,

(1) (λx + µy)∗ = λ̄x∗ + µ̄y∗;

(2) x∗∗ = x;

(3) (x ◦ y)∗ = x∗ ◦ y∗, where x∗ denotes the image of x under ∗.

An element x ∈ A is called self-adjoint (or Hermitian) if x∗ = x.

A C∗-algebra A is a Banach Algebra with an involution ∗ such taht for all x ∈ A,

‖xx∗‖ = ‖x‖2 .

An example of a C∗-algebra is C; here the algebraic operations are the usual ones,

the norm is the modulus |.|, and the involution is conjugation, z → z.

Another example is obtained when X is a locally compact Hausdorff space, and

A = C0(X) = {f : X → C | f is continuous and vanishes at infinity}, if we used

pointwise operations and the sup-norm given by ‖f‖ = supx∈X |f(x)| which makes
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X into a C∗-algebra. If X is compact and Hausdorff, then C0(X) is just the space of

continuous functions f : X → C. We write C(X) for C0(X) in this case.

A commutative algebra J with product ◦, over a field of characteristic not 2, is

called a Jordan algebra if x2 ◦ (x ◦ y) = (x2 ◦ y) ◦ x for all x, y ∈ J , where x2 means

x ◦ x.

Of course, any associative algebra A, over a field of characteristic 6= 2, is a Jordan

algebra, denoted by A+, with the same linear space structure but with new binary

product x◦y = 1
2
(xy + yx), called anti-commutator product, where xy denotes the

associative product in the parent algebra (cf. [8]).

The underlying binary product ◦ of a Jordan algebra J induces a triple product

{xyz} = (x ◦ y) ◦ z + (z ◦ y) ◦ x − (x ◦ z) ◦ y called the Jordan triple product; this

translates as {xyz} = 1
2
(xyz + zyx) if x ◦ y = 1

2
(xy + yx) in terms of the associative

product xy.

In any Jordan algebra J with unit e, the Jordan triple product is linear in each

of its three variables, symmetric in the outer variables, and it reduces to the original

Jordan product (binary) if one of the three variables is the unit e (cf. [8]).

An element x in a Jordan algebra J with unit e is called invertible if there exists

element y ∈ J , called the inverse of x, such that x ◦ y = e and x2 ◦ y = x; in case

of an associative algebra, this invertibility condition is equivalent to xy = e = yx.

Inverse of any element x in a Jordan algebra is unique if exists, and is symbolized as

x−1 (cf. [8]). The set of all invertible elements in Jordan algebra J is denoted by J −1.

The notion of a JB∗-algebra introduced originally by Irvin Kaplansky [39] in 1976,

as a natural generalization of C∗-algebras and initially called a Jordan C∗-algebra [39].

A JB∗-algebra is a complex Banach Jordan algebra J with Jordan binary product

◦ equipped with an involution ∗ satisfying ‖x ◦ y‖ ≤ ‖x‖‖y‖ and ‖{xx∗x}‖ = ‖x‖3

for all x, y ∈ J .

If, in addition, J has a unit e with ‖e‖ = 1 then it is called a unital JB∗-algebra.

Of course, any C∗-algebra with associative product ab is a JB∗-algebra under the

anti-commutator product x ◦ y = 1
2
(xy + yx). An element u in a unital JB∗-algebra
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J is unitary if u ∈ J −1 and u−1 = u∗; we denote the set of all unitary elements in

J by U(J ).

A more general notion of Jordan structures is the Jordan triple system (in short,

Jordan triple) which is a vector space J over a field of characteristic not 2, endowed

with a triple product {xyz} which is linear and symmetric in the outer variables x, z,

and linear or anti-linear in the inner variable y satisfying the Jordan triple identity

{xu{yvz}} + {{xvy}uz} − {yv{xuz}} = {x{uyv}z} for all u, v, x, y, z ∈ J ; further,

if J is a Banach space and the triple product is continuous on J × J × J , then J

is called a Banach Jordan triple (cf. [38]).

Recall ([39] , p. 336) that a JB∗-triple is a complex Banach space J together with

a continuous, sesquilinear, operator-valued map (x, y) ∈ J ×J 7→ Lx,y that defines a

triple product Lx,yz := {xyz} in J making it a Jordan triple system such that each

Lx,x is a positive hermitian operator on J and ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J . The

symbol Qx will denote the conjugate linear operator on J given by Qx(z) := {xzx}.

A JB∗-triple J is called a JBW ∗-triple if J , as a Banach space, is the dual of

another Banach space J ∗, called the predual of J . The predual of a JBW ∗-triple is

unique. The second dual J ∗∗ of any JB∗-triple J is always JBW ∗-triple.

3. Bade-property

This section contains a review of the relevant literature for this survey. In every

topological space the empty set and the one-point sets are connected. Therefore, a

space is totally disconnected if the only connected subsets are singletons (one-point

subsets). Also, a space is 0-dimensional if the clopen subsets form a basis for the

topology.

Moreover, a 0-dimensional Hausdorff space is necessarily totally disconnected, but

the converse fails. However, a locally compact Hausdorff space is 0-dimensional if

and only if it is totally disconnected.

Theorem 3.1. [4] Let K be a compact Hausdorff space. Then the following conditions

are equivalent:
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(1) BC(K) = co(ext(BC(K))),

(2) K is 0-dimensional.

The above result of Bade motivated him to define the Bade-property (cf.[4]).

Definition 3.1. [4] (Bade, 1971) Let X be a Banach space. We say that X has the

Bade-property if

co(ext(BX)) = BX .

The following results illustrate celebrated spaces that satisfy Bade-property.

Theorem 3.2. [4] Let X be a compact Hausdorff space. Then BC(X,R) is the closed

convex hull of its extreme points if and only if X is totally disconnected.

Theorem 3.3. [20] If X is a compact Hausdorff space, then BC(X,C) is the closed

convex hull of its extreme points.

Let X be a normed space. Aizpuru [2] induced that X has the Bade-property if

and only if

(3.1) sup
x∈BX

f(x) = sup
x∈ext(BX )

f(x)

for every continuous linear form f : X → R.

Theorem 3.4. [2] Let X be a normed space and let n ∈ N. Consider the space Xn,

with the norm

(3.2) ‖(x1, ..., xn)‖ = max
1≤i≤n

‖xi‖.

Then:

(a) (x1, ..., xn) ∈ ext(BXn) if and only if xi ∈ ext(BX) for every i ∈ 1, 2, ..., n.

(b) Xn has the Bade-property if and only if X has the Bade-property.

Theorem 3.5. [2] Let K be a compact Hausdorff space and let X be a normed space,

(a) If C(K) and X have the Bade-property, then C(K, X) has the Bade-property.

(b) If K is non-perfect (has isolated points ) and C(K, X) has the Bade-property,

then X has the Bade-property.

Consequently, we have the following corollary.
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Corollary 3.1. [2]

Let X be a normed space. Then X has the Bade-property if and only if c(X) has

the Bade-property.

Theorem 3.6. [3] The space l1(X) has the Bade-property if and only if X has the

Bade-property.

Recall that a normed space X has the Krein-Milman property if every closed and

bounded convex subset of X is the closed convex hull of its set of extreme points

which is a stronger version of the Bade-property. On the other hand, the following

example is about a Banach space having the Bade-property, while its closed unit ball

is not compact.

Example 3.1 ([24], p. 413). The Banach space l1 of all absolutely summable real

sequences x = (xn) with norm ‖x‖ =
∑

|xn| satisfies the Bade-property and this

doesn’t follow from Krein-Milman theorem because Bl1 is not compact; only finite

dimensional spaces have compact unit balls. Let E = ext(Bl1). To prove that Bl1

is the closure of co(E), we show first that E consists of sequences en, n = 1, 2, ...

and their negatives, where en is the sequence with 1 in the nth position and zeros

elsewhere. Let us first verify that each en is in E. Suppose that en = 1
2
(x + y),

where x, y ∈ Bl1 . Say x = (x1, x2, ...) and y = (y1, y2, ...). Then 1 = 1
2
(xn + yn) and

|xn| ≤ 1, |yn| ≤ 1. This implies that xn = yn = 1. Since x and y have norm at most

1, it follows that xj = yj = 0 for j 6= n. Thus x = y = en. Hence, en ∈ E. For

the reverse inclusion, let x = (xn) ∈ Bl1 and suppose that x 6= en for all n. We may

assume that ‖x‖ = 1 since otherwise x would clearly not be an extreme point. Then

we can write x = y+z, where y = (x1, x2, ..., xk, 0, 0, ...), z = (0, 0, ..., 0, xk+1, xk+2, ...)

and neither y nor z is the zero sequence. Let u = ( 1
‖y‖

)y and v = ( 1
‖z‖

)z. Then,

since ‖y‖ + ‖z‖ = ‖x‖ = 1, it follows that x = ‖y‖u + (1 − ‖y‖)v. Thus x /∈ E.

We now show that an arbitrary sequence x = (x1) in Bl1 is in the closure of co(E).

For each n, let yn =
∑n

k=1 xkek. Then yn ∈ co(E). To see this, consider the point

(x1, x2, ..., xn) in the space ln1 (which is Rn with norm ‖(x1, x2, ..., xn)‖ =
∑n

i=1 |xi|).

Let En = ext(Bln
1
). Then the members of En are the vectors ±en of length n. Hence

by the Krein-Milman theorem Bln
1

= co(En). Thus, (x1, x2, ..., xn) ∈ co(En) and

consequently, yn ∈ co(E). Since x = limn→∞ xn, we have the desired result.
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4. λ-property

This section is dedicated to study the λ-property of normed spaces, C∗-algebras,

JB∗-algebras/triples and JBW ∗-triples. The original definition of the λ-property

due to Aron and Lohman and some examples are given in the following subsection.

Then we review this property in other algebraic structures. For details in this area,

we refer to standard sources [17, 19, 22, 34]

4.1. λ-property of Normed spaces. If X is a normed space, the closed unit ball,

open unit ball and unit sphere will be donated by BX , UX and SX respectively. If

x, y ∈ X, then (x : y) denotes {λx + (1 − λ) y : 0 < λ < 1} , ((x : y] has the obvious

corresponding meaning). The set of extreme points of a convex subset A of X is

denoted by ext(A). Recall that X is strictly convex if ext(BX) = SX . A convex set

A is called a polyhedron in case ext(A) is finite and A = co(ext(A)).

Definition 4.1. If X is a normed space and x is in the closed unit ball BX of X, a

triple (e, y, λ) is said to be amenable to x in case e ∈ ext(BX), y ∈ BX , 0 < λ ≤ 1

and

(4.1) x = λe + (1 − λ)y.

In this case, the number λ(x) is define by λ(x) = sup {λ : (e, y, λ) is amenable to x}

X is said to have the λ-property if each x ∈ BX admits an amenable triple. If X

has the λ−property and, in addition, satisfies inf {λ(x) : x ∈ BX} > 0, we say X has

the uniform λ-property.

The following theorem indicates several facts of amenable vectors and λ-function.

Theorem 4.1 ([1],Proposition 1.2). Let X be a normed space.

(1) If e ∈ ext(BX), then λ(e) = 1.

(2) If (e, y, λ) is amenable to x and λ < 1, ‖y‖ < 1, then there exists λ́ > λ and

λ́ ∈ SX such that y ∈ (ý : x] and (e, ý, λ́) is amenable to x.

(3) If (e, y, λ) is amenable to x and 0 < λ́ < λ, there exists ý ∈ (ý : x) such that

(e, ý, λ́) is amenable to x.

(4) If X has the λ-property, then λ(x) ≤ (1+‖x‖)
2

for all x ∈ BX .

(5) If X is a strictly convex space, then λ(x) = (1+‖x‖)
2

for all x ∈ BX and λ(x)

is attained.
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(6) If X has the λ-property and Y is a linear subspace of X such that Y has

the λ-property, and ext(BY ) ⊂ ext(BX), then λY (x) ≤ λX(x) for all x in Y ,

where λY and λX are the λ-functions defined above in BY and BX .

In ([1] ,Theorem 2.9), authors showed that l1(X) has the λ-property but not the

uniform λ-property. Also, they showed that if X is an infinite-dimensional strictly

convex normed space, then c(X) has the uniform λ-property. Aron and Lohman in

([1], Theorem 1.13) showed that if X is a strictly convex normed space, then l∞(X)

has the uniform λ-property (cf. [22], Theorem 4). Assume that Xk, k = 1, 2, ..., have

the λ-property. If there exists a subset N0 of N with finite complement, such that

inf
k∈N0

λk(Xk) > 0, then X = (⊕
∑∞

k=1 Xk) has the λ-property.

Let X be a normed space having the λ-property (resp. uniform λ-property). Let

Y be a normed space and let f : X −→ Y be an isometric isomorphism. Then Y has

the λ-property (resp.uniform λ-property) ([17], Proposition 1.1)

Theorem 4.2 ([1], Theorem 3.3). Let X be a normed space satisfying the λ-property.

(1) If a convex function f : BX −→ R attains its maximum value, then it attains

its maximum value at a member of ext(BX).

(2) If X is a Banach space , then BX = co(ext(BX)).

Moreover, if J has the uniform λ-property, (that is, λ(x) ≥ ε > 0 for all x ∈ BJ ),

then J has the Krein-Milman-like property, (co(ext(BJ )) ∩ J ) = J .

4.2. λ-property of C∗-Algebras.

Definition 4.2 (λ-function). The λ-function, defined on an element T of a C∗-

algebra J , is the supremum, λ(T ), of numbers λ in (0, 1] for which there exists a pair

V, B in ext(BJ ) × BJ , such that T = λV + (1 − λ)B.

If J is a C∗-algebra which is closed in weak operator topology on B(H), then

J is a von Neumann algebra. Abstractly, this means that J is a dual space. In a

von Neumann algebra the unit ball is (weakly) compact, so that the Krein-Milman

theorem applies. Also J is generated by its projections (in the strong sense that the

spectral resolution of every normal operator in J belongs to J ) and the set of pro-

jections in J forms a compact lattice (a sublattice of the set of closed subspaces of J ).
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We shall assume throughout that J is unital, so I ∈ J , for the simple reason that

otherwise ext(BJ ) = ∅. For a unital C∗-algebra J , the elements in ext(BJ ) were

characterized by Kadison [10] in 1951 as follows,

ext(BJ ) = {V ∈ BJ | (I − V V ∗)J (I − V ∗V ) = 0}

Thus V ∈ ext(BJ ) if it is a partial isometry (linear map between Hilbert spaces such

that it is an isometry on the orthogonal complement of its kernel), such that the two

projections I − V ∗V and I − V V ∗ (on the kernels of V and V ∗, respectively) are

centrally orthogonal (so that even the two-sided ideals they generate are orthogonal).

If J is a prime C∗-algebra (like B(H)), or even better, simple (no non-trivial closed

ideals), then elements V in ext(BJ ) are either isometries (V ∗V = I) or co-isometries

(V V ∗ = I).

An important class of extreme points is the set U(J ) of unitary elements in J

(elements U such that U ∗U = UU∗ = I, or U∗ = U−1). In contrast to general el-

ements in ext(BX), the elements in U(J ) are normal operators. We say that the

C∗-algebra is finite, if T ∗T = I implies TT ∗ = I for all T in J , that is, every isome-

try is unitary. In case J is a von Nemann algebra, this implies that ext(BX) = U(X).

Even when non-unitary extreme points exist, the group U(J ) is rich enough to

ensure that co(U(J )) is dense in BJ . This fact is the Russo-Dye theorem [25].

Theorem 4.3 ([19], Corollary 5.5). A function algebra C(X), where X is a compact

Hausdorff space, has the λ-property if and only if the dimension of X is at most one,

in which case C(X) has the uniform λ-property for λ = 1
2
.

Theorem 4.4 ([19], Theorem 8.3). A prime C∗-algebra J (is a C∗-algebra with

property the product of any two of its non zero ideals is non zero) has the λ-property

if and only if J −1
l ∪J −1

r = J , in which case it has the uniform λ-property for λ = 1
2
.

Where J −1
l = {A ∈ J | JA = J }, and J −1

r = {A ∈ J | AJ = J }.

We recall the following definitions.

Definition 4.3. (1) A C∗-algebra J has real rank zero if and only if the invertible

self-adjoint elements of J are dense in the set J+ of self-adjoint elements in J and

every non-zero projection is finite.
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(2) A simple C∗-algebra J is said to be purely infinite if it has real rank zero.

Lemma 4.1 ([19], Theorem 10.1). If J is a purely infinite C∗-algebra, the set of

elements T of the form T = V |T |, where V is an isometry or a co-isometry in J , is

dense in J . Thus

ext(BJ+
) = J

Theorem 4.5 ( [19], Corollary 10.2). Every purely infinite C∗-algebra has the uniform

λ-property for λ = 1
2
.

Theorem 4.6 ([19], Theorem 10.4). If J is a C∗-algebra satisfying the uniform

λ-property for λ = 1
2
, then the real rank of J is at most one.

4.3. The λ-property of JB∗-algebras/triples and JBW ∗-triples. As we men-

tioned in the introduction, the class of JB∗-algebra was introduced by Kaplansky

in 1976 and it includes all C∗-algebras as a proper subclass. Let us recall that

the Bergmann operator associated with a couple of elements x, y in a JB∗-algebra

(respectively a JB∗-triple) = is the mapping B(x, y) : = × = → = defined by

B(x, y) := I − 2Lx,y + QxQy. Tahlawi and Siddiqui introduced in [35], the notion

of Brown-Pedersen quasi-invertible elements in a JB∗-algebras (respectively JB∗-

triples). An element a in = is Brown-Pedersen quasi-invertible (BP-quasi-invertible

for short) if there exists b ∈ = such that B(a, b) = 0. We use the notation =−1
q to

symbolize the set of BP-quasi invertible elements in =. Let mq(x) = dist(x,=\=−1
q ).

Theorem 4.7 ([9], Theorem 3.4). Let a be a BP-quasi-invertible element in the closed

unit ball of a JB∗-triple =. Then for every λ ∈ [ 1
2
, (1+mq(a))

2
] there exist e, u ∈ ext(=)

satisfying a = λe + (1 − λ)u.

Theorem 4.8 ([9], Corollary 3.5). Let = be a JB∗-triple. Let a be an element in

B=. Then a ∈ =−1
q if and only if a = λv1 + (1 − λ)v2 for some extreme points

v1, v2 ∈ ext(B=) and 0 ≤ λ < 1
2
.

Definition 4.4 (Extremally rich JB∗-algebra/triple ). A JB∗-algebra (resp.

JB∗-triple), =, is said to be extremally rich if the set of BP-quasi invertible elements

=−1
q is dense in =.
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Thus, extremally rich JB∗-algebra (resp. triple) has a non-empty intersection with

JB∗-algebra (resp. triple) satisfying λ-property.

If we replace JB∗-triples with JBW ∗-triples, computations are much more simpler

on the closed unit ball.

In JBW ∗-triples, the following result due to Siddiqui implies immediately that any

JBW ∗-triple satisfies the uniform λ-property.

Theorem 4.9 ([31], Theorem 5). If = is a JBW ∗-triple then every element of B=

is the average of two extreme points of B=.

From some deferent perspective, another proof was given by Jamjoom, Tahlawi

and Siddiqui to the following result.

Theorem 4.10 ([9], Corollary 4.3). Every a JBW ∗-triple= satisfies the uniform

λ-property .

Since a JBW ∗-triples play an analogue role to that played by von Neumann algebra

in the class of C∗-algebras, authors of [9] gave a complete description of the λ-function

on the closed unit ball of every JBW ∗-triple .

5. Bade-property and λ-property

The relation between the Bade-property and λ-property of normaed spaces was a

natural inquiry that raised and investigated by Aron, Lohman and Pedersen. This

relation was the main investigating point of Aizpuru’s note, [2] in the space of contin-

uous functions and convergent sequences of 0-dimensional normed spaces. In case of

other algebraic structures, we can deduced from Theorem 4.2 the following relation.

Theorem 5.1. If a Banach space X has the λ-property then it has the Bade-property.

Consequently, all normed spaces, C∗-algebras and JB∗-algebras/triples which sat-

isfy λ-property and mentioned in sections 3 and 4 above, also satisfy the Bade-

property.

We note that the converse of the theorem above is not true, in fact if X is a finite-

dimensional strictly convex space, then CX(T ) may fail to have the λ-property, while

of course it satisfies the Bade-property by Minkowsk’s theorem.
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Remark 5.1. Aron and Lohman([1], Example 3.1.1) proved that if K is a compact

metric space and X is a strictly convex normed space then C(K, X) has the uniform

λ-property (and, hence, the Bade-property). As a consequence, it may happen that

C(K, X) has the Bade-property but C(K) does not have it (this occurs, for instance,

when K = [0, 1]). Theorem 3.5 (a) gives us a sufficient condition for C(K, X) to

have the Bade-property, if C(K) and X have it (in this case K is 0-dimensional).

We do not know if there exist spaces C(K, X) with the Bade-property such that neither

C(K) nor X have the property. Theorem 3.5 (b) tells us that this cannot occur if K

is non-perfect.

Aizpuru proved the following result which was crucial to give clear description of

the relation between Bade-property, λ-property and uniform λ-property (as shown in

the Theorem 5.2). The proof of Lemma 5.1 is technical and we refer the reader to

see it in [2].

Lemma 5.1 ([2], Proposition 3.3). Let K be a 0-dimensional Hausdorff compact

space and let X = C(K). Then c(X) has the λ-property and λ(c(X)) = 1
2
.

Theorem 5.2 ([2], Corollary 3.5). Let K be a Hausdorff compact space, then the

following statements are equivalent:

(a) K is 0-dimensional.

(b) C(K) has the Bade-property.

(c) c(C(K)) has the Bade-property.

(d) C(K) has the λ-property.

(e) C(K) has the uniform λ-property and λ(C(K)) = 1
2
.

(f) c(C(K)) has the λ-property.

(g) c(C(K)) has the uniform λ-property and λ(c(C(K))) = 1
2
.

Proof. (a) ⇔ (b) from Theorem 3.1.

(b) ⇔ (c) from Corollary 3.1.

(c) ⇒ (d) from Theorem 4.2.

(d) ⇒ (e) from [[1], Theorem 1.15].

(e) ⇒ (f) it is clearly from Lemma 5.1.

(f) ⇒ (g) from Lemma 5.1 and [[1], Theorem 1.15].

(g) ⇒ (c) from Theorem 4.2.

�
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6. Bade-property and Extremally Richness

Throughout this section, J is a unital C∗-algebra with unitary group U(J ), and

invertible group J −1. We denote by B◦
J the interior of the closed unit ball BJ of

J . Russo and Dye ([25]; p. 414) show that the convex hull of the set of unitaries in

a C∗-algebra J , co(U(J )), contains the open ball about 1
2
. Robertson [23] gave an

improved version of this result as follows.

Theorem 6.1 ([23], Proposition 1). If J is a unital C∗-algebra, then B◦
J ⊂ co(U(J )).

Consequently, the closed unit ball of J is contained in the closed convex hull

of the unitaries, co(U(J )) which is well known as the Russo-Dye Theorem. The

converse inclusion co(U(J )) ⊂ BJ follows immediately from the fact that unitaries

are contained in the unit ball of J , and BJ is closed. Hence BJ = co(U(J )).

Originally, C∗-algebras of topological stable rank 1 is due to M. Reiffel [21] and it is

defined as follows.

Definition 6.1. A C∗-algebra J is of topological stable rank 1 if and only if its

invertible elements are norm dense in J . We symbolize this by tsr 1.

Theorem 6.2. Every unital C∗-algebra of topological stable rank 1 satisfies the Bade-

property.

Proof. Recall that if J is of tsr 1 , then U(J ) = ext(J ) (see for example [29],

Corollary 6.10). As discussed above after Defnition 6.1, we conclude that BJ =

co(ext(J )). That is, J has the Bade-property. �

Let = be a unital JB∗-algebra. An element u of a JB∗-algebra = is called unitary

if u∗ = u−1, the inverse of u. The set of all unitary elements of = will be denoted by

U(=).

In the following we give the characterization of extreme points in JB∗-triples given

by Kaup in ([12], Lemma 3.2 and Proposition 3.5).

Definition 6.2. Let = be JB∗-triple. An element v ∈ = is an extreme point of the

closed unit ball of B= if and only if B(v, v) = 0. In JB∗-algebras, this translates into

the form,

a − 2 {vv∗a} + {v {va∗v}∗ v} = 0

for all a ∈ =.
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Moreover, Russo-Dye Theorem holds for a big class in JB∗-algebras as proved by

A. A. Siddiqui in [32]. He studied unitary elements in JB∗-algebras and established a

sequence of results ending with the following lemma that leads to Russo-Dye Theorem

in JB∗-algebras.

Theorem 6.3 ([32], Theorem 2.2). Let = be a unital JB∗-algebra , s ∈ B◦
= (the open

unit ball) and v ∈ U(=). Then, for any positive integer n, v + (n − 1)s =
∑n

i=1 ui

where the u,
is are unitaries in =

JB∗-algebras of topological stable rank 1 was studied by A. A. Siddiqui extending

the notion of C∗-algebras of tsr 1 and a JB∗-algebra = is said to be of topological

stable rank 1 if the set =−1 of invertible elements in = is norm dense in =. He deduced

the following interesting fact.

Theorem 6.4 ([29], Corollary 6.10). Let = be a unital JB∗-algebra of tsr 1. Then

ext(B=) = U(=).

Hence, the distance from any x ∈ = to ext(B=), is dist(x, U(=)).

Proof. Since topological stable rank (=) = 1,=−1 is norm dense in = such that

dist(x,=−1) = 0 for all x ∈ =. So that α(x) < 1 for all x ∈ ext(B=). Hence, from

Theorem 6.7 [29] and the definition of the distance function α(x), there exists at least

one y ∈ =−1 such that ‖x − y‖ < 1, thus ext(B=) ⊆ U(=). The reverse inclusion is

true for any JB∗- algebra since every unitary in = is an extreme point of the closed

unit ball in =.

�

The following result due to A. A. Siddiqui extends joint results of Kadison and

Pedersen to general JB∗-algebras.

Theorem 6.5. (Russo-Dye)([32], Theorem 2.3)

(1) Let x be an element of a JB∗-algebra = with unit e such that ‖x‖ < 1− 2n−1

for some n ≥ 3. Then there exist ui ∈ U(=), i = 1, 2, 3, ..., n such that

x = 1
n

∑n

i=1 ui.
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(2) B◦
= ⊆ co(U(=).

(3) co(U(=) = B=.

Proof. (1 ) Since ‖x‖ < 1− 2n−1, we have ‖(n− 1)−1(nx− e)‖ < 1. Hence, by taking

v = e and s = (n − 1)−1(nx − e) in Theorem 6.3, we get nx =
∑n

j=1 ui, for some

unitaries ui ∈ =.

(2 ) Suppose x ∈ B◦
=. Then there exists an integer n ≥ 3 such that ‖x‖ < 1 − 2n−1.

Therefore, x ∈ co(U(=)) by (1 ).

(3 ) Clearly, co(U(=)) ⊆ B=. On the other hand, we have B◦
= ⊆ co(U(=)) by (1).

Thus B= ⊆ co(U(=)) because B◦
= = B=. �

Corollary 6.1. Any JB∗-algebra of topological stable rank 1 has Bade-property.

Proof. Immediate from definition of JB∗-algebras of topological stable rank 1 and

Theorem 6.5 �

Remark 6.1 ([21], Proposition 1.7). Recall that the C∗-algebra C(X) of all complex-

valued continuous functions defined on a compact space X of covering dimension 1

or zero and any finite von Neumann algebra are tsr 1. Also, any finite-dimensional

JB∗-algebra is of tsr 1 [29]. Therefore, C∗-algebras and JB∗-algebras of tsr 1 are

large and satisfy the Bade-prperty.

For JB∗-triples, which are not JB∗-algebras, there is no formal generalization of

topological stable rank 1 JB∗-triple. Thus, we will consider another property, called

extremal richness of JB∗-triples defined previously in section 4.

Theorem 6.6. Let = be a JB∗-triple with ext(=1) 6= 0. If = is etremally rich, then

= has the Bade-property.

Proof. First we shall prove that extremally richness of = implies that α(ext(=))+(1−

α)(ext(=)) is norm dense in =1. Let x ∈ =1. By definition, there exists a sequence

(xn) in =−1
q which converges uniformly to x. Putting an = (max{1, ‖xn‖})

−1 we see

that

‖xn − anxn‖ ≤ ‖x − xn‖ + ‖xn − anxn‖.

Note that

‖xn − anxn‖ = (1 − an)‖xn‖ → 0 as n → ∞,
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since an → 1 as ‖xn‖ → ‖x‖ ≤ 1 when n → ∞. Therefore,

‖x − anxn‖ → 0 as n → ∞. Also, we note that for each n, anxn ∈ =1 ∩ =−1
q because

xn ∈ =−1
q , so

‖xnan‖ =

{

‖xn‖ if an = 1;

‖‖xn‖
−1xn‖ = 1 otherwise.

From ([9], Corollary 3.5), it follows that

anxn ∈ α(ext(=)) + (1 − α)(ext(=)).

Hence, α(ext(=)) + (1 − α)(ext(=) is norm dense in =1.

Next, recall that Russo-Dye theorem for JB∗-triples ([37], Theorem 16) gives the

inclusion; =1 ⊆ co(ext(=1)), hence = has the Bade-property.

�
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