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MULTIPLE WEIGHTED NORM INEQUALITIES FOR
COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND
AND POTENTIAL TYPE OPERATORS

PANWANG WANG () AND ZONGGUANG LIU @

ABSTRACT. In this paper, the authors study the multiple weighted boundedness
of commutators generated by multilinear Calderén-Zygmund and potential type
singular integral operators and BMO function. Furthermore, the two weighted norm
inequalities of Calderén-Zygmund and potential type singular integral operators are

obtained with A, condition.

1. INTRODUCTION

The multilinear Calderén-Zygmund theory originated in the works of Coifaman
Meyer in the 70s, see [5] and [6]. This topic has been attracting a lot of attention in the
few decades. Recently, there are many studies on multilinear singular integrals under
integral type regularity conditions so that they fall outside the standard Calderon-
Zygmund classes (see [2], [7], [8] and so on).

In [2], Calderén-Zygmund and potential type multilinear operator was introduced.
For 0 < a < nN, assume that T, is a multilinear operator initially defined on the
m-fold product of Schwartz spaces and taking values into the space of tempered
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distributions
T, : S(R") x --- x S(R") — S'(R™).
Assume also that for a certain kernel function K,

0@ = [ Ko ) fi) - fy iy,

for f; € C3°(R™) (smooth functions with compact support), i = 1,..., N and = ¢
ﬂj»\/:i supp fi, where f = (f1,..., fv) and dy = dy; ...dyy. The operator T, satisfies

the multilinear L™ - Hormander contidion, i.e.

oo 5

N_«a r! r

sup sup S0 K(oy) - Kyl dy) | <o
Q x,zE%Q k=0 (2FHLQN\(2FQ)N

where r > 1 and 7’ is its dual exponent, () is the cube in R” with sides parallel to the

axes, QY = Q x ---x Q. When r = 1 the multilinear L>%-H érmander contidion
~—_——

N
is understood as
- kA N—©
sup sup » [2FQNx sup K (2,y) = K(z,y)| < o0.
Q z,261Q 1 yEEFIQM\(2FQN

It is easy to see that when N = 1 and a = 0, the above condition reduces to the
classical L -Hormander condition :

1
o

o0 ) T/

sup S0 ( | K (o)~ Klog.)dy) < ox.
e 2kQ*\2k—1Q*

where z¢ is the center of @) and Q* is an appropriate dilation of ¢). In [10], The

authors defined the classical L™ -Hormander’s condition, it was implicit in the work

of D. Kurtz and R. Wheeden [11]. The multilinear version was introduced by Bui-

( [ k) —K(z,y>|r’dy)
S (Q%) S (Q%)

J J

Dong [8], i.e.

|z — 2|NO=7)
S T

Q[

_N(Smax{jlr"?jm}
)
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for all z,z € Q and (j1,...,jn) # (0,...,0), where S;(Q*) =27Q* \ 227'Q*if j > 1
and Sp(Q*) = Q™.

Chaffee, Torres and Wu also [2] precisely identified the graded classes of multiple
weights A (P, ¢, 7). They are the relevant multiple kind of weights for T,.

Definition 1.1. [2] For 1 <7 < py,...,py < 00, P = (p1,...,pn) and % le +
T+ on ,and £ < p < ¢ < oo, we say that a vector of weight w = (w1, ...,wy), is in

the class A(P, q,r), or it satisfies the A(P,q,r) condition, if

1IN . (pgl )
sup (|Q| / (x)qu) ' ZII (ﬁ /le(x)_J—r)dx> < 00,

N
where w = [[.L, w;.

The main result from [2] is the following.

Theorem 1.1. 2] Let 1 <7 < py,...,pn <00, P = (p1,...,pN), % = pil—i— '—i—ﬁ,
1 :%— a1<r <m1n(p1,...,pN,%,Np) andr% = %—% If
(1.1) To: L' x---x L' — L~
and satisfies the multilinear L™ *-Hérmander contidion, then
To o LPY (i) X oo X LPN(WY) — LI (w?)
for allw € A(P,q,r).
Given a collection of locally integral function b = (b1, ..., by), we define the m-

linear commutator of b and the multilinear operator T, as follows,

N
T, 5(£) = T 4(f)
=1

where each term is the commutator of b; and T, in the /th entry of T, that is

T;J—)»(f) - b@'Ta(fl, ey fz’7 ey fN) — Ta(fla .. .,bifl', ey fN)



214 PANWANG WANG AND ZONGGUANG LIU

We say b € (BMO)™, if |’5H(BMO)m = max{||b;||pmo : i =1,..., N}. On the base of

2], our main result is the following conclusion.

Theorem 1.2. Let 1 < r < py,...,pn < 00, P = (p1,...,pn),

1

i—n,1<r<m1n(p1,...,pN, ,Np) and £ =% — 2 Jf
To: L' x--x L — L7
and satisfies the multilinear L™ *-Hérmander contidion, then
T, P (W) x - x IPV(wRY) — LO(w)
for all w € A(P,q,r), where be (BMO)™

We also extend Theorem 1.1 to two weights result of T,.

Theorem 1.3. Let 1 < r < py,...,py < 00,

min(pla"'apNa . ,Np) and — N _ % ]f
TaILTX...XLTHLr*"’O

and satisfies the multilinear L™ *-Hormander contidion, (u, w) are weights that sat-
isfy

pi—T

N tp;r
sup|Q|q7% %<ﬁ/ qu) H(|Q|/ )_piirdx) < 00

=1

Q|

for some t > 1 with u? € A, then
To o LPY (i) X oo LPN(WRY) — L(u?).

It is well known that A., weights satisfy the reverse Holder condition, the following

corollary is a direct consequence of this fact.
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:L+...+L,p<q,1§r<

1
Corollary 1.1. Let 1 < r < p1,...,py < 00, - o o

min(py, ..., PN, %,Np) and TL =& _ o If

r

T,:L"x---x L' =L

and satisfies the multilinear L *-Hormander contidion, (u, w) are weights that sat-

1sfy

1N b
1i_1.af 1 q 1 —PT b

sup QE‘EJF% (—/u T qu) (—/wz T pi_rdf) <0

w2 g fy et ) (g =

with u?,wy, ..., wy € Ay, then
To o LPY (W) X oo LPN(WRY) — L (u?).

In section 4 we give two generalized versions of Theorem 1.3 on Banach function

spaces.

2. PRELIMINARIES

We first recall the definition of other classes of multiple weights.

Let 1 < p1,...,py < 00, 1—1) = p%+'”+z%' Given w = (wy,...,wy), set vz =

| wﬁ)/p". As it is defined in [3], we say that w € Ap if

o o) i G o) <

j=1

wﬁ\‘ =

where p’ is the conjugate index of p. On the other hand Moen [4] considered for

1 <pi,....,py < 00, % = p%+~-+1%, and ¢ be a number < p < ¢ < oo, the
classes A (P, q) of vector weights w = (w1, ...,w,,) such that
1 = q 0 1 —p} é
sgp <@/ngl (:v)dx) E <@/le (x)dx) < 00.

Next we give the following properties, the detail proofs to see [2].
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Lemma 2.1. Let 1 < s <7 < p1,...,pn, Np < 00 and 1 < q < oco. The following
properties hold.

(i) A(P,q,1) = A(P,q) and [w]app1) = [wp]i when N = 1. A, denote Mucken-
houpt classes.

(i) w € A(P,q,7) if and only if w" = (w],...,wh) € A(E,9).

(iii) A(P,q,s) C A(P,q,7) C A(P,q).

Lemma 2.2. The weight w € A(P,q,r) if and only if

by

P S AN(pi/T)/, 1=1,... N.

w! € Ang/r and w;

Lemma 2.3. Assume that w € A(P,q,r). Then there exists t > r such that w €
AP, q,t).

We will use several maximal functions. For f € L; (R™), the Hardy-Littlewood

maximal function M (f) is defined by

MO =g [k

For e > 0, Me(f)(z) = (M(|f]F)(x))s. For 0 < a < nand f € L. _(R"), the fractional

function defined by

M,(f)(e) = st |Q‘1 1 / F)ldy.

We also recall the Sharp maximal function defined by

: ) = su ln — C
MH(f)(z) = sup f‘Q|/Q|f(y) dy,

Qox c€R

and for § > 0, define M?(f) = MA(|f|)s.
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For 0 < a < nN and f = (f1,..., fy) € (LL.(R™))", the multilinear fractional

maximal functions M, (f) and M eg 1) (f) are defined by

A
M) =0 [ e [ 10k,

@35

N
ML(logL),a(f)(x) = ng |Q\% H | fi HLlogL,Qa

i=1

where || f ||L1gz.0= inf{)\ >0 [, U(—,\gc)llog+ lf(/\x”dx < 1}, log* t = max(logt,0).

Finally, for 1 <r < %, we also define

Mar®) = s (T] s [ 1wl )

Q> =1
N
a —_
ML(logL),a,r(f)($> = %gp Q" H I /i ”L(logL),Q :
r i=1

By the generalized Holder inequality (see section 4), we get

1
o [ 17@lde < C 1 liposnra
1@l Jqg
We have the following weighted estimate for M 106 .. (f)-

Lemma 2.4. Let 1 < r < p1,...,pn < 00, % = pil—f—---—i—ﬁ, 0 <ac< % and
1

L=l 2 Then Mpiogpar(f) is bounded from L (w}') x -+ x LP¥ (WRY) to L9(w")
ifwe A(P,q,r).

Proof : 1t is easy to check that

1
| Mg 100 (8) s =l Mrgogyra(E) 175,

where " = (|f1|", ..., [f~]"). The result is a consequence of [1, Proposition 7.2 |. O
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3. PROOF OF THE MAIN RESULTS

We will use the following form of the classical result of Fefferman and Stein [9].

Let 0 < p,d < oo and let w be a weight in A,. Then, there exists C' > 0, such that
[ arn@re@is <c [ 0GP
for all function f if the left-hand is finite.

Lemma 3.1. Assume that T,, satisfy the hypothesis of Theorem 1.2. If0 < < e <

min (1,7n/(nN — ra), then for allf € L' x L2 - .. x L'V withr < s <1y,...,Ix < 00,
M(T, 5(0)(@) < C | b l[maoym (Mg 1,as(F)(@) + M (Ta(f)(2)) .
Proof: 1t suffices to prove the Toi - Note that for any constant A we have

Té’g(f)(x) =(bi(x) = NTu(fr, s fiso oo IN) ()
— Ta(fla N (bz — )\)fz, ey fN)(.I’)

Fix QCR"andz € Q. For 0 < § < 1,0 < b < a, we know that a® —b° < |a — b|°

and (a + b)'/% < 29(a/% 4 b'/%). We can estimate

(ﬁ/(g 1T (E)(2)]° — |C|5]dz)‘ls
(|@| (£)(2) _C’édz)g
(lQ\/| (f)(z)sz)a

+ (%A\Ta(fl,...,(bl-—A)fi,...,fN)—c\‘Sdz)
=I+1I.

IN
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Let A = (b;)q- be the average of b; on Q*. For any 1 < u < %, by the Hélder

inequality and Jensen inequality, we obtain

1 ;O\ 5
— | |bi(z) = A|*“d d
s (g fpe )" (g [ moe)

C |l bi llsaro M (Ta(£))(2)

IN

< C| EH(BMO)’" M (To(f)) ().

To estimate II for ¢ = 1,..., N, let f? = fixg- and f° = fi(1 — xg+). Then
fi= 1)+ [ and

N N

Hﬁ-(y» = H(f?(wa?(yz-))

= [[Fw+ > Hfllyl N (yw),

i=1 (B1,...0N)€ET i=1

where I is the collection of all N-tuples 5 = (01, ..., Sy) with each 3; = 0 or co and
at least one 3; # 0.

We select ¢ = 3 g,y With ca, gy = Ta(f7 .0 (b = NP f¥)(z) and
Bel
get
| 1
I < C<—/‘Ta(f1077(bl_ )fza'“afN)( )‘5dz)
Ql Jo
%
+CZ( /|T .- b _)‘)f R ﬁN)(Z)_Cﬁl ----- ﬂN|6dz)
2o \Q|
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Using the weak-type estimate on T}, and the Kolmogorov inequality we have

1 = (|Q|/|T (Reenlbe = NfE )
< CHT flv""( _/\)fzoavf](\)/) ”LT*"X’(Q,%)
W Y g
< 0 (i [ 10=n5ras) (G /) Hﬁﬂ%|@9
J#z

E]

< Ol |Q*|%<ﬁ ! / |f~(y-)|5dy~>
= i [|BMO o |Q*| o VA %

S C || b ”(BMO ML(logL as(f)(m)

We consider the term 11, gy such that 3, =---=0;, =0

777777777

for some {j1,...,5} C {1,..., N}, where 1 <[ < N. However, we can estimate all

terms I1g, . g, together, since for any J =1,...,N — 1,

.....

(@)Y x (R"\ Q") CR™\ (@)Y = Ui, (2°71Q") "\ (2"Q")",

and similarly (R™\ Q*) c U, (281Q*)V \ (2*Q*)V. Using Hélder’s inequality and

! . o).
L™ *-Hormander’s condition, we have

(|Q| / (Talf? s (b= ML TR = e ﬁN|5dz> |
— BN .
‘Q|/|T o b )‘)fz )(Z> CB1,e.s ﬁN|dZ

C
el K(zy) - K b(y; (i (y;)|dyd
S|@|/Q/W\(Q*)N' (%) = Ko, 3)l|00) = N i) |H|f (3 ldydz

J#Z
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C & N
<o/ K (2,y) = K2 y)l|(b(w:) = M i)l [T 13 )y
|Q| k=0 Q (Qk-&-lQ*)N\(QkQ*)N j:L
J#
<C'sup sup Z|2'“Q*|N/T_“/”</ IK(z,y)—K(w,y)lr'dy)r
Q* I,ZG%Q* =0 (2k+1Q* )N\ (2FQ*)N

N 1
1 T
2k+1*a/n7/ bz_)\zzr ()" d
X | Q| (‘2k+1@*‘N Pt |(b(yi) ) fi(ya)| E |f](y])| y
i
<C [ bi [[BMo Miog ), (F) (%)

<C H g”(BMOY" ML(logL),oc,S(f)(x)

Taking the similar method, we get the following lemma.

Lemma 3.2. Let T, satisfy the hypothesis of Theorem 1.2. If0 < 6 < min (1, "),

' nN—ra

then for all f € L' x L2 ... x L'V withr <1y,...,ly < 00,
M(To(£))(x) < Migogy,ar(F)(@).

Proof of theorem 1.2 : Note that we always have w? € A, by Lemma 2.2, so

™
’ nN—ra

for exponents 0 < § < € < min (1 ), applying the Fefferman-Stein inequality

,Lemma 3.1, Lemma 2.3, Lemma 2.4, Lemma 3.2 and Lemma 2.4 we have,

| T, 5(6) la@sy < || Ms(T, 5(£)) o)

< C || MUT, 5(5)) 2o

< C 1B lsaoy (| Mg y.as(F) lzawe + | M*(Ta(f) | par)
< C 16 lamoyn (| Mrgosryas(®) [lzaeey + | ME(TulE) || ogon)
< C| l;||(BMo)m|| Mo L),a,s(F) || La(we)

<

N
C Nl b llsmoynll [T 1 i llims sy -
i=1
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O
Remark 1. The Fourier multiplier T, is given by
To(f)(w) = )@nN,€*“1+“*5N°rn<f1%—-~.+-5N>ji<§1>...f&<£N>dgl...di
for fi,..., fn € S(R™), and where the function m satisfies some regularity property

defined in terms of Sobolev spaces estimates.

For s € R, we say F € S in the Sobolev space W*(R™™) if

1
2

I F o= ([ 0+ IYIF@ g )

Let U € S(R™) be such that supp ¥ C {€ € R™Y : 2 < [¢] <2} and Y-, ., U(£/2%) =
1 for all € € R™Y \ {0}. We set

mg (§) = 2"m(2°) ¥ (¢)

for a function m, a« > 0 and k € Z.

In (2] they proved T, is bounded from LP* (W)X - - x LPN (WhN) to LI(wP) with norm
| T, || at most multiple supyey || mE |lw®ny by Theorem 1.1, i.e the Theorem 5.1 in
2]. Naturally, the conclusion of the Theorem 5.1 in [2] is valid to the commutator

T, 5 of Fourier multiplier operator T,,, with BMO function.
To prove Theorem 1.3, we need the following lemmas.

Lemma 3.3. [2] Let T, satisfy the hypothesis of Theorem 1.2. If 0 < § < min{1,

% then for all f € L' x L™ ... x L'V withr < 1y,...,ly < oo,

M(To(£))(x) < Mo, (£)(2).

Lemma 3.2 also can be obtained by Lemma 3.3 since M, (f) < M r(i0g1),0,r ().

The next lemma is similar Lemma 2.4



MULTIPLE WEIGHTED NORM INEQUALITIES FOR COMMUTATORS 223

l:L_|_..._|_L’

Lemma 3.4. Suppose 0 < a < nN, 1 <r < py,...,pn < 00, 5 = o

% <P < q. And (u,w) are weights that satisfy

N pi=r

1_1,a 1 % 1 tp; Fpir
sup [Q[s 7t (—/u(m)qu) (—/wz( ) Pim de) < 00
Q Ql Jo g Ql Jo
for some t > 1, then M, () is bounded from LP*(w{") X -+ x LPN(WRN) to LY(u?).
Proof : 1t is easy to check that
H Ma,r(f) ||Lq(uq):|| Mm(f ) Hzg(uq)

We just prove the boundedness for the dyadic version,

QeD:Q>x .

M) (@) = sup H\Qll /m ylrdys,

where D is the collection of all the dyadic cubes. Let a be a constant satisfying

a > 2™ and let
:{:EER”'Md (f")(z )>a "}

If Dy, is non-empty then we can write Dy = Uj Q1 ; where Q) ; is the maximal dyadic

cube satisfying
kr r Nn _kr
< oo s <2
The sets Ey; = Qk; \ (Qr,; U Dyy1) are disjoint and satify

|Qr,j| < BBl
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for some 3 > 1.

I M7 (E7)

#
 (us)

- < /,,(Mfa(fr)(x))q/ruqux) 1/q

(S, et ara)”
(Z o /Qk ] m) :

(Z <H o= / | fi(ya)["wi(ya)"wi(yi) ™ Tdym>q/r /Qk,ju(‘r)qdo Uq.

The next is similar to [4, Theorem 2.8], we omit it. O
Proof of Theorem 1.8 : For u? € Ay and exponents 0 < § < ¢ < min{l, —<"—1,
applying Fefferman-Stein’s inequality, Lemma 3.3, and Lemma 3.4 we have,
” Ta(f) ”Lq(uq) < ” M(S(Ta(f)) HLq(uq)
< C || MY(Tu(£)) [lzouny
< C ” Moz,r(f) ”Lq(uq)
N
< CH | i los iy -
i=1
U

4. Two WEIGHTED INEQUALITIES ON BANACH FUNCTION SPACES

Let X be a Banach function space on R™ with respect to Lebesgue measure. We
refer the readers to [12] for more details about Banach function spaces. Given a

Banach function space X there is an associate Banach function space X’ for which
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the generalized Holder inequality

/n [F(@)g(@)dz <[| f [[x]l g [lx

holds. Lebesgue spaces, Lorentz spaces and Orlicz spaces are some examples of
Banach function spaces. The Orlicz LZ(R") is defined by a Young function B (the
detail to see [13]).

In [4], if Y3, ..., Yy are Banach function spaces the author defines the multi(sub)-
linear maximal function to be

My () = s T 1

T =1

Y:,Q -
The X average of f over @ as in [12] is

I f lIx.o=Il de@)(fxa) llx;

where for a > 0, ,f(z) = f(ax). The definition of maximal operator associated to

the Banach function space X is

Mx f(z) =sup || fllxq -
Q>ox

We denote the Mx by Mg when X is the Orlicz space L?. The following lemmas are
also similar to Lemma 2.4, they can be easily gotten from corresponding [4, Theorem

6.4 and Theorem 6.3].

Lemma 4.1. Suppose 0 < o < nN, 1 < r < p1,...,py < 00, % = p%“"’""ﬁa
v <P < q<oo,and Yy,..., Yy are translation invariant Banach function spaces
with

Mg, : LT (R") x -+ x L'+ (R") — L*(R").
If (u,w) are weights that satisfy

1 N
1 1, a 1 a
suquPJr"(—/uqux) v; "
Q\ | ), (z) EH

1
v,QS 9
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then Mg (f) is bounded from LP* (W) x - -+ x LPN(wWRN) to L9(u?).

Lemma 4.2. Suppose 0 < a < nN, 1 <r < p1,....,py <00, + =+ ... 4 L

' p p1 PN
v <p<qg<oo, and ®y,..., PN are Young functions that satisfy
W, (t) dt
/ p(i)—<oo,i:1,...,N
c tpi77‘ t

for some ¢ > 0. If (u, w) are weights that satisfy

1 N
1 1, « 1 a
suquern(—/uqux) v, "
QI | ), (z) HH |

then M, ,(£) is bounded from LP* (W) X -+ x LPN(wWRN) to L9(u?).

We can get two generalized versions of Theorem 1.3 from Lemma 4.1 and Lemma

4.2 additive u? € A.

Theorem 4.1. Let 1 < r < py,...,py < 00,

min(pla"'vaa%aNp) and TL* =N_ % ]f

T

T,:L"x---x L' =L

and satisfies the multilinear L' *-Hormander contidion, and further suppose that

Y1, ..., Yn are translation invariant Banach function spaces with
Mg, : LT (R") x -+ x L% (R") — L% (R").

And (u,w) are weights that satisfy

N

1 1 @ 1 1
sup |Q|TE+5 (—/ u(x)qu) | v " Iy o< 0.
0 |Q| 0 H Y:,Q

=1

Q|

Then
To o LPY (W) X oo x LPN(WRYN) — L(uf)

foru? € Aw.
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Theorem 4.2. Let 1 < r < p1,...,py < 00, 1/p = 1/pr+---+ 1/pn, p < ¢,
1 <r <min(py,...,py,nN/a, Np) and 1/r* = N/r — a/n. If

To: L' x---xL"— L7

and satisfies the multilinear L' *-Hdérmander contidion, and further suppose that

Dy, ..., Py are Young functions that satisfy

for some ¢ > 0. And (u,w) are weights that satisfy

1 N
sup Q¢+ (ﬁ / de) ]I

=1

< OQ.

’~<ﬂ|>~

Then
Ty o LPH (W) X X LPN(wWRY) — L(u?)
foru? € Ay
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