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A NEW VIEW OF FUZZY VECTOR SPACE OVER FUZZY FIELD

ESMAEEL RANJBAR-YANEHSARI (1) AND MOHSEN ASGHARI-LARIMI∗(2)

Abstract. In this paper, we determine a new view of fuzzy vector space over fuzzy

field by using Yuan and Lee’s definition of the fuzzy group, Aktaş and Çağman’s

definition of fuzzy ring and Yetkin and Olgun’s definition of fuzzy module. Moreover

the concepts of fuzzy vector subspace are studied and some of their basic properties

are presented as analogous to ordinary vector space theory.

1. Introduction

The concept of fuzzy group was first introduced by Rosenfeld in [5]. Since then

many researchers have studied fuzzy structures in many different types, as you can

see in [1], [2], [3], [6], [4], [7]. In the definition of fuzzy subgroups, two types of

fuzzy structures are observed in general. In the first type, the subset of a group G

is fuzzy and the binary operation on G is nonfuzzy in the same classical sense as

Rosenfeld’s definition [5]. In the second one, the set is nonfuzzy or classical and the

binary operation is fuzzy in the same fuzzy sense as in Yuan and Lee’s [8] definition.

By using of Yuan and Lee’s definition of fuzzy group based on fuzzy binary operation,

Aktaş and Çağman [1] defined a new type of fuzzy ring and the concepts of fuzzy

subring, fuzzy ideal and fuzzy ring homomorphism are introduced. Yetkin and Olgun

[7] presented a new type of fuzzy module by using Yuan and Lee’s definition and
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discussed related results. Also, in 2010, Öztürk, Jun and Yazarli [4] introduced a

new kind of fuzzy gamma rings and the concepts of fuzzy gamma ring, fuzzy ideal,

fuzzy quotient gamma ring, and fuzzy gamma homomorphism are introduced.

2. Preliminaries

In this section we will formulate the preliminary definitions and results that are

required in this paper. Let θ ∈ [0, 1). Malik and Mordeson [3] gave the following

definition:

Definition 2.1. [8] Let R and S be nonempty sets and f be a fuzzy subset of R×S.

Then f is called a fuzzy function R into S if

(1) ∀x ∈ R, ∃y ∈ S such that f(x, y) > θ;

(2) ∀x ∈ R, ∀y1, y2 ∈ S, f(x, y1) > θ and f(x, y2) > θ implies y1 = y2.

By using of definition 2.1, Yuan and Lee gave the following definition:

Definition 2.2. [8] Let G be a nonempty set and R be a fuzzy subset of G×G×G.

Then R is called a fuzzy binary operation on G if

(1) ∀a, b ∈ G, ∃c ∈ G such that R(a, b, c) > θ;

(2) ∀a, b, c1, c2 ∈ G, R(a, b, c1) > θ and R(a, b, c2) > θ implies c1 = c2.

Let R be a fuzzy binary operation on G. Then we have a mapping R : F (G) ×

F (G) → F (G) defined by (A, B) → R(A, B) where F (G) = {A|A : G → [0, 1] is a

mapping } and R(A, B)(c) =
∨

a,b∈G(A(a) ∧ B(b) ∧ R(a, b, c)) for all c ∈ G.

Let A = {a}, B = {b} and let R(A, B) be denoted as a◦b. Then (a◦b)(c) = R(a, b, c)

for all c ∈ G. Also, ((a ◦ b) ◦ c)(z) =
∨

d∈G(R(a, b, d)∧R(d, c, z)) and (a ◦ (b ◦ c))(z) =
∨

d∈G(R(b, c, d) ∧ R(a, d, z)) for all z ∈ G.

Definition 2.3. [8] Let G be a nonempty set and R be a fuzzy binary operation on

G. Then (G, R) is called a fuzzy group if the following conditions are true:
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(1) ∀a, b, c, x1, x2 ∈ G,
(

(a◦b)◦c
)

(x1) > θ and
(

a◦(b◦c
)

(x2) > θ implies x1 = x2;

(2) ∃eR ∈ G such that (eR ◦ a)(a) > θ and (a ◦ eR)(a) > θ for any a ∈ G(eR is

called an identity element of G);

(3) ∀a ∈ G, ∃b ∈ G such that (a ◦ b)(eR) > θ and (b ◦ a)(eR) > θ(b is called an in-

verse element of a and denoted as a−1)where
(

(a◦b)◦c
)

(x1) =
∨

y∈G R(a, b, y)∧

R(y, c, x1)
(

(a ◦ (b ◦ c
)

(x2) =
∨

y∈G R(a, y, x2) ∧ R(b, c, y).

Example 2.1. Let V = {e, a} be a nonempty set. Let us define E fuzzy binary

operation on V , all with the same value of θ = 0.6, as follows:

E(e, e, e) = 0.9, E(e, a, e) = 0.2, E(a, e, e) = 0.4, E(a, a, e) = 0.7,

E(e, e, a) = 0.1, E(e, a, a) = 0.8, E(a, e, a) = 0.8, E(a, a, a) = 0.5.

Then (V, E) is a abelian fuzzy group, where e = eE is an identity element of V .

Proposition 2.1. [8] Let (G, R) be a fuzzy group. Then

(

(a ◦ b) ◦ c
)

(d) > θ ⇔
(

a ◦ (b ◦ c)
)

(d) > θ, ∀a, b, c ∈ G.

Definition 2.4. [8] Let (H, R) be a fuzzy group. If

(a ◦ b)(c) > θ ⇐⇒ (b ◦ a)(c) > θ, ∀a, b, c ∈ G,

then (G, R) is called an abelian fuzzy group.

Definition 2.5. [1] Let R be a nonempty set and G and let H be two fuzzy binary

operations on R. Then (R, G, H) is called a fuzzy ring if the following conditions are

met:

(1) (R, G) is an abelian fuzzy group;

(2) ∀a, b, c, x1, x2 ∈ R,
(

(a ∗ b) ∗ c
)

(x1) > θ and
(

a ∗ (b ∗ c)
)

(x2) > θ implies

x1 = x2;
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(3) ∀a, b, c, x1, x2 ∈ R,
(

(a ◦ b) ∗ c
)

(x1) > θ,
(

(a ∗ c) ◦ (b ∗ c)
)

(x2) > θ implies

x1 = x2 and
(

a ∗ (b ◦ c)
)

(x1) > θ and
(

(a ∗ b) ◦ (a ∗ c)
)

(x2) > θ implies x1 = x2 where
(

a ∗ (b ◦ c)
)

(x1) =
∨

y∈R H(a, y, x1) ∧ G(b, c, y) and
(

(a ∗ b) ◦ (a ∗ c)
)

(x2) =
∨

z1,z2∈R H(a, b, z1) ∧ H(a, c, z2) ∧ G(z1, z2, x2).

If (a ∗ b)(x) > θ ⇔ (b ∗ a)(x) > θ for all a, b, x ∈ R, then (R, G, H) is said to be a

commutative fuzzy ring. If (R, G, H) contains an element eH such that (a∗eH)(a) > θ

and (eH ∗ a)(a) > θ, ∀a ∈ R, then (R, G, H) is said to be a fuzzy ring with identity.

The identity element eG is called the zero element of the fuzzy ring. If ∀a ∈ R, ∃b ∈ R

such that (a ∗ b)(eH) > θ and (b ∗ a)(eH) > θ, then b is said to be an inverse element

of a and is denoted by a−1.

Definition 2.6. A commutative fuzzy ring with identity eH , (R, G, H) is said to be

fuzzy field if for each element a ∈ R there exists some b ∈ R such that (a∗ b)(eH) > θ

and (b ∗ a)(eH) > θ.

Example 2.2. Let H = {e, b, c} be a nonempty set. Let us define R and S fuzzy

binary operation on H, all with the same value of θ = 0.6, as follows:

R(e, e, e) = 0.7, R(b, e, e) = 0.5, R(c, e, e) = 0.4, R(e, e, b) = 0.2, R(b, e, b) = 0.8,

R(c, e, b) = 0.5, R(e, e, c) = 0.3, R(b, e, c) = 0.4, R(c, e, c) = 0.9, R(e, b, e) = 0.5,

R(b, b, e) = 0.2, R(c, b, e) = 0.8, R(e, b, b) = 0.8, R(b, b, b) = 0.3, R(c, b, b) = 0.1,

R(e, b, c) = 0.4, R(b, b, c) = 0.9, R(c, b, c) = 0.4, R(e, c, e) = 0.2, R(b, c, e) = 0.8,

R(c, c, e) = 0.3, R(e, c, b) = 0.1, R(b, c, b) = 0.4, R(c, c, b) = 0.9, R(e, c, c) = 0.9,

R(b, c, c) = 0.4, R(c, c, c) = 0.4, S(e, e, e) = 0.8, S(b, e, e) = 0.9, S(c, e, e) = 0.8,

S(e, e, b) = 0.2, S(b, e, b) = 0.4, S(c, e, b) = 0.3, S(e, e, c) = 0.3, S(b, e, c) = 0.2,

S(c, e, c) = 0.2, S(e, b, e) = 0.9, S(b, b, e) = 0.3, S(c, b, e) = 0.5, S(e, b, b) = 0.2,
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S(b, b, b) = 0.8, S(c, b, b) = 0.4, S(e, b, c) = 0.3, S(b, b, c) = 0.3, S(c, b, c) = 0.9,

S(e, c, e) = 0.9, S(b, c, e) = 0.1, S(c, c, e) = 0.4, S(e, c, b) = 0.1, S(b, c, b) = 0.3,

S(c, c, b) = 0.8, S(e, c, c) = 0.2, S(b, c, c) = 0.9, S(c, c, c) = 0.3.

Then (H, R, S) is a fuzzy field, where eR = e and eS = a are identity fuzzy field

(H, R, S) respectively.

3. Fuzzy vector over Fuzzy field

Definition 3.1. Let (R, G, H) be a fuzzy field and (V, E) be an abelian fuzzy group

and let P be a fuzzy subset of R × V × V such that

(1) ∀a ∈ R, ∀u ∈ V, ∃v ∈ V such that P (a, u, v) > θ;

(2) ∀a ∈ R, ∀u, v1, v2 ∈ V, R(a, u, v1) > θ and R(a, u, v2) > θ implies v1 = v2.

Then we have a mapping

P :F (R) × F (V ) → F (V )

(A, S) → P (A, S)

where F (R) = {A|A : R → [0, 1] is a mapping }, F (V ) = {S|S : V → [0, 1]

is a mapping } and P (A, S)(x) =
∨

(r,u)∈R×V A(r) ∧ S(u) ∧ P (r, u, x). Let A = {r}

and S = {u}, and let P (A, S) and E(u, v) be a denoted as r�u and u⊕v, respectively.

Then

(r � u)(x) = P (r, u, x), (u ⊕ v)(x) = E(u, v, x), ∀x ∈ V
(

r � (u ⊕ v)
)

(x) =
∨

y∈V

P (r, y, x) ∧ E(u, v, y)

(

r � u) ⊕ (r � v)
)

(x) =
∨

y1,y2∈V

P (r, u, y1) ∧ P (r, v, y2) ∧ E(y1, y2, x)

(

(r1 ◦ r2) � u
)

(x) =
∨

r∈R

G(r1, r2, r) ∧ P (r, u, x)

(

r1 � (r2 � u)
)

(x) =
∨

y∈V

P (r1, y, x) ∧ P (r2, u, y)
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(

(r1 ∗ r2) � u
)

(x) =
∨

r∈R

H(r1, r2, r) ∧ P (r, u, x).

Definition 3.2. Let (R, G, H) be a fuzzy field and let (V, E) be an abelian group.

Then V is called a fuzzy vector space over R if the following axioms hold:

(1) For any u, v, x, y ∈ V and r ∈ R,
(

r�(u⊕v)
)

(x) > θ,
(

(r�u)⊕(r�v)
)

(y) > θ

implies x = y;

(2) For any u, x, y ∈ V and r1, r2 ∈ R,
(

(r1 ◦ r2) � u
)

(x) > θ,
(

(r1 � u) ⊕ (r2 �

u)
)

(y) > θ implies x = y;

(3) For any u, x, y ∈ V and r1, r2 ∈ R,
(

(r1∗r2)�u
)

(x) > θ,
(

r1�(r2�u)
)

(y) > θ

implies x = y;

(4) For any u ∈ V , (eH � u)(u) > θ.

Example 3.1. Let (V, E) and (H, R, S) be abelian fuzzy group and fuzzy field which

were mention in examples 2.4 and 2.8 respectivly. Let us define P fuzzy function of

H into V , all with the same value of θ = 0.6, as follows:

P (eR, eE, eE) = 0.8, P (eR, a, eE) = 0.7, P (b, eE, eE) = 0.9, P (eR, eE, a) = 0.2,

P (eR, a, a) = 0.4, P (b, eE, a) = 0.3, P (b, a, eE) = 0.4, P (c, eE, eE) = 0.8,

P (c, a, eE) = 0.1, P (b, a, a) = 0.8, P (c, eE, a) = 0.3, P (c, a, a) = 0.9.

Then V is a fuzzy vector space over H together with a fuzzy function P , since the

following conditions an true:

(1) For any u, v, x, y ∈ V and r ∈ R,
(

r�(u⊕v)
)

(x) > θ,
(

(r�u)
)

⊕(r�v)
)

(y) > θ

implies x = y;

(2) For any u, x, y ∈ V and r1, r2 ∈ R,
(

(r1 ◦ r2) � u
)

(x) > θ,
(

(r1 � u)
)

⊕ (r2 �

u)
)

(y) > θ implies x = y;

(3) For any u, x, y ∈ V and r1, r2 ∈ R,
(

(r1∗r2)�u
)

(x) > θ,
(

r1�(r2�u)
)

(y) > θ

implies x = y;
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(4) For any u ∈ V , (a � u)(u) > θ.

By proposition 18 of [7] we have:

Theorem 3.1. Let V be a fuzzy vector space over a fuzzy field R. Then for any

u, v, x ∈ V and for any r, r1, r2 ∈ R,

(i)
(

r � (u ⊕ v)
)

(x) > θ if and only if
(

(r � u) ⊕ (r � v)
)

(x) > θ;

(ii)
(

(r1 ◦ r2) � u
)

(x) > θ if and only if
(

(r1 � u) ⊕ (r2 � u)
)

(x) > θ;

(iii)
(

(r1 ∗ r2) � u
)

(x) > θ if and only if
(

r1 � (r2 � u)
)

(x) > θ.

Theorem 3.2. Let V be a fuzzy vector space over a fuzzy filed R. Then for all u ∈ V

and r ∈ R,

(i) (r � eE)(eE) > θ;

(ii) (eG � u)(eE) > θ;

(iii) If (r � u)(eE) > θ, then r = eG or u = eE.

Proof. To prove (i) and (ii) see proposition 19 of [7].

(iii) Let (r � u)(eE) > θ and r 6= eG. Then there exists r−1 ∈ R such that (r−1 ∗

r)(eH) > θ, since
(

r−1 � (r� u)
)

(eE) > P (r−1, eE, eE)∧ P (r, u, eE) > θ. By theorem

3.1, we have
(

(r−1 ∗ r) � u
)

(eE) =
∨

a∈R H(r−1, r, a) ∧ P (a, u, eE) > θ. Then there

exists a1 ∈ R such that H(r−1, r, a1) > θ and P (a1, u, eE) > θ. Thus a1 = eH . Since

(eH � u)(u) > θ, hence u = eE. �

Definition 3.3. Let V be a fuzzy vector space over a fuzzy filed R. A nonempty

subset W of V is called a fuzzy subspace of V if W is itself a fuzzy space over R with

the fuzzy operation on V , i.e.

(i) ∀w1, w2 ∈ W, ∀u ∈ V, (w1 ⊕ w2)(u) > θ implies u ∈ W ;

(ii) w ∈ W implies w−1 ∈ W

(iii) ∀r ∈ R, ∀w ∈ W, ∀u ∈ V, (r � w)(u) > θ implies u ∈ W .
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Theorem 3.3. Let V be a fuzzy vector space over a fuzzy filed R. A nonempty subset

W of V is a fuzzy subspace of V if and only if

(∗) ∀r1, r2 ∈ R, ∀w1, w2 ∈ W, ∀u ∈ V,
(

(r1 �w1)⊕ (r2 �w2)
)

(u) > θ implies u ∈ W.

Proof. Let W be a fuzzy subspace of V and
(

(r1 � w1) ⊕ (r2 � w2)
)

(u) > θ. Then

there exists y1, y2 ∈ V , such that

P (r1, w1, y1) > θ, P (r2, w2, y2) > θ, E(y1, y2, u) > θ.

Since w1, w2 ∈ W , so we obtain y1, y2 ∈ W and consequently u ∈ W .

Conversely, assume that (*) hold and let (w1 ⊕ w2)(u) > θ, ∀w1, w2 ∈ W, ∀u ∈ V .

Since

(

(eH � w1) ⊕ (eH � w2)
)

(u) > P (eH , w1, w1) ∧ P (eH , w2, w2) ∧ E(w1, w2, u) > θ,

thus u ∈ W . Now let w be an element of W . Since

(

(eH�eE)⊕(eH�w−1)
)

(w−1) > P (eH , eE, eE)∧P (eH , w−1, w−1)∧E(eE, w−1, w−1) > θ.

Thus w−1 ∈ W .

If ∀r ∈ R, ∀w ∈ W, ∀u ∈ V, (r � w)(u) > θ, then

(

(eH � eE) ⊕ (r � w)
)

(u) > P (eH , eE, eE) ∧ P (r, w, u) ∧ E(eE, u, u) > θ.

Thus u ∈ W . Hence by definition 3.3, W is a fuzzy subspace of V . �

Remark 1. If {Wi|i ∈ I} is a family of fuzzy subspace of a fuzzy vector space of V ,

then
⋂

i∈I Wi is a fuzzy subspace of V .

Proof. Let u ∈ V and r ∈ R. (1) If w1, w2 ∈
⋂

i∈I Wi and (w1 ⊕ w2)(u) > 0, since

Wi is fuzzy subspace of V, then for all i ∈ I, u ∈ Wi. Therefore u ∈
⋂

i∈I Wi. (2)

If w ∈
⋂

i∈I Wi, then for all i ∈ I, w ∈ Wi. So for all i ∈ I, w−1 ∈ Wi. Therefore

w−1 ∈
⋂

i∈I Wi. (3) If w ∈
⋂

i∈I Wi and (r � w)(u) > 0, then for all i ∈ I, w ∈ Wi,

since Wi is fuzzy subspace of V, thus for all i ∈ I, u ∈ Wi. Therefore u ∈
⋂

i∈I Wi. �
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Theorem 3.4. Let V be a fuzzy vector space over fuzzy filed R. Then FL(v) = {u ∈

V |∃r ∈ R, (r�v)(u) > θ} where v ∈ V , is the smallest fuzzy subspace of V containing

v; hence, it is called the fuzzy subspace spanned or generated by v.

Proof. Since (eH�v)(v) > θ, thus v ∈ FL(v). Now suppose u, u′ ∈ FL(v), x ∈ V and

(u⊕u′)(x) > θ. Then there exist r, r′ ∈ R such that (r�v)(u) > θ and (r′�v)(u′) > θ.

Since
(

(r�v)⊕(r′�v)
)

(x) > P (r, v, u)∧P (r′, v, u′)∧E(u, u′, x) > θ. By the theorem

3.1,
(

(r ◦ r′)�v
)

(x) =
∨

a∈R G(r, r′, a)∧P (a, v, x) > θ, hence there exist a ∈ R, such

that G(r, r′, a) ∧ P (a, v, x) > θ. Then P (a, v, x) = (a � v)(x) > θ. Thus x ∈ FL(v).

Let u ∈ FL(v) and let r ∈ R, x ∈ V such that (r � v)(u) > θ and P (r−1, v, x) > θ.

Since
(

(r ◦ r−1) � v
)

(eE) > G(r, r−1, eG) ∧ P (eG, v, eE) > θ. Thus
(

(r � v) ⊕ (r−1 �

v)
)

(eE) > θ. Therefore

∃y1, y2 ∈ V : P (r, v, y1) > θ, P (r−1, v, y2) > θ, E(y1, y2, eE) > θ.

Consequently y1 = u and y2 = x. Furthermore, since E(u, x, eE) > θ thus x = u−1.

Hence P (r−1, v, x) = P (r−1, v, u−1) > θ implies u−1 ∈ FL(v). We next show that if

u ∈ FL(v), r ∈ R and (r � u)(x) > θ, then x ∈ FL(v). From u ∈ FL(v) implies

∃a ∈ R, (a � v)(u) > θ. Since
(

r � (a � v)
)

(x) > P (r, u, x) ∧ P (a, v, u) > θ.

Consequently by theorem 3.1,
(

(r ∗ a) � v
)

(x) > θ. Hence ∃b ∈ R : P (b, v, x) > θ

implies x ∈ FL(v). Accordingly, FL(v) is a fuzzy subspace of V containing v. Finally,

if W is a fuzzy subspace of V containing v and u ∈ FL(v), then u ∈ W . Thus FL(v)

is the smallest fuzzy subspace of V containing v. �

Lemma 3.1. Let V be a fuzzy vector space. Then

(

(u1 ⊕ u2) ⊕ (u3 ⊕ u4)
)

(u) > θ ⇔
[(

(u1 ⊕ u2) ⊕ u3

)

⊕ u4

]

(u) > θ,

where u1, u2, u3, u4, u ∈ V .



202 E. RANJBAR-YANEHSARI AND M. ASGHARI-LARIMI

Proof. Let
(

(u1 ⊕ u2) ⊕ (u3 ⊕ u4)
)

(u) > θ. Then there exist y1, y2 ∈ V such that,

E(u1, u2, y1) > θ, E(u3, u4, y2) > θ and E(y1, y2, u) > θ. Now, suppose v, w ∈ V such

that, E(y1, u3, v) > θ and E(v, u4, w) > θ . Which implies that E(u3, y1, v) > θ and

E(u4, v, w) > θ. Then

[

(u1 ⊕ u2) ⊕ u3

]

(v) > E(u1, u2, y1) ∧ E(y1, u3, v) > θ.

Consequently

[(

(u1 ⊕ u2) ⊕ u3

)

⊕ u4

]

(w) =
∨

y∈V

[

(u1 ⊕ u2) ⊕ u3

]

(y) ∧ E(y, u4, w) > θ.

Since
[

(u4 ⊕ u3) ⊕ y1

]

(u) > E(u4, u3, y2) ∧ E(y2, y1, u) > θ and

[

(u4 ⊕ u3) ⊕ y1

]

(w) =
∨

x∈V

E(u4, x, w) ∧ E(u3, y1, x)

> E(u4, v, w) ∧ E(u3, y1, v) > θ.

Hence by theorem 3.1, w = u.

Similarly, it is proved that if
[(

(u1 ⊕u2)⊕u3

)

⊕u4

]

(u) > θ, then
(

(u1 ⊕u2)⊕ (u3 ⊕

u4)
)

(u) > θ. �

Corollary 3.1. If V is a fuzzy vector space, then

[(

u1 ⊕ (u2 ⊕ u3)
)

⊕ u4

]

(u) > θ ⇔
[(

(u1 ⊕ u2) ⊕ u3

)

⊕ u4

]

(u) > θ,

where u1, u2, u3, u4, u ∈ V .

Proof. The proof is similar to the proof of lemma 3.1. �

Lemma 3.2. If V is a fuzzy vector space, then for all n ≥ 2,

E(u1, · · · , un, u) ≥ θ ⇔ E(u−1
1 , · · · , u−1

n , u−1) > θ,

where u1, ..., un, u ∈ V .
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Proof. By induction on n. Let n = 2 and E(u1, u2, u) > θ. On the other hand we

have
(

u1 ⊕ (u2 ⊕ u−1
2 )

)

(u1) > θ. Consequently,

[(

u1 ⊕ (u2 ⊕ u−1
2 )

)

⊕ u−1
1

]

(eE) =
∨

y∈V

E(y, u−1
1 , eE) ∧

(

u1 ⊕ (u2 ⊕ u−1
2 )

)

(y)

> E(u1, u
−1
1 , eE) ∧

(

u1 ⊕ (u2 ⊕ u−1
2 )

)

(u1) > θ.

By lemma 3.1, we have
(

(u1⊕u2)⊕(u−1
2 ⊕u−1

1 )
)

(eE) > θ. Hence, there exist y1, y2 ∈ V

such that:

E(u1, u2, y1) > θ, E(u−1
2 , u−1

1 , y2) > θ, E(y1, y2, eE) > θ.

Since E(u1, u2, u) > θ, thus y1 = u. Furthermore, since E(y1, y2, eE) > θ, thus

y2 = u−1. Consequently,

E(u−1
1 , u−1

2 , u−1) = E(u−1
2 , u−1

1 , u−1) = E(u−1
2 , u−1

1 , y2) > θ.

Now, suppose that the lemma is true for n− 1 and E(u1, · · · , un, u) > θ. Then there

exists y ∈ V such that E(u1, · · · , un−1, y) > θ and E(y, un, u) > θ, which implies

E(u−1
1 , · · · , u−1

n−1, y
−1) > θ and E(y−1, u−1

n , u−1) > θ. Thus E(u−1
1 , · · · , u−1

n , u−1) >

θ. �

Theorem 3.5. Let V be a fuzzy vector space over a fuzzy field R and S be nonempty

subsets of V . Then

FL(S) = {u ∈ V |∃ai ∈ R, ui ∈ S, (

n
∑

i=1

ai � ui)(u) > θ, n ∈ N},

is the smallest fuzzy subspace of V containing S.

Proof. Let u, v ∈ FL(S) , w ∈ V and (u ⊕ v)(w) > θ. Then there exist ai, bj ∈ R;

ui, vj ∈ S such that

(

n
∑

i=1

ai � ui)(u) > θ, (

m
∑

j=1

bj � vj)(v) > θ.
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Hence there exists xi, yj ∈ V such that

n
∧

i=1

P (ai, ui, xi) ∧ E(x1, · · · , xn, u) > θ,

m
∧

j=1

P (bj, vj, yj) ∧ E(y1, · · · , ym, v) > θ

Now suppose,

wr =







ur if 1 ≤ r ≤ n

vr−n if n < r ≤ n + m
, cr =







ar if 1 ≤ r ≤ n

br−n if n < r ≤ n + m

and

zr =







xr if 1 ≤ r ≤ n

yr−n if n < r ≤ n + m
.

Since

E(x1, · · · , xn, y1, · · · , ym, w) =
∨

c,d∈V

E(x1, · · · , xn, c) ∧ E(y1, · · · , ym, d) ∧ E(c, d, w)

> E(x1, · · · , xn, u) ∧ E(y1, · · · , ym, v) ∧ E(u, v, w) > θ.

Thus

(

n
∧

i=1

P (ai, ui, xi)
)

∧
(

m
∧

j=1

P (bj, vj, yj)
)

∧ E(x1, · · · , xn, y1, · · · , ym, w)

=

n+m
∧

r=1

P (cr, wr, zr) ∧ E(z1, · · · , zn+m, w) > θ.

And so,
∨

zr∈V

(n+m
∧

r=1

P (cr, wr, zr) ∧ E(z1, · · · , zn+m, w)
)

> θ, which implies w ∈ FL(S).

Now suppose u ∈ FL(S) and let there exist ui ∈ S, xi ∈ V , ai ∈ R such that for

all i, P (ai, ui, xi) > θ and E(x1, · · · , xn, u) > θ. And so for all i P (a−1
i , u−1

i , x−1
i ) > θ

and E(x−1
1 , · · · , x−1

n , u−1) > θ. Thus

n
∧

i=1

P (a−1
i , u−1

i , x−1
i ) ∧ E(x−1

1 , · · · , x−1
n , u−1) > θ.

Hence (
∑n

i=1 a−1
i � u−1

i )(u−1) > θ, which implies u−1 ∈ FL(S).
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On the other hand, if u ∈ FL(S), r ∈ R, v ∈ V and (r � u)(v) > θ, then for some

ui ∈ S, xi ∈ V , ai ∈ R

(

r � (

n
∑

i=1

ai � ui)
)

(v) =
∨

y∈V

P (r, y, v) ∧ (

n
∑

i=1

ai � ui)(y)

=
∨

y∈V

[

P (r, y, v) ∧
(

∨

xi∈V

P (a1, u1, x1) ∧ · · · ∧ P (an, un, xn) ∧ E(x1, . . . , xn, u)
)]

> P (r, y, v) ∧ P (a1, u1, x1) ∧ · · · ∧ P (an, un, xn) ∧ E(x1, . . . , xn, u) > θ,

and so

[(

(r ∗ a1) � u1

)

⊕ · · · ⊕
(

(r ∗ an) � un

)]

(v) =

∨

zi∈V

(

∨

b1∈R

H(r, a1, b1) ∧ P (b1, u1, z1)
)

∧ · · ·

∧
(

∨

bn∈R

H(r, an, bn) ∧ P (bn, un, zn)
)

∧ E(z1, · · · , zn, v) > θ.

Hence there exists bi ∈ R such that
∧n

i=1 P (bi, ui, zi) > θ and E(z1, · · · , zn, v) > θ.

And so
(

∑n

i=1 bi � ui

)

(v) > θ, which implies v ∈ FL(S). Thus FL(S) is a fuzzy

subspace of V . Now suppose W is a fuzzy subspace of V containing S and suppose

u ∈ FL(S). Then

∃ai ∈ R, ui ∈ S, xi ∈ V : (

n
∑

i=1

ai � ui)(u) > θ,

n
∧

i=1

P (ai, ui, xi)∧E(x1, · · · , xn, u) > θ.

Since ui ∈ W and P (ai, ui, xi) > θ for all i, thus xi ∈ W . Also, since xi ∈ W and

E(x1, · · · , xn, u) > θ, we have u ∈ W . Thus FL(S) ⊆ W . Hence, FL(S) is the

smallest fuzzy subspace of V containing S. �

Theorem 3.6. Let W1 and W2 be fuzzy subspaces of a fuzzy vector space V . Then

W1 ⊕ W2 = {u ∈ V |∃w1 ∈ W1, w2 ∈ W2, (w1 ⊕ w2)(u) > θ},

is a fuzzy subspace of V containing W1 and W2.
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Proof. Let u ∈ W1. By hypothesis W2 is a fuzzy subspace of V and so eE ∈ W2.

Since (u ⊕ eE)(u) > θ, thus u ∈ W1 ⊕ W2. Therefore, W1 is contained in W1 ⊕ W2.

Similarly, W2 is contained in W1 ⊕ W2. Now, suppose u, u′ ∈ W1 ⊕ W2, v ∈ V

and (u ⊕ u′)(v) > θ. Then, there exist w1, w2 ∈ W1 and w2, w
′

2 ∈ W2 such that

(w1 ⊕ w2)(u) > θ, (w′

1 ⊕ w′

2)(u
′) > θ. Hence, by lemmas 3.1 and 3.1, we have

(

(w1 ⊕ w2) ⊕ (w′

1 ⊕ w′

2)
)

(v) =
(

(w1 ⊕ w′

1) ⊕ (w2 ⊕ w′

2)
)

(v)

=
∨

y1,y2∈V

E(w1, w
′

1, y1) ∧ E(w2, w
′

2, y2) ∧ E(y1, y2, v) > θ.

So, there exist y1, y2 ∈ V such that

E(w1, w
′

1, y1) > θ, E(w2, w
′

2, y2) > θ, E(y1, y2, v) > θ.

Therefore y1 ∈ W1, y2 ∈ W2 and so, v ∈ W1 ⊕ W2.

On the other hand, if u ∈ W1⊕W2 and (w1⊕w2)(u) > θ where w1 ∈ W1, w2 ∈ W2;

then E(w−1
1 , w−1

2 , u−1) > θ. Therefore, (w−1
1 ⊕w−1

2 )(u−1) > θ. Thus, u−1 ∈ W1 ⊕W2.

If u ∈ W1 ⊕ W2, a ∈ R, v ∈ V and (a � u)(v) > θ, then (w1 ⊕ w2)(u) > θ for some

w1 ∈ W1, w2 ∈ W2. Since

(

a � (w1 ⊕ w2)
)

(v) =
∨

y∈V

P (a, y, v) ∧ E(w1, w2, y)

> P (a, u, v) ∧ E(w1, w2, u) > θ,

and so,
(

(a � w1) ⊕ (a � w2)
)

(v) > θ. Thus there exist y1, y2 ∈ V such that

P (a, w1, y1) ∧ P (a, w2, y2) ∧ E(y1, y2, v) > θ.

Hence y1 ∈ W1, y2 ∈ W2 and so v ∈ W1 ⊕ W2. Consequently, W1 ⊕ W2 is a fuzzy

subspace of V containing W1 and W2. �

Corollary 3.2. If W1 and W2 are fuzzy subspaces of V , then

W1 ⊕ W2 = FL(W1, W2).
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Proof. Obvious. �

Theorem 3.7. Suppose U and W are fuzzy subspaces of a fuzzy vector space V . If

U = FL(ui)
n
i=1 and W = FL(wj)

n
j=1, then U ⊕ W = FL(ui, wj).

Proof. Let x ∈ U ⊕ W . Then (u ⊕ w)(x) > θ, where u ∈ U and w ∈ W . Since {ui}

and {wj} generated U and W , respectively. Thus there exist ai, bj ∈ R such that

(a1 � u1 ⊕ · · · ⊕ an � un)(u) > θ, (b1 � w1 ⊕ · · · ⊕ bm � wm)(w) > θ.

Hence, there exist xi, yj ∈ V such that for all i, P (ai, ui, xi) > θ, E(x1, · · · , xn, u) > θ

and for all j, P (bj, wj, yj) > θ, E(y1, · · · , ym, w) > θ. Since E(w, u, x) > θ, thus

E(y1, · · · , ym, w, x) > θ, then E(u, y1, · · · , ym, x) > θ, and so E(x1, · · · , xn, y1, · · · , ym, x) >

θ. Therefore

(a1 � u1 ⊕ · · · ⊕ an � un ⊕ b1 � w1 ⊕ · · · ⊕ bm � wm)(x) > θ,

which implies that x ∈ FL(ui, wj). Consequently, U ⊕ W ⊆ FL(ui, wj). Clearly,

FL(ui, wj) ⊆ U ⊕ W . This completes the proof. �

4. Basis of fuzzy vector space

Definition 4.1. Let V be a fuzzy vector space over a fuzzy field R. Then a subset

S of V is called fuzzy linearly independent if for every vector v1, · · · , vn in S, and

a1, · · · , an ∈ R.

(a1 � v1 ⊕ a2 � v2 ⊕ · · · ⊕ an � vn)(eE) > θ,

which implies that a1 = a2 = · · · = an = e0. A subset S of V is called fuzzy linearly

dependent if it is not fuzzy linearly independent.

Definition 4.2. A basis for V is a fuzzy linearly independent subset of V such that

span V . We say that V has finite dimension if it has a finite basis.
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Theorem 4.1. Let v1, v2 be fuzzy linearly independent vectors, and suppose v ∈

FL(v1, v2), say (a1 � v1 ⊕ a2 � v2)(v) > θ, where a1, a2 ∈ R. Show that the above

representation of v is unique.

Proof. Suppose (b1 � v1 ⊕ b2 � v2)(v) > θ, where b1, b2 ∈ R. We show that

a1 = b1, a2 = b2 ⇔ (a1 ◦ b−1
1 )(e0) > θ, (a2 ◦ b−1

2 )(e0) > θ

⇔
(

(a1 ◦ b−1
1 ) � v1 ⊕ (a2 ◦ b−1

2 ) � v2

)

(eE) > θ

⇔ ((a1 � v1 ⊕ b−1
1 � v1) ⊕ (a2 � v2 ⊕ b−1

2 � v2))(eE) > θ

By hypothesis,

∃y1, y2 ∈ V : P (a1, v1, y1) > θ, P (a2, v2, y2) > θ, E(y1, y2, v) > θ,

∃x1, x2 ∈ V : P (b−1
1 , v1, x

−1
1 ) > θ, P (b−1

2 , v2, x
−1
2 ) > θ, E(x−1

1 , x−1
2 , v−1) > θ.

Let z, u ∈ V such that E(y1, x
−1
1 , z) > θ and E(y2, x

−1
2 , u) > θ. Then

(a1 � v1 ⊕ b−1
1 � v2)(z) > P (a1, v1, y1) ∧ P (b−1

1 , v2, x
−1
1 ) ∧ E(y1, x

−1
1 , z) > θ

and

(a2 � v2 ⊕ b−1
2 � v2)(u) > P (a2, v2, y2) ∧ P (b−1

2 , v2, x
−1
2 ) ∧ E(y2, x

−1
2 , u) > θ.

Hence by lemma 3.1, we have:

((y1 ⊕ x−1
1 ) ⊕ (y2 ⊕ x−1

2 ))(eE) > θ ⇔ ((y1 ⊕ y2) ⊕ (x−1
1 ⊕ x−1

2 ))(eE) > θ.

Since

((y1 ⊕ y2) ⊕ (x−1
1 ⊕ x−1

2 ))(eE) > E(y1, y2, v) ∧ E(x−1
1 , x−1

2 , v−1) ∧ E(v, v−1, eE) > θ.

Thus

((y1⊕x−1
1 )⊕(y2⊕x−1

2 ))(eE) =
∨

w1,w2∈V

E(y1, x
−1
1 , w1)∧E(y2, x

−1
2 , w2)∧E(w1, w2, eE) > θ.
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And so,

∃w1, w2 ∈ V : E(y1, x
−1
1 , w1) > θ, E(y2, x

−1
2 , w2) > θ, E(w1, w2, eE) > θ.

Since E(y1, x
−1
1 , z) > θ, E(y2, x

−1
2 , u) > θ. Thus w1 = z, w2 = u. Hence E(w1, w2, eE) =

E(z, u, eE) > θ. Accordingly

((a1 � v1 ⊕ b−1
1 � v1) ⊕ (a2 � v2 ⊕ b−1

2 � v2))(eE) >

(a1 � v1 ⊕ b−1
1 � v1)(z) ∧ (a2 � v2 ⊕ b−1

2 � v2)(u) ∧ E(z, u, eE) > θ,

and the theorem is proved. �

By Theorem 4.1 and by induction on n, we have the following result:

Corollary 4.1. Let v1, v2, · · · , vn be independent vectors, and suppose v ∈ FL(v1, v2, · · · , vn).

If (a1 � v1 ⊕ a2 � v2 ⊕ · · ·an � vn)(v) > θ, where a1, a2, · · · , an ∈ R, then the above

representation of v is unique.

5. Conclusions

Yuan and Lee’s [8] definition of fuzzy group based on fuzzy binary operation. Also,

Aktaş and Çağman in [1] defined a new type of fuzzy ring. In [7] Yetkin and Olgun

presented a new type of fuzzy module by using Yuan and Lee’s definition. In this

paper, a new kind of fuzzy vector space over fuzzy field was introduced and their

related properties were investigated. Moreover the concepts of fuzzy vector subspace

are studied and some of their basic properties are presented as analogous to ordinary

vector space theory. The questions of other types and their applications in fuzzy

algebra remain. An investigation into this aspect of the work will be the subject of

future research.
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[1] H. Aktaş, N. Çağman, A type of fuzzy ring, Archive for Mathematical Logic, 46 (3-4)(2007),

165-177.

[2] D. S. Malik, J. N. Mordeson, Fuzzy homomorphisms of rinds, Fuzzy sets and systems, 46(1992),

139-146.

[3] J. N. Mordeson, D. S. Malik, Fuzzy Commutative Algebra, Pure Mathematics Series, World

Scientific, Singapore, 1998.
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