MULTIPLE WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF MULTILINEAR CALDERÓN-ZYGMUND AND POTENTIAL TYPE OPERATORS

PANWANG WANG $^{(1)}$ AND ZONGGUANG LIU $^{(2)}$

ABSTRACT. In this paper, the authors study the multiple weighted boundedness of commutators generated by multilinear Calderón-Zygmund and potential type singular integral operators and BMO function. Furthermore, the two weighted norm inequalities of Calderón-Zygmund and potential type singular integral operators are obtained with A_{∞} condition.

1. Introduction

The multilinear Calderón-Zygmund theory originated in the works of Coifaman Meyer in the 70s, see [5] and [6]. This topic has been attracting a lot of attention in the few decades. Recently, there are many studies on multilinear singular integrals under integral type regularity conditions so that they fall outside the standard Calderón-Zygmund classes (see [2], [7], [8] and so on).

In [2], Calderón-Zygmund and potential type multilinear operator was introduced. For $0 \le \alpha < nN$, assume that T_{α} is a multilinear operator initially defined on the m-fold product of Schwartz spaces and taking values into the space of tempered

¹⁹⁹¹ Mathematics Subject Classification. 42B20, 42B15.

Key words and phrases. Multilinear Calderón-Zygmund operator, potential type operator, commutator, A_{∞} weight.

This work is supported by NNSF-China (Grant No.11671397 and 51234005) and China Scholarship Council.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received:Sept. 28, 2017 Accepted: Jul. 15, 2018 .

distributions

$$T_{\alpha}: S(\mathbb{R}^n) \times \cdots \times S(\mathbb{R}^n) \to S'(\mathbb{R}^n).$$

Assume also that for a certain kernel function K,

$$T_{\alpha}(\mathbf{f})(x) = \int_{(\mathbb{R}^n)^N} K(x, y_1, \cdots, y_N) f_1(y_1) \cdots f_N(y_N) d\mathbf{y},$$

for $f_i \in C_0^{\infty}(\mathbb{R}^n)$ (smooth functions with compact support), i = 1, ..., N and $x \notin \bigcap_{j=i}^N \text{supp } f_i$, where $\mathbf{f} = (f_1, ..., f_N)$ and $d\mathbf{y} = dy_1 ... dy_N$. The operator T_{α} satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, i.e.

$$\sup_{Q} \sup_{x,z \in \frac{1}{2}Q} \sum_{k=0}^{\infty} |2^{k}Q|^{\frac{N}{r} - \frac{\alpha}{n}} \left(\int_{(2^{k+1}Q)^{N} \setminus (2^{k}Q)^{N}} |K(x,\mathbf{y}) - K(z,\mathbf{y})|^{r'} d\mathbf{y} \right)^{\frac{1}{r'}} < \infty,$$

where r > 1 and r' is its dual exponent, Q is the cube in \mathbb{R}^n with sides parallel to the axes, $Q^N = \underbrace{Q \times \cdots \times Q}_{N}$. When r = 1 the multilinear $L^{\infty,\alpha}$ -Hörmander contidion is understood as

$$\sup_{Q} \sup_{x,z \in \frac{1}{2}Q} \sum_{k=0}^{\infty} |2^{k}Q|^{N-\frac{\alpha}{n}} \sup_{\mathbf{y} \in (2^{k+1}Q)^{N} \setminus (2^{k}Q)^{N}} |K(x,\mathbf{y}) - K(z,\mathbf{y})| < \infty.$$

It is easy to see that when N=1 and $\alpha=0$, the above condition reduces to the classical $L^{r'}$ -Hörmander condition:

$$\sup_{x \in Q} \sum_{k=1}^{\infty} (2^k |Q|)^{\frac{1}{r}} \left(\int_{2^k Q^* \setminus 2^{k-1} Q^*} |K(x,y) - K(x_Q,y)|^{r'} dy \right)^{\frac{1}{r'}} < \infty,$$

where x_Q is the center of Q and Q^* is an appropriate dilation of Q. In [10], The authors defined the classical $L^{r'}$ -Hörmander's condition, it was implicit in the work of D. Kurtz and R. Wheeden [11]. The multilinear version was introduced by Bui-Dong [8], i.e.

$$\left(\int_{S_{j_m}(Q^*)} \cdots \int_{S_{j_1}(Q^*)} |K(x, \mathbf{y}) - K(z, \mathbf{y})|^{r'} d\mathbf{y}\right)^{\frac{1}{r'}}$$

$$\leq \frac{|x - z|^{N(\delta - \frac{n}{r})}}{|Q|^{\frac{N\delta}{n}}} 2^{-N\delta \max\{j_1, \dots, j_m\}},$$

for all $x, z \in Q$ and $(j_1, ..., j_N) \neq (0, ..., 0)$, where $S_j(Q^*) = 2^j Q^* \setminus 2^{j-1} Q^*$ if $j \geq 1$ and $S_0(Q^*) = Q^*$.

Chaffee, Torres and Wu also [2] precisely identified the graded classes of multiple weights $\mathbf{A}(\mathbf{P}, q, r)$. They are the relevant multiple kind of weights for T_{α} .

Definition 1.1. [2] For $1 \le r < p_1, \ldots, p_N < \infty$, $\mathbf{P} = (p_1, \ldots, p_N)$ and $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, and $\frac{r}{N} , we say that a vector of weight <math>\mathbf{w} = (\omega_1, \ldots, \omega_m)$, is in the class $\mathbf{A}(\mathbf{P}, q, r)$, or it satisfies the $\mathbf{A}(\mathbf{P}, q, r)$ condition, if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \omega(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \left(\frac{1}{|Q|} \int_{Q} \omega_{i}(x)^{-\frac{p_{i}r}{(p_{i}-r)}} dx \right)^{\frac{(p_{i}-r)}{p_{i}r}} < \infty,$$

where $\omega = \prod_{i=1}^{N} \omega_i$.

The main result from [2] is the following.

Theorem 1.1. [2] Let
$$1 \le r < p_1, ..., p_N < \infty$$
, $\mathbf{P} = (p_1, ..., p_N)$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, $1 \le r < \min(p_1, ..., p_N, \frac{nN}{\alpha}, Np)$ and $\frac{1}{r^*} = \frac{N}{r} - \frac{\alpha}{n}$. If

(1.1)

 $T_{\alpha} : L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, then

$$T_{\alpha}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to L^q(\omega^q)$$

for all $\mathbf{w} \in \mathbf{A}(P, q, r)$.

Given a collection of locally integral function $\vec{b} = (b_1, \ldots, b_m)$, we define the *m*-linear commutator of \vec{b} and the multilinear operator T_{α} as follows,

$$T_{lpha, \vec{b}}(\mathbf{f}) = \sum_{i=1}^{N} T_{lpha, \vec{b}}^{i}(\mathbf{f})$$

where each term is the commutator of b_i and T_{α} in the *i*th entry of T_{α} , that is

$$T^i_{\alpha \vec{b}}(\mathbf{f}) = b_i T_{\alpha}(f_1, \dots, f_i, \dots, f_N) - T_{\alpha}(f_1, \dots, b_i f_i, \dots, f_N).$$

We say $\vec{b} \in (BMO)^m$, if $||\vec{b}||_{(BMO)^m} = \max\{||b_i||_{BMO} : i = 1, ..., N\}$. On the base of [2], our main result is the following conclusion.

Theorem 1.2. Let $1 \le r < p_1, \dots, p_N < \infty$, $\mathbf{P} = (p_1, \dots, p_N)$, $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_N}$, $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, $1 \le r < \min(p_1, \dots, p_N, \frac{nN}{\alpha}, Np)$ and $\frac{1}{r^*} = \frac{N}{r} - \frac{\alpha}{n}$. If

$$T_{\alpha}: L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, then

$$T_{\alpha,\vec{b}}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to \underline{L}^q(\omega^q)$$

for all $\mathbf{w} \in \mathbf{A}(P, q, r)$, where $\vec{b} \in (BMO)^m$.

We also extend Theorem 1.1 to two weights result of T_{α} .

Theorem 1.3. Let $1 \le r < p_1, \dots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_N}$, $p \le q$, $1 \le r < \min(p_1, \dots, p_N, \frac{nN}{\alpha}, Np)$ and $\frac{1}{r^*} = \frac{N}{r} - \frac{\alpha}{n}$. If

$$T_{\alpha}: L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \left(\frac{1}{|Q|} \int_{Q} \omega_{i}(x)^{-\frac{tp_{i}r}{p_{i} - r}} dx \right)^{\frac{p_{i} - r}{tp_{i}r}} < \infty$$

for some t > 1 with $u^q \in A_{\infty}$, then

$$T_{\alpha}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to L^q(u^q).$$

It is well known that A_{∞} weights satisfy the reverse Hölder condition, the following corollary is a direct consequence of this fact.

Corollary 1.1. Let $1 \le r < p_1, ..., p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, $p \le q$, $1 \le r < \min(p_1, ..., p_N, \frac{nN}{\alpha}, Np)$ and $\frac{1}{r^*} = \frac{N}{r} - \frac{\alpha}{n}$. If

$$T_{\alpha}: L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \left(\frac{1}{|Q|} \int_{Q} \omega_{i}(x)^{\frac{-p_{i}r}{p_{i} - r}} dx \right)^{\frac{p_{i} - r}{p_{i}r}} < \infty$$

with $u^q, \omega_1, \ldots, \omega_N \in A_{\infty}$, then

$$T_{\alpha}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to L^q(u^q).$$

In section 4 we give two generalized versions of Theorem 1.3 on Banach function spaces.

2. Preliminaries

We first recall the definition of other classes of multiple weights.

Let $1 < p_1, \ldots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$. Given $\mathbf{w} = (\omega_1, \ldots, \omega_N)$, set $v_{\vec{\omega}} = \prod_{j=1}^m \omega_j^{p/p_j}$. As it is defined in [3], we say that $\mathbf{w} \in A_{\mathbf{P}}$ if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} v_{\vec{\omega}}(x) dx \right)^{\frac{1}{p}} \prod_{i=1}^{N} \left(\frac{1}{|Q|} \int_{Q} \omega_{j}^{1-p_{j}'}(x) dx \right)^{\frac{1}{p_{j}'}} < \infty,$$

where p' is the conjugate index of p. On the other hand Moen [4] considered for $1 < p_1, \ldots, p_N < \infty, \frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, and q be a number $\frac{1}{N} , the classes <math>\mathbf{A}(\mathbf{P}, q)$ of vector weights $\mathbf{w} = (\omega_1, \ldots, \omega_m)$ such that

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \prod_{i=1}^{N} \omega_{i}^{q}(x) dx \right)^{\frac{1}{q}} \prod_{i=1}^{m} \left(\frac{1}{|Q|} \int_{Q} \omega_{i}^{-p'_{i}}(x) dx \right)^{\frac{1}{p'_{i}}} < \infty.$$

Next we give the following properties, the detail proofs to see [2].

Lemma 2.1. Let $1 < s < r < p_1, \ldots, p_N, Np < \infty$ and $1 \le q < \infty$. The following properties hold.

- (i) $\mathbf{A}(\mathbf{P}, q, 1) = \mathbf{A}(\mathbf{P}, q)$ and $[\omega]_{\mathbf{A}(\mathbf{P}, p, 1)} = [\omega^p]_{A_p}^{\frac{1}{p}}$ when N = 1. A_p denote Muckenhoupt classes.
- (ii) $\mathbf{w} \in \mathbf{A}(\mathbf{P}, q, r)$ if and only if $\mathbf{w}^r = (\omega_1^r, \dots, \omega_N^r) \in \mathbf{A}(\frac{\mathbf{P}}{r}, \frac{q}{r})$.
- (iii) $\mathbf{A}(\mathbf{P}, q, s) \subset \mathbf{A}(\mathbf{P}, q, r) \subset \mathbf{A}(\mathbf{P}, q)$.

Lemma 2.2. The weight $\mathbf{w} \in \mathbf{A}(\mathbf{P}, q, r)$ if and only if

$$\omega^q \in A_{Nq/r} \text{ and } \omega_i^{-\frac{p_i r}{p_i - r}} \in \mathbf{A}_{N(p_i/r)'}, i = 1, \dots N.$$

Lemma 2.3. Assume that $\mathbf{w} \in \mathbf{A}(\mathbf{P}, q, r)$. Then there exists t > r such that $\mathbf{w} \in \mathbf{A}(\mathbf{P}, q, t)$.

We will use several maximal functions. For $f \in L^1_{loc}(\mathbb{R}^n)$, the Hardy-Littlewood maximal function M(f) is defined by

$$M(f)(x) = \sup_{Q\ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

For $\varepsilon > 0$, $M^{\varepsilon}(f)(x) = (M(|f|^{\varepsilon})(x))^{\frac{1}{\varepsilon}}$. For $0 < \alpha < n$ and $f \in L^{1}_{loc}(\mathbb{R}^{n})$, the fractional function defined by

$$M_{\alpha}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} |f(y)| dy.$$

We also recall the Sharp maximal function defined by

$$M^{\sharp}(f)(x) = \sup_{Q \ni x} \inf_{c \in \mathbf{R}} \frac{1}{|Q|} \int_{Q} |f(y) - c| dy,$$

and for $\delta > 0$, define $M_{\delta}^{\sharp}(f) = M^{\sharp}(|f|^{\delta})^{\frac{1}{\delta}}$.

For $0 \leq \alpha < nN$ and $\mathbf{f} = (f_1, \dots, f_N) \in (L^1_{loc}(\mathbf{R}^n))^N$, the multilinear fractional maximal functions $\mathcal{M}_{\alpha}(\mathbf{f})$ and $\mathcal{M}_{L(\log L),\alpha}(\mathbf{f})$ are defined by

$$\mathcal{M}_{\alpha}(\mathbf{f}) = \sup_{Q \ni x} \prod_{i=1}^{N} \frac{1}{|Q|^{1-\frac{\alpha}{nN}}} \int_{Q} |f_{i}(y_{i})| dy_{i},$$
$$\mathcal{M}_{L(\log L),\alpha}(\mathbf{f})(x) = \sup_{Q \ni x} |Q|^{\frac{\alpha}{n}} \prod_{i=1}^{N} ||f_{i}||_{L \log L, Q},$$

where $\|f\|_{L\log L,Q} = \inf \left\{ \lambda > 0 : \int_{Q} \frac{|f(x)|}{\lambda} \log^{+} \frac{|f(x)|}{\lambda} dx \leqslant 1 \right\}, \log^{+} t = \max(\log t, 0).$ Finally, for $1 \le r < \frac{nN}{\alpha}$, we also define

$$\mathcal{M}_{\alpha,r}(\mathbf{f}) = \sup_{Q \ni x} \left(\prod_{i=1}^{N} \frac{1}{|Q|^{1-\frac{r\alpha}{nN}}} \int_{Q} |f_i(y_i)|^r dy_i \right)^{\frac{1}{r}},$$

$$\mathcal{M}_{L(\log L),\alpha,r}(\mathbf{f})(x) = \sup_{Q \ni x} |Q|^{\frac{\alpha}{n}} \prod_{i=1}^{N} \| f_i^r \|_{L(\log L),Q}^{\frac{1}{r}}.$$

By the generalized Hölder inequality (see section 4), we get

$$\frac{1}{|Q|} \int_{Q} |f(x)| dx \le C \parallel f \parallel_{L(\log L), Q}.$$

We have the following weighted estimate for $\mathcal{M}_{L \log L, \alpha, r}(f)$.

Lemma 2.4. Let $1 \leqslant r < p_1, \ldots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, $0 < \alpha < \frac{N}{p}$ and $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$. Then $\mathcal{M}_{L\log L,\alpha,r}(f)$ is bounded from $L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N})$ to $L^q(\omega^q)$ if $\mathbf{w} \in \mathbf{A}(\mathbf{P},q,r)$.

Proof: It is easy to check that

$$\parallel \mathcal{M}_{L(\log L),\alpha,r}(\mathbf{f}) \parallel_{L^q(\omega^q)} = \parallel \mathcal{M}_{L(\log L),r\alpha}(\mathbf{f}^r) \parallel_{L^{\frac{q}{r}}(\omega^q)}^{\frac{1}{r}},$$

where $\mathbf{f}^r = (|f_1|^r, \dots, |f_N|^r)$. The result is a consequence of [1, Proposition 7.2]. \square

3. Proof of the Main Results

We will use the following form of the classical result of Fefferman and Stein [9]. Let $0 < p, \delta < \infty$ and let ω be a weight in A_{∞} . Then, there exists C > 0, such that

$$\int_{\mathbb{R}^n} (M^{\delta}(f)(x))^p \omega(x) dx \le C \int_{\mathbb{R}^n} (M^{\sharp}_{\delta}(f)(x))^p \omega(x) dx$$

for all function f if the left-hand is finite.

Lemma 3.1. Assume that T_{α} satisfy the hypothesis of Theorem 1.2. If $0 < \delta < \varepsilon < \min(1, rn/(nN - r\alpha))$, then for all $\mathbf{f} \in L^{l_1} \times L^{l_2} \cdots \times L^{l_N}$ with $r < s < l_1, \ldots, l_N < \infty$,

$$M_{\delta}^{\sharp}(T_{\alpha,\vec{b}}(\mathbf{f}))(x) \leq C \parallel \vec{b} \parallel_{(BMO)^m} \left(\mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f})(x) + M^{\varepsilon}(T_{\alpha}(\mathbf{f})(x)) \right).$$

Proof: It suffices to prove the $T^i_{\alpha,\vec{b}}$. Note that for any constant λ we have

$$T_{\alpha,\vec{b}}^{i}(\mathbf{f})(x) = (b_{i}(x) - \lambda)T_{\alpha}(f_{1}, \dots, f_{i}, \dots, f_{N})(x)$$
$$-T_{\alpha}(f_{1}, \dots, (b_{i} - \lambda)f_{i}, \dots, f_{N})(x).$$

Fix $Q \subset \mathbb{R}^n$ and $x \in Q$. For $0 < \delta < 1$, 0 < b < a, we know that $a^{\delta} - b^{\delta} < |a - b|^{\delta}$ and $(a + b)^{1/\delta} < 2^{1/\delta}(a^{1/\delta} + b^{1/\delta})$. We can estimate

$$\left(\frac{1}{|Q|} \int_{Q} \left| |T_{\alpha,\vec{b}}^{i}(\mathbf{f})(z)|^{\delta} - |c|^{\delta} |dz\right)^{\frac{1}{\delta}} \right.$$

$$\leq \left(\frac{1}{|Q|} \int_{Q} \left| T_{\alpha,\vec{b}}^{i}(\mathbf{f})(z) - c \right|^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$\leq \left(\frac{C}{|Q|} \int_{Q} |(b_{i}(z) - \lambda) T_{\alpha}(\mathbf{f})(z)|^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$+ \left(\frac{C}{|Q|} \int_{Q} |T_{\alpha}(f_{1}, \dots, (b_{i} - \lambda) f_{i}, \dots, f_{N}) - c |^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$= I + II.$$

Let $\lambda = (b_i)_{Q^*}$ be the average of b_i on Q^* . For any $1 < u < \frac{\varepsilon}{\delta}$, by the Hölder inequality and Jensen inequality, we obtain

$$I \leq C \left(\frac{1}{|Q|} \int_{Q} |b_{i}(z) - \lambda|^{\delta u'} dz\right)^{\frac{1}{u'\delta}} \left(\frac{1}{|Q|} \int_{Q} |T_{\alpha}(\mathbf{f})(z)|^{\delta u} dz\right)^{\frac{1}{\delta u}}$$

$$\leq C \parallel b_{i} \parallel_{BMO} M^{\delta u}(T_{\alpha}(\mathbf{f}))(x)$$

$$\leq C \parallel \vec{b} \parallel_{(BMO)^{m}} M^{\varepsilon}(T_{\alpha}(\mathbf{f}))(x).$$

To estimate II for $i=1,\ldots,N,$ let $f_i^0=f_i\chi_{Q^*}$ and $f_i^\infty=f_i(1-\chi_{Q^*}).$ Then $f_i=f_i^0+f_i^\infty$ and

$$\prod_{i=1}^{N} f_i(y_i) = \prod_{i=1}^{N} (f_i^0(y_i) + f_i^{\infty}(y_i))$$

$$= \prod_{i=1}^{N} f_i^0(y_i) + \sum_{(\beta_1, \dots, \beta_N) \in I} \prod_{i=1}^{N} f_1^{\beta_1}(y_1) \cdots f_N^{\beta_N}(y_N),$$

where I is the collection of all N-tuples $\beta = (\beta_1, \dots, \beta_N)$ with each $\beta_i = 0$ or ∞ and at least one $\beta_j \neq 0$.

We select $c = \sum_{\beta \in I} c_{\beta_1,\dots,\beta_N}$ with $c_{\beta_1,\dots,\beta_N} = T_{\alpha}(f_1^{\beta_1},\dots,(b_i-\lambda)f_i^{\beta_i},\dots,f_N^{\beta_N})(x)$ and get

$$II \leq C \left(\frac{1}{|Q|} \int_{Q} |T_{\alpha}(f_{1}^{0}, \dots, (b_{i} - \lambda) f_{i}^{0}, \dots, f_{N}^{0})(z)|^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$+ C \sum_{\beta \in I} \left(\frac{1}{|Q|} \int_{Q} |T_{\alpha}(f_{1}^{\beta_{1}}, \dots, (b_{i} - \lambda) f_{i}^{\beta_{i}}, \dots, f_{N}^{\beta_{N}})(z) - c_{\beta_{1}, \dots, \beta_{N}}|^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$\leq II_{0} + \sum_{\beta \in I} II_{\beta_{1}, \dots, \beta_{N}}.$$

Using the weak-type estimate on T_{α} and the Kolmogorov inequality we have

$$II_{0} = C \left(\frac{1}{|Q|} \int_{Q} |T_{\alpha}(f_{1}^{0}, \dots, (b_{i} - \lambda) f_{i}^{0}, \dots, f_{N}^{0})(z)|^{\delta} dz \right)^{\frac{1}{\delta}}$$

$$\leq C \|T_{\alpha}(f_{1}^{0}, \dots, (b_{i} - \lambda) f_{i}^{0}, \dots, f_{N}^{0})\|_{L^{r^{*}, \infty}(Q, \frac{dz}{|Q|})}$$

$$\leq C |Q^{*}|^{\frac{\alpha}{n}} \left(\frac{1}{|Q^{*}|} \int_{Q^{*}} |(b_{i} - \lambda) f_{i}^{0}|^{r} dz \right)^{1/r} \left(\frac{1}{|Q^{*}|} \int_{Q^{*}} \prod_{\substack{j=1, \ j \neq i}}^{N} |f_{j}(y_{j})|^{r} dy_{i} \right)^{\frac{1}{r}}$$

$$\leq C \|b_{i}\|_{BMO} |Q^{*}|^{\frac{\alpha}{n}} \left(\prod_{j=1}^{N} \frac{1}{|Q^{*}|} \int_{Q^{*}} |f_{j}(y_{j})|^{s} dy_{i} \right)^{\frac{1}{s}}$$

$$\leq C \|\vec{b}\|_{(BMO)^{m}} \mathcal{M}_{L(\log L), \alpha, s}(\mathbf{f})(x)$$

We consider the term $II_{\infty,\dots,\infty}$ and the terms $II_{\beta_1,\dots,\beta_N}$ such that $\beta_{j_1} = \dots = \beta_{j_l} = 0$ for some $\{j_1,\dots,j_l\} \subset \{1,\dots,N\}$, where $1 \leq l < N$. However, we can estimate all terms $II_{\beta_1,\dots,\beta_N}$ together, since for any $J = 1,\dots,N-1$,

$$(Q^*)^{N-J} \times (\mathbb{R}^n \setminus Q^*)^J \subset \mathbb{R}^{nN} \setminus (Q^*)^N = \bigcup_{k=0}^{\infty} (2^{k+1}Q^*)^N \setminus (2^kQ^*)^N,$$

and similarly $(\mathbb{R}^n \setminus Q^*)^N \subset \bigcup_{k=0}^{\infty} (2^{k+1}Q^*)^N \setminus (2^kQ^*)^N$. Using Hölder's inequality and $L^{r',\alpha}$ -Hörmander's condition, we have

$$\left(\frac{1}{|Q|} \int_{Q} |T_{\alpha}(f_{1}^{\beta_{1}}, \dots, (b_{i} - \lambda) f_{i}^{\beta_{i}}, \dots, f_{N}^{\beta_{N}})(z) - c_{\beta_{1}, \dots, \beta_{N}}|^{\delta} dz\right)^{\frac{1}{\delta}}$$

$$\leq \frac{C}{|Q|} \int_{Q} |T_{\alpha}(f_{1}^{\beta_{1}}, \dots, (b_{i} - \lambda) f_{i}^{\beta_{i}}, \dots, f_{N}^{\beta_{N}})(z) - c_{\beta_{1}, \dots, \beta_{N}}|dz$$

$$\leq \frac{C}{|Q|} \int_{Q} \int_{\mathbb{R}^{nN} \setminus (Q^{*})^{N}} |K(z, \mathbf{y}) - K(x, \mathbf{y})| |(b(y_{i}) - \lambda) f_{i}(y_{i})| \prod_{\substack{j=1, j \neq i}}^{N} |f_{j}(y_{j})| d\mathbf{y} dz$$

$$\leq \frac{C}{|Q|} \sum_{k=0}^{\infty} \int_{Q} \int_{(2^{k+1}Q^{*})^{N} \setminus (2^{k}Q^{*})^{N}} |K(z, \mathbf{y}) - K(x, \mathbf{y})| |(b(y_{i}) - \lambda) f_{i}(y_{i})| \prod_{\substack{j=1, \ j \neq i}}^{N} |f_{j}(y_{j})| d\mathbf{y} dz$$

$$\leq C \sup_{Q^{*}} \sup_{x,z \in \frac{1}{2}Q^{*}} \sum_{k=0}^{\infty} |2^{k}Q^{*}|^{N/r - \alpha/n} \left(\int_{(2^{k+1}Q^{*})^{N} \setminus (2^{k}Q^{*})^{N}} |K(z, \mathbf{y}) - K(x, \mathbf{y})|^{r'} d\mathbf{y} \right)^{\frac{1}{r'}}$$

$$\times |2^{k+1}Q^{*}|^{\alpha/n} \left(\frac{1}{|2^{k+1}Q^{*}|^{N}} \int_{2^{k+1}Q^{*}} |(b(y_{i}) - \lambda) f_{i}(y_{i})|^{r} \prod_{\substack{j=1, \ j \neq i}}^{N} |f_{j}(y_{j})|^{r} d\mathbf{y} \right)^{\frac{1}{r}}$$

$$\leq C \parallel b_{i} \parallel_{BMO} \mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f})(x)$$

$$\leq C \parallel \vec{b} \parallel_{(BMO)^{m}} \mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f})(x)$$

Taking the similar method, we get the following lemma.

Lemma 3.2. Let T_{α} satisfy the hypothesis of Theorem 1.2. If $0 < \delta < \min(1, \frac{rn}{nN-r\alpha})$, then for all $\mathbf{f} \in L^{l_1} \times L^{l_2} \cdots \times L^{l_N}$ with $r < l_1, \ldots, l_N < \infty$,

$$M_{\delta}^{\sharp}(T_{\alpha}(\mathbf{f}))(x) \leq \mathcal{M}_{L(\log L),\alpha,r}(\mathbf{f})(x).$$

Proof of theorem 1.2: Note that we always have $\omega^q \in A_{\infty}$ by Lemma 2.2, so for exponents $0 < \delta < \varepsilon < \min(1, \frac{rn}{nN-r\alpha})$, applying the Fefferman-Stein inequality, Lemma 3.1, Lemma 2.3, Lemma 2.4, Lemma 3.2 and Lemma 2.4 we have,

$$\| T_{\alpha,\vec{b}}(\mathbf{f}) \|_{L^{q}(\omega^{q})} \leq \| M_{\delta}(T_{\alpha,\vec{b}}(\mathbf{f})) \|_{L^{q}(\omega^{q})}$$

$$\leq C \| M_{\delta}^{\sharp}(T_{\alpha,\vec{b}}(\mathbf{f})) \|_{L^{q}(\omega^{q})}$$

$$\leq C \| \vec{b} \|_{(BMO)^{m}} (\| \mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f}) \|_{L^{q}(\omega^{q})} + \| M^{\varepsilon}(T_{\alpha}(\mathbf{f}) \|_{L^{q}(\omega^{q})})$$

$$\leq C \| \vec{b} \|_{(BMO)^{m}} (\| \mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f}) \|_{L^{q}(\omega^{q})} + \| M_{\varepsilon}^{\sharp}(T_{\alpha}(\mathbf{f}) \|_{L^{q}(\omega^{q})})$$

$$\leq C \| \vec{b} \|_{(BMO)^{m}} \| \mathcal{M}_{L(\log L),\alpha,s}(\mathbf{f}) \|_{L^{q}(\omega^{q})}$$

$$\leq C \| \vec{b} \|_{(BMO)^{m}} \| \prod_{i=1}^{N} \| f_{i} \|_{L^{p_{i}}(\omega_{i}^{p_{i}})} .$$

Remark 1. The Fourier multiplier T_m is given by

$$T_m(f)(x) = \int_{\mathbb{R}^{nN}} e^{i\cdot(\xi_1 + \dots + \xi_N)} m(\xi_1 + \dots + \xi_N) \widehat{f}_1(\xi_1) \dots \widehat{f}_N(\xi_N) d\xi_1 \dots d\xi_N$$

for $f_1, \ldots, f_N \in \mathcal{S}(\mathbb{R}^n)$, and where the function m satisfies some regularity property defined in terms of Sobolev spaces estimates.

For $s \in \mathbb{R}$, we say $F \in \mathcal{S}'$ in the Sobolev space $W^s(\mathbb{R}^{nN})$ if

$$\| F \|_{W^s(\mathbb{R}^{nN})} = \left(\int_{\mathbb{R}^{nN}} (1 + |\xi|^2)^s |\widehat{F}(\xi)|^2 d\xi_1 \dots d\xi_N \right)^{\frac{1}{2}}$$

Let $\Psi \in \mathcal{S}(\mathbb{R}^{nN})$ be such that supp $\Psi \subset \{\xi \in \mathbb{R}^{nN} : \frac{1}{2} \leq |\xi| \leq 2\}$ and $\sum_{k \in \mathbb{Z}} \Psi(\xi/2^k) = 1$ for all $\xi \in \mathbb{R}^{nN} \setminus \{0\}$. We set

$$m_{\alpha}^{k}(\xi) = 2^{k\alpha} m(2^{k}\xi) \Psi(\xi)$$

for a function $m, \alpha > 0$ and $k \in \mathbb{Z}$.

In [2] they proved T_m is bounded from $L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N})$ to $L^q(\omega^p)$ with norm $||T_m||$ at most multiple $\sup_{k \in \mathbb{Z}} ||m_\alpha^k||_{W(\mathbb{R}^n)}$ by Theorem 1.1, i.e the Theorem 5.1 in [2]. Naturally, the conclusion of the Theorem 5.1 in [2] is valid to the commutator $T_{m,\vec{b}}$ of Fourier multiplier operator T_m with BMO function.

To prove Theorem 1.3, we need the following lemmas.

Lemma 3.3. [2] Let T_{α} satisfy the hypothesis of Theorem 1.2. If $0 < \delta < \min\{1, \frac{rn}{nN-r\alpha_i}\}$, then for all $\mathbf{f} \in L^{l_1} \times L^{l_2} \cdots \times L^{l_N}$ with $r < l_1, \ldots, l_N < \infty$,

$$M_{\delta}^{\sharp}(T_{\alpha}(\mathbf{f}))(x) \leq \mathcal{M}_{\alpha,r}(\mathbf{f})(x).$$

Lemma 3.2 also can be obtained by Lemma 3.3 since $\mathcal{M}_{\alpha,r}(\mathbf{f}) \leqslant \mathcal{M}_{L(\log L),\alpha,r}(\mathbf{f})$. The next lemma is similar Lemma 2.4

Lemma 3.4. Suppose $0 \leqslant \alpha < nN$, $1 \leqslant r < p_1, \dots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_N}$, $\frac{r}{N} . And <math>(u, \mathbf{w})$ are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \left(\frac{1}{|Q|} \int_{Q} \omega_{i}(x)^{-\frac{tp_{i}r}{p_{i} - r}} dx \right)^{\frac{p_{i} - r}{tp_{i}r}} < \infty$$

for some t > 1, then $\mathcal{M}_{\alpha,r}(\mathbf{f})$ is bounded from $L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N})$ to $L^q(u^q)$.

Proof: It is easy to check that

$$\parallel \mathcal{M}_{\alpha,r}(\mathbf{f}) \parallel_{L^q(u^q)} = \parallel \mathcal{M}_{r\alpha}(\mathbf{f}^r) \parallel_{L^{\frac{q}{r}}(u^q)}^{\frac{1}{r}}.$$

We just prove the boundedness for the dyadic version,

$$\mathcal{M}_{r\alpha}^{d}(\mathbf{f}^{r})(x) = \sup_{Q \in \mathcal{D}: Q \ni x} \prod_{i=1}^{N} \frac{1}{|Q|^{1 - \frac{r\alpha}{nN}}} \int_{Q} |f_{i}(y_{i})|^{r} dy_{i},$$

where \mathcal{D} is the collection of all the dyadic cubes. Let a be a constant satisfying $a > 2^{mn}$ and let

$$D_k = \{ x \in \mathbb{R}^n : \mathcal{M}_{r\alpha}^d(\mathbf{f}^r)(x) > a^{kr} \}$$

If D_k is non-empty then we can write $D_k = \bigcup_j Q_{k,j}$ where $Q_{k,j}$ is the maximal dyadic cube satisfying

$$a^{kr} < \prod_{i=1}^{N} \frac{1}{|Q_{k,j}|^{1-\frac{r\alpha}{nN}}} \int_{Q_{k,j}} |f_i(y_i)|^r dy_i \le 2^{Nn} a^{kr}.$$

The sets $E_{k,j} = Q_{k,j} \setminus (Q_{k,j} \bigcup D_{k+1})$ are disjoint and satisfy

$$|Q_{k,j}| < \beta |E_{k,j}|$$

for some $\beta > 1$.

$$\|\mathcal{M}_{r\alpha}^{d}(\mathbf{f}^{r})\|_{L^{\frac{q}{r}}(u^{q})}^{\frac{1}{r}}$$

$$= \left(\int_{\mathbb{R}^{n}} (\mathcal{M}_{r\alpha}^{d}(\mathbf{f}^{r})(x))^{q/r} u(x)^{q} dx\right)^{1/q}$$

$$= \left(\sum_{k} \int_{D_{k} \setminus D_{k+1}} (\mathcal{M}_{r\alpha}^{d}(\mathbf{f}^{r})(x))^{q/r} u(x)^{q} dx\right)^{1/q}$$

$$\leq a \left(\sum_{k,j} a^{kq} \int_{Q_{k,j}} u(x)^{q} dx\right)^{1/q}$$

$$\leq a \left(\sum_{k,j} \left(\prod_{i=1}^{N} \frac{1}{|Q|^{1-\frac{r\alpha}{nN}}} \int_{Q_{k,j}} |f_{i}(y_{i})|^{r} \omega_{i}(y_{i})^{r} \omega_{i}(y_{i})^{-r} dy_{i},\right)^{q/r} \int_{Q_{k,j}} u(x)^{q} dx\right)^{1/q}.$$

The next is similar to [4, Theorem 2.8], we omit it.

Proof of Theorem 1.3: For $u^q \in A_{\infty}$ and exponents $0 < \delta < \varepsilon < \min\{1, \frac{rn}{nN-r\alpha}\}$, applying Fefferman-Stein's inequality, Lemma 3.3, and Lemma 3.4 we have,

4. Two Weighted Inequalities on Banach function spaces

Let X be a Banach function space on \mathbb{R}^n with respect to Lebesgue measure. We refer the readers to [12] for more details about Banach function spaces. Given a Banach function space X there is an associate Banach function space X' for which

the generalized Hölder inequality

$$\int_{\mathbb{R}^n} |f(x)g(x)| dx \le ||f||_X ||g||_{X'}$$

holds. Lebesgue spaces, Lorentz spaces and Orlicz spaces are some examples of Banach function spaces. The Orlicz $L^B(\mathbb{R}^n)$ is defined by a Young function B (the detail to see [13]).

In [4], if Y_1, \ldots, Y_N are Banach function spaces the author defines the multi(sub)-linear maximal function to be

$$\mathcal{M}_{\vec{Y}}\vec{f}(x) = \sup_{Q \ni x} \prod_{i=1}^{N} || f_i ||_{Y_i,Q}.$$

The X average of f over Q as in [12] is

$$|| f ||_{X,Q} = || \delta_{\ell(Q)}(f\chi_Q) ||_X,$$

where for a > 0, $\delta_a f(x) = f(ax)$. The definition of maximal operator associated to the Banach function space X is

$$M_X f(x) = \sup_{Q \ni x} || f ||_{X,Q}.$$

We denote the M_X by M_B when X is the Orlicz space L^B . The following lemmas are also similar to Lemma 2.4, they can be easily gotten from corresponding [4, Theorem 6.4 and Theorem 6.3].

Lemma 4.1. Suppose $0 < \alpha < nN$, $1 \leqslant r < p_1, \ldots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$, $\frac{r}{N} , and <math>Y_1, \ldots, Y_N$ are translation invariant Banach function spaces with

$$\mathcal{M}_{\vec{V}'}: L^{\frac{p_1}{r}}(\mathbb{R}^n) \times \cdots \times L^{\frac{p_N}{r}}(\mathbb{R}^n) \to L^{\frac{p}{r}}(\mathbb{R}^n).$$

If (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \| v_{i}^{-r} \|_{Y_{i}, Q}^{\frac{1}{r}} < \infty,$$

then $\mathcal{M}_{\alpha,r}(\mathbf{f})$ is bounded from $L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N})$ to $L^q(u^q)$.

Lemma 4.2. Suppose $0 < \alpha < nN$, $1 \leqslant r < p_1, \dots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_N}$, $\frac{r}{N} , and <math>\Phi_1, \dots, \Phi_N$ are Young functions that satisfy

$$\int_{c}^{\infty} \frac{\Psi_{i}(t)}{t^{\frac{p_{i}}{p_{i}-r}}} \frac{dt}{t} < \infty, \quad i = 1, \dots, N$$

for some c > 0. If (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \| v_{i}^{-r} \|_{\Psi_{i}, Q}^{\frac{1}{r}} < \infty$$

then $\mathcal{M}_{\alpha,r}(\mathbf{f})$ is bounded from $L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N})$ to $L^q(u^q)$.

We can get two generalized versions of Theorem 1.3 from Lemma 4.1 and Lemma 4.2 additive $u^q \in A_{\infty}$.

Theorem 4.1. Let $1 \le r < p_1, \dots, p_N < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_N}$, $p \le q$, $1 \le r < \min(p_1, \dots, p_N, \frac{nN}{\alpha}, Np)$ and $\frac{1}{r^*} = \frac{N}{r} - \frac{\alpha}{n}$. If

$$T_{\alpha}: L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, and further suppose that Y_1, \ldots, Y_N are translation invariant Banach function spaces with

$$\mathcal{M}_{\vec{V}'}: L^{\frac{p_1}{r}}(\mathbb{R}^n) \times \cdots \times L^{\frac{p_N}{r}}(\mathbb{R}^n) \to L^{\frac{p}{r}}(\mathbb{R}^n).$$

And (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \| v_{i}^{-r} \|_{Y_{i}, Q}^{\frac{1}{r}} < \infty.$$

Then

$$T_{\alpha}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to L^q(u^q)$$

for $u^q \in A_{\infty}$.

Theorem 4.2. Let $1 \leqslant r < p_1, \dots, p_N < \infty, 1/p = 1/p_1 + \dots + 1/p_N, p \leqslant q, 1 \leq r < \min(p_1, \dots, p_N, nN/\alpha, Np) \text{ and } 1/r^* = N/r - \alpha/n.$ If

$$T_{\alpha}: L^r \times \cdots \times L^r \to L^{r^{*,\infty}}$$

and satisfies the multilinear $L^{r',\alpha}$ -Hörmander contidion, and further suppose that Φ_1, \ldots, Φ_N are Young functions that satisfy

$$\int_{c}^{\infty} \frac{\Psi_{i}(t)}{t^{\frac{p_{i}}{p_{i}-r}}} \frac{dt}{t} < \infty, \quad i = 1, \dots, N.$$

for some c > 0. And (u, \mathbf{w}) are weights that satisfy

$$\sup_{Q} |Q|^{\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{n}} \left(\frac{1}{|Q|} \int_{Q} u(x)^{q} dx \right)^{\frac{1}{q}} \prod_{i=1}^{N} \| v_{i}^{-r} \|_{Y_{i}, Q}^{\frac{1}{r}} < \infty.$$

Then

$$T_{\alpha}: L^{p_1}(\omega_1^{p_1}) \times \cdots \times L^{p_N}(\omega_N^{p_N}) \to L^q(u^q)$$

for $u^q \in A_{\infty}$.

Acknowledgement

This work is supported by NNSF-China(Grant No.11671397 and 51234005) and China Scholarship Council. The first author would like to express the most and the greatest sincere gratitude to Dr. Xinfeng Wu for his valuable advice.

References

- [1] X. Chen and Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Annl. Appl., **362** (2010), 355-373.
- [2] L. Chaffee, R. H. Torres and X. Wu, Multilinear weighted norm inequalities under integral type regularity conditions, *Harmonic Analysis*, *Partial Differential Equations and Applications*. Springer International Publishing, 2017. 193-216.

- [3] A. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weighted for the Multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222-1264.
- [4] K. Moen, Weighted inequalities for multilinear fractional integral operators, *Collect. Math.*, **60** (2009), 213-238.
- [5] R. Coifman and Y. Meyer, On commutators of singluar integral and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.
- [6] R. Coifman and Y. Meyer, Au delá des opérateurs pseudodifférentiels, Astéri-sque, 57 (1978).
- [7] T. Tomita, A Hömander type multiplier theorem for multilinear operator, J. Funct. Annl. 259 (2010), 2028-2044.
- [8] A. B. Bui and X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bulletin des Sciences Mathématiques. 137(1) (2013), 63-75.
- [9] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [10] J. M. Martell, C. Pére and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, Tran. Amer. Math. Soc. 357 (2005), 385-396.
- [11] D. S. Kurtz and Wheeden R. L., Results on weighted norm inequalities for multipliers, Tran. Amer. Math. Soc. 255 (1979), 343-362.
- [12] C. Bennet and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [13] C. Pérez, Two weight inequalities for potential and fractional type maximal operators, *Indiana Univ. Math. J.* 43 (1994), 663-683.

DEPARTMENT OF MATHEMATICS, CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING 100083, P. R. CHINA

E-mail address: (1) panwangw@gmail.com

E-mail address: (2) liuzg@cumtb.edu.cn