Jordan Journal of Mathematics and Statistics (JJMS) 11(3), 2018, pp 229 - 241

2-ABSORBING PRIMARY IDEALS OF SO-RINGS

N. RAVI BABU ⁽¹⁾, DR. T.V. PRADEEP KUMAR ⁽²⁾ AND DR. P.V. SRINIVASA RAO ⁽³⁾

ABSTRACT. A partial semiring is a structure possessing an infinitary partial addi-

tion and a binary multiplication, subject to a set of axioms. The partial functions

under disjoint-domain sums and functional composition is a partial semiring. In

this paper we obtain equivalent conditions and some characteristics of 2-absorbing

primary ideals in so-rings.

1. Introduction

Partially defined infinitary operations occur in the contexts ranging from integra-

tion theory to programming language semantics. The general cardinal algebras stud-

ied by Tarski in 1949, Housdorff topological commutative groups studied by Bourbaki

in 1966, Σ-structures studied by Higgs in 1980, sum ordered partial monoids and sum

ordered partial semirings (so-rings) studied by Arbib, Manes and Benson[2], [4], and

Streenstrup[13] are some of the algebraic structures of the above type.

In [7], we studied some characteristics of 2-absorbing ideals in so-rings. In this

paper, we consider the 2-absorbing primary ideals of so-rings and obtain various

equivalent conditions of it. Also we obtain some characterizations of \sqrt{I} in the 2-

absorbing primary ideals of so-rings.

1991 Mathematics Subject Classification. 16Y60.

 $\it Key\ words\ and\ phrases.$ Ideal, primary ideal, 2-absorbing primary ideal, commutative so-ring.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Oct. 18, 2017

Accepted: March 8, 2018.

229

2. Preliminaries

In this section we collect some important definitions, results and examples for our use in this paper.

Let M be a nonempty set, and let I be a set. An $I-indexed\ family$ in M is a function $x:I\to M$. Such a family is denoted by $(x_i:i\in I)$, where $x_i=ix$ for each i in I. The $empty\ family$ is the unique such family indexed by \emptyset .

Now let us consider an infinitary operation Σ which takes families in M to elements of M, but which may not be defined for all families in M. By "infinitary", we mean that Σ may be applied to a family $(x_i : i \in I)$ in M, for which the cardinality of the index set I is infinite. Since $\Sigma(x_i : i \in I)$ need not be defined for an arbitrary family $(x_i : i \in I)$ in M, Σ is said to be partially-defined. A family $(x_i : i \in I)$ in M is said to be summable if $\Sigma(x_i : i \in I)$ is defined and is in M.

Definition 2.1. [4] A positive partial monoid or partial monoid, for short, is a pair (M, Σ) where M is a nonempty set and Σ is a partial addition defined on some, but not necessarily all, families $(x_i : i \in I)$ in M subject to the following axioms:

- (1) Unary Sum Axiom. If $(x_i : i \in I)$ is a one element family in M and $I = \{j\}$, then $\Sigma(x_i : i \in I)$ is defined and equals x_j .
- (2) Partition-Associativity Axiom. If $(x_i : i \in I)$ is a family in M and $(I_j : j \in J)$ is a partition of I, then $(x_i : i \in I)$ is summable if and only if $(x_i : i \in I_j)$ is summable for every j in J and $(\Sigma(x_i : i \in I_j) : j \in J)$ is summable. We write $\Sigma(x_i : i \in I) = \Sigma(\Sigma(x_i : i \in I_j) : j \in J)$.

Definition 2.2. [4] A partial semiring is a quadruple $(R, \Sigma, \cdot, 1)$, where (R, Σ) is a partial monoid, $(R, \cdot, 1)$ is a monoid with multiplicative operation '·' and unit 1, and the additive and multiplicative structures obey the following distributive laws: If $\Sigma(x_i : i \in I)$ is defined in R, then for all y in R, $\Sigma(y \cdot x_i : i \in I)$ and $\Sigma(x_i \cdot y : i \in I)$

are defined and

$$y \cdot \Sigma(x_i : i \in I) = \Sigma(y \cdot x_i : i \in I), \ \Sigma(x_i : i \in I) \cdot y = \Sigma(x_i \cdot y : i \in I).$$

Definition 2.3. [4] A partial semiring $(R, \Sigma, \cdot, 1)$ is said to be commutative, if $xy = yx \ \forall \ x, \ y \in R$.

Definition 2.4. [4] The sum ordering on a partial monoid (M, Σ) is the binary relation \leq such that $x \leq y$ if and only if there exists a h in M such that y = x + h, for $x, y \in M$.

The binary relation sum ordering on a partial monoid (M, Σ) is always reflexive and transitive.

Definition 2.5. [4] A sum ordered partial semiring or so-ring, for short, is a partial semiring in which the sum ordering is a partial order.

Let X and Y be two sets. A partial function f from X to Y is a function f from X' to Y, for some subset X' of X.

Example 2.6. [4] Let D be a set and let the set of all partial functions from D to D be denoted by Pfn(D,D). A family $(x_i:i\in I)$ is summable if and only if for i,j in I, and $i\neq j$, $dom(x_i)\cap dom(x_j)=\emptyset$. If $(x_i:i\in I)$ is summable then for any d in D

$$d(\Sigma_i x_i) = \begin{cases} dx_i, & \text{if } d \in dom(x_i) \text{ for some (necessarily unique) } i \in I; \\ undefined, & \text{otherwise} \end{cases}$$

and '·' is defined as the usual functional composition. That is, for any $x, y \in Pfn(D, D)$ and d in D,

$$d(x \cdot y) = \begin{cases} (dx)y, & \text{if } d \in dom(x) \text{ and } dx \in dom(y); \\ undefined, & \text{otherwise} \end{cases}$$

and the ordering as the extension of functions. Then $(Pfn(D, D), \Sigma, \cdot, 1)$, where 1 is the identity function on D, is a so-ring.

Example 2.7. [4] Let D be a set. A multi-function $x: D \to D$ maps each element in D to an arbitrary subset of D. Such multi-functions correspond bijectively to relations $r \subseteq D \times D$, where $(d, e) \in r$ if and only if $e \in dx$. The set of all multi-functions from D to D, denoted by Mfn(D, D), together with Σ defined such that d in D, $d(\Sigma_i x_i) = \bigcup_i (dx_i)$, and '·' defined as the usual relational composition. That is, for each d in D and for x, y in Mfn(D, D), $d(x \cdot y) = \bigcup (ey : e \in dx)$, and $d1 = \{d\}$. Then $(Mfn(D, D), \Sigma, \cdot, 1)$ is a so-ring.

Definition 2.8. [1] Let R be a so-ring. A subset N of R is said to be an ideal of R if the following are satisfied

- (I1). If $(x_i : i \in I)$ is a summable family in R and $x_i \in N \ \forall \ i \in I$ then $\Sigma(x_i : i \in I) \in N$,
- (12). If $x \leq y$ and $y \in N$ then $x \in N$,
- (13). If $x \in N$ and $r \in R$ then $xr, rx \in N$.

A So-ring R is said to be *complete* if every family in R is summable.

Definition 2.9. [8] Let R be a complete so-ring and $a \in R$. Then the smallest ideal generated by 'a' is $\langle a \rangle = \{x \in R \mid x \leq \Sigma_n a + \Sigma_i r_i a s_i, where r_i, s_i \in R \text{ and } n \text{ is a positive integer}\}$. We call $\langle a \rangle$ as the principal ideal generated by a.

Definition 2.10. [8] Let I and J be ideals of a so-ring R. Then $IJ = \{x \in R \mid x \leq \sum_i a_i b_i \text{ for some } a_i \in I, b_i \in J\}$.

Definition 2.11. [8] Let A and B be any subsets of a so-ring R. Then we define $(A:B) = \{r \in R \mid rB \subseteq A\}$ where $rB = \{x \in R \mid x \leq rb \text{ for some } b \in B\}$.

Definition 2.12. [8] Let $(R, \Sigma, \cdot, 1)$ and $(R', \Sigma', *, 1)$ be two so-rings. Then a mapping $f: R \to R'$ is said to be homomorphism if it satisfies the following:

(i). Whenever $(x_i : i \in I)$ is summable in R, then $(f(x_i) : i \in I)$ is summable in R' and $f(\Sigma x_i) = \Sigma' f(x_i)$. (ii). $f(x \cdot y) = f(x) * f(y)$ for every x, y in R.

Definition 2.13. [13] A proper ideal P of a so-ring R is said to be prime if and only if for any ideals A, B of R, $AB \subset P$ implies $A \subset P$ or $B \subset P$.

Definition 2.14. [12] A proper ideal I of a so-ring R is called 2-absorbing if for any $a, b, c \in R$, $abc \in I$ implies $ab \in I$ or $bc \in I$ or $ac \in I$.

The set of all prime ideals of a so-ring R is denoted by spec(R). Let I be a proper ideal of R. Then denote the set $\{H \in spec(R) \mid I \subset H\}$ by V(I) and $\bigcap V(I)$ by \sqrt{I} .

Theorem 2.15. [8] Let I be an ideal of a commutative so-ring R. Then $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some positive integer } n\}.$

Definition 2.16. [8] A proper ideal I of a so-ring R is said to be primary if $ab \in I$, $a, b \in R$ implies $a \in I$ or $b^n \in I$ for some $n \in Z^+$.

Throughout this paper, R denotes a commutative so-ring.

3. 2-ABSORBING PRIMARY IDEALS

Following the notion of 2-absorbing primary ideals in [6], we define 2-absorbing primary ideals in so-rings as follows.

Definition 3.1. Let I be a proper ideal of a so-ring R. Then I is said to be a 2-absorbing primary ideal of R if whenever $a,b,c\in R$ and $abc\in I$, then $ab\in I$ or $bc\in \sqrt{I}$ or $ac\in \sqrt{I}$.

Proposition 3.2. Every 2-absorbing ideal of a so-ring R is a 2-absorbing primary ideal of R.

Proof. Let $abc \in I$ for some $a, b, c \in R$. Since I is a 2-absorbing ideal of R, then $ab \in I$ or $bc \in I$ or $ac \in I$. Then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$ (Since $I \subseteq \sqrt{I}$). Hence I is a 2-absorbing primary ideal of R.

The following is an example of a so-ring R in which the converse need not be true.

Example 3.3. Consider $R = \mathbb{N} \bigcup \{0\}$ be a so-ring and $I = \langle 8\mathbb{N} \rangle$ be an ideal of R. As in [6], it is known that not every 2-absorbing primary ideals of semi-rings is a 2-absorbing ideal. Clearly I is a 2-absorbing primary ideal of R. Since $2 \cdot 2 \cdot 2 \in \langle 8 \rangle$, but $2 \cdot 2 \notin \langle 8 \rangle$. Hence I is not a 2-absorbing ideal of R.

Proposition 3.4. Every primary ideal of a so-ring R is a 2-absorbing primary ideal of R.

Proof. Let I be a primary ideal of a so-ring R. Suppose $abc \in I$ for some $a, b, c \in R$. Since I is a primary ideal of R, either $a \in I$ or $(bc)^n \in I$ for some positive integer n. Then $ab \in I$ or $bc \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R.

The following is an example of a so-ring R in which the converse need not be true.

Example 3.5. Define $R = \{0, u, v, x, y, 1\}$ with Σ defined on R by

$$\Sigma(x_i : i \in I) = \begin{cases} x_j, & \text{if } x_i = 0 \ \forall i \neq j, \text{ for some } j, \\ undefined, & \text{otherwise} \end{cases}$$

and \cdot defined by the following table:

	0	u	v	x	y	1
0	0	0	0	0	0	0
u	0	u	0	0	0	u
v	0	0	v	0	0	v
x	0	0	0	0	0	\boldsymbol{x}
y	0	0	0	0	0	y
1	0	u	v	x	y	1

As in [12], clearly R is a so-ring. Let $I = \{0, x\}$ be an ideal of R. One can show that $\{0, x\}$ is a 2-absorbing primary ideal of R. Now $uv = 0 \in I$, but $u \notin I$ and $v^n = v \notin I$ for some $n \in Z^+$. Hence I is not a primary ideal of R.

Theorem 3.6. If I is a 2-absorbing primary ideal of a so-ring R, then \sqrt{I} is a 2-absorbing ideal of R.

Proof. Suppose I is a 2-absorbing primary ideal of R. Let $abc \in \sqrt{I}$ for some $a,b,c \in R$. Then $(abc)^n \in I$ for some positive integer n. We have $a^nb^nc^n \in I$ for some positive integer n. Since I is a 2-absorbing primary ideal of R, then $a^nb^n \in I$ or $b^nc^n \in \sqrt{I}$ or $a^nc^n \in \sqrt{I}$. We have $(ab)^n \in I$ or $(bc)^n \in \sqrt{I}$ or $(ac)^n \in \sqrt{I}$. Then $ab \in \sqrt{I}$ or $bc \in \sqrt{\sqrt{I}}$ or $ac \in \sqrt{\sqrt{I}}$. We have $ab \in \sqrt{I}$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$ (as in [11], $\sqrt{\sqrt{I}} = \sqrt{I}$). Hence \sqrt{I} is a 2-absorbing ideal of R.

Theorem 3.7. Let $f: R \to R'$ be a homomorphism of so-rings, and suppose that I' is a 2-absorbing primary ideal of R'. Then $f^{-1}(I')$ is a 2-absorbing primary ideal of R.

Proof. Suppose I' is a 2-absorbing primary ideal of R'. Let $abc \in f^{-1}(I')$ for some $a, b, c \in R$. Then $f(abc) \in I'$. i.e., $f(a)f(b)f(c) \in I'$. Since I' is a 2-absorbing primary

ideal of R', then $f(a)f(b) \in I'$ or $f(b)f(c) \in \sqrt{I'}$ or $f(a)f(c) \in \sqrt{I'}$. Then $f(ab) \in I'$ or $f(bc) \in (\sqrt{I'})$ or $f(ac) \in (\sqrt{I'})$. We have $ab \in f^{-1}(I')$ or $bc \in f^{-1}(\sqrt{I'})$ or $ac \in f^{-1}(\sqrt{I'})$. Since $f^{-1}(\sqrt{I'}) \subseteq \sqrt{f^{-1}(I')}$ (as in [6]), $ab \in f^{-1}(I')$ or $bc \in \sqrt{f^{-1}(I')}$ or $ac \in \sqrt{f^{-1}(I')}$. Hence $f^{-1}(I')$ is a 2-absorbing primary ideal of R.

Theorem 3.8. Let $f: R \to R'$ be a homomorphism of so-rings. If f is an epimorphism and I is a 2-absorbing primary ideal of R then f(I) is a 2-absorbing primary ideal of R'.

Proof. Let $a', b', c' \in R$ such that $a'b'c' \in f(I)$. Since $f: R \to R'$ is an epimorphism, then there exist $a, b, c \in R$ such that f(a) = a', f(b) = b', and f(c) = c'. Now $f(abc) = f(a)f(b)f(c) = a'b'c' \in f(I)$. Then $abc \in I$. Since I is a 2-absorbing primary ideal of R, $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. We have $f(ab) \in f(I)$ or $f(bc) \in f(\sqrt{I})$ or $f(ac) \in f(\sqrt{I})$. Then $f(a)f(b) \in f(I)$ or $f(b)f(c) \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$ or $f(a)f(c) \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$ (as in [6]). We have $a'b' \in f(I)$ or $b'c' \in \sqrt{f(I)}$ or $a'c' \in \sqrt{f(I)}$. Hence f(I) is a 2-absorbing primary ideal of R'.

Theorem 3.9. If \sqrt{I} is a 2-absorbing ideal of R and if $abc \in I$ with $bc \notin \sqrt{I}$ and $ac \notin \sqrt{I}$. Then I is a 2-absorbing primary ideal of R.

Proof. Suppose \sqrt{I} is a 2-absorbing ideal of R and if $abc \in I$ with $bc \notin \sqrt{I}$ and $ac \notin \sqrt{I}$ then $ab \in I$. Let $a,b,c \in R$ such that $abc \in I \subseteq \sqrt{I}$. Then $abc \in \sqrt{I}$. Since \sqrt{I} is a 2-absorbing ideal of R, $ab \in \sqrt{I}$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Suppose $bc \notin \sqrt{I}$ and $ac \notin \sqrt{I}$, then $ab \in I$. Hence I is a 2-absorbing primary ideal of R.

Theorem 3.10. If I is a 2-absorbing primary ideal of a so-ring R, then the following statements hold:

- (i) $(\sqrt{I}:x)$ is a 2-absorbing ideal of R for all $x \in R \setminus \sqrt{I}$
- (ii) $(\sqrt{I}:x) = (\sqrt{I}:x^2)$ for all $x \in R \setminus \sqrt{I}$.

Proof. As in [11], clearly \sqrt{I} and $(\sqrt{I}:x)$ are ideals of R. Let $abc \in (\sqrt{I}:x)$ for some $a,b,c \in R$ and $x \in R \setminus \sqrt{I}$, then $(abc)x \in \sqrt{I}$. Since I is a 2-absorbing primary ideal, \sqrt{I} is a 2-absorbing ideal of R (since by theorem 2.6.). Then $(ab)c \in \sqrt{I}$ or $(ab)x \in \sqrt{I}$ or $cx \in \sqrt{I}$. If $(ab)c \in \sqrt{I}$ then $ab \in \sqrt{I}$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Then $(ab)x \in \sqrt{I}$ or $(bc)x \in \sqrt{I}$ or $(ac)x \in \sqrt{I}$. We have $ab \in (\sqrt{I}:x)$ or $bc \in (\sqrt{I}:x)$ or $ac \in (\sqrt{I}:x)$. If $(ab)x \in \sqrt{I}$ then $ab \in (\sqrt{I}:x)$. If $cx \in \sqrt{I}$ then $a(cx) \in \sqrt{I}$. Then $ac \in (\sqrt{I}:x)$. Therefore $(\sqrt{I}:x)$ is a 2-absorbing ideal of R.

(ii) Let $x \in R \setminus \sqrt{I}$. It is clear that $(\sqrt{I} : x) \subseteq (\sqrt{I} : x^2)$. Now let $y \in (\sqrt{I} : x^2)$, $yx^2 \in \sqrt{I}$. Since \sqrt{I} is a 2-absorbing ideal of R, either $x^2 \in \sqrt{I}$ or $yx \in \sqrt{I}$. If $x^2 \in \sqrt{I}$ then $x \in \sqrt{I}$, a contradiction. So let $yx \in \sqrt{I}$, $y \in (\sqrt{I} : x)$. Therefore $(\sqrt{I} : x^2) \subseteq (\sqrt{I} : x)$. Hence $(\sqrt{I} : x) = (\sqrt{I} : x^2)$.

Theorem 3.11. Let I be a proper ideal of a so-ring R. Then I is a 2-absorbing primary ideal of R if and only if for any $a, b \in R$ and any ideal J of R with $abJ \subseteq I$ and $ab \notin I$ then either $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Proof. Suppose I is a 2-absorbing primary ideal of R. Let J be an ideal of R and $a,b \in R$ such that $abJ \subseteq I$ and $ab \notin I$. Suppose $aJ \not\subset \sqrt{I}$ and $bJ \not\subset \sqrt{I}$. Then there exist $x,y \in J$ such that $ax \notin \sqrt{I}$ and $by \notin \sqrt{I}$. Since $abJ \subseteq I$, $abx \in I$ and $aby \in I$. Then $abx + aby \in I$. We have $ab(x + y) \in I$. Since $ab(x + y) \in I$, $ab \notin I$ and I is a 2-absorbing primary ideal of R, $a(x + y) \in \sqrt{I}$ or $b(x + y) \in \sqrt{I}$. Since $ax \leq a(x + y) \in \sqrt{I}$ and $by \leq b(x + y) \in \sqrt{I}$, we have $ax \in \sqrt{I}$ or $by \in \sqrt{I}$. Hence either $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Conversly, we assume that for any $a, b \in R$ and for any ideal J of R, $abJ \subseteq I$ and $ab \notin I$ then either $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$. Let $x, y, z \in R$ such that $xyz \in I$ and $xy \notin I$. Take $K = \langle z \rangle$, the principal ideal of R generated by z. Let $p \in xyK = xy \langle z \rangle$. Then $p \leq xy[\Sigma_n z + \Sigma_i zr_i]$ for some $r_i \in R$. We have $p \leq \Sigma_n xyz + \Sigma_i (xyz)r_i$ for some $r_i \in R$. Since $xyz \in I$, $\Sigma_n xyz$ and $\Sigma_i (xyz)r_i \in I$. Then $p \in I$. Therefore $xyK \subseteq I$

and $xy \notin I$. By assumption, $xK \subseteq \sqrt{I}$ or $yK \subseteq \sqrt{I}$. Since $z \in \langle z \rangle = K$, $xz \in \sqrt{I}$ or $yz \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R.

Theorem 3.12. Let I be a proper ideal of a so-ring R. Then I is a 2-absorbing primary ideal of R if and only if for any $a \in R$, for any ideals J, K of R, $aJK \subseteq I$ and $JK \not\subseteq I$ then $aJ \subseteq \sqrt{I}$ or $aK \subseteq \sqrt{I}$.

Conversly, we assume that for any $a \in R$, for any ideals J, K of $R, aJK \subseteq I$ and $JK \nsubseteq I$ we have $aJ \subseteq \sqrt{I}$ or $aK \subseteq \sqrt{I}$. Let $x, y, z \in R$ such that $xyz \in I$ and $yz \notin I$. Take $J = \langle y \rangle$, $K = \langle z \rangle$, the principal ideal of R generated by y, z respectively. First we prove that $xJK \subseteq I$. Let $p \in xJK$. Then $p \in x < y > \langle z \rangle$. We have $p \leq x(\sum_n y + \sum_i yr_i)(\sum_m z + \sum_j zs_j)$ for some $r_i, s_j \in R$, positive integers n, m. Then $p \leq \sum_n \sum_m xyz + \sum_n \sum_j (xyz)s_j + \sum_i \sum_m (xyz)r_i + \sum_i \sum_j (xyz)(r_is_j)$. Since $xyz \in I$, all terms on right side are in I. Then $p \in I$. Therefore $xJK \subseteq I$. Since $y \in \langle y \rangle = J$, $z \in \langle z \rangle = K$ and $yz \notin I$, $JK \nsubseteq I$. By assumption either $xJ \subseteq \sqrt{I}$ or $xK \subseteq \sqrt{I}$. We have $xy \in \sqrt{I}$ or $xz \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R.

Now we generalise the definition of 2-absorbing primary ideals of so-rings in terms of ideals in the following theorem:

Theorem 3.13. Let P be a proper ideal of a so-ring R. Then P is a 2-absorbing primary ideal of R if and only if whenever $I_1I_2I_3 \subseteq P$ for some ideals I_1 , I_2 , I_3 of R then $I_1I_2 \subseteq P$ or $I_2I_3 \subseteq \sqrt{P}$ or $I_1I_3 \subseteq \sqrt{P}$.

Proof. Suppose P is a 2-absorbing primary ideal of R. Let I_1, I_2, I_3 be ideals of R such that $I_1I_2I_3\subseteq P$. Suppose $I_1I_2\nsubseteq P$, $I_2I_3\nsubseteq \sqrt{P}$ and $I_1I_3\nsubseteq \sqrt{P}$. Then $\exists \ p\in I_1I_2$, $q\in I_2I_3,\ r\in I_1I_3$ such that $p\notin P$, $q,\ r\notin \sqrt{P}$. Now $p\in I_1I_2$. Then $p\leq \Sigma_i x_i y_i$ for some $x_i\in I_1,\ y_i\in I_2,\ i\in I$. Since $p\notin P$, $x_ky_k\notin P$ for some $x_k\in I_1,\ y_k\in I_2$. Now $q\in I_2I_3$. Then $q\leq \Sigma_j y_j z_j$ for some $y_j\in I_2,\ z_j\in I_3,\ j\in I$. Since $q\notin \sqrt{P}$, $q\notin P$ (since $P\subseteq \sqrt{P}$). i.e., $y_lz_l\notin P$ for some $y_l\in I_2,\ z_l\in I_3$. Now $r\in I_1I_3$. Then $r\leq \Sigma_s x_s z_s$ for some $x_s\in I_1,\ z_s\in I_3,\ s\in I$. Since $r\notin \sqrt{P},\ r\notin P$. i.e., $x_mz_m\notin P$ for some $x_m\in I_1,\ z_m\in I_3$. Now $x_k+x_m\in I_1,\ y_k+y_l\in I_2,\ z_l+z_m\in I_3$. Then $(x_k+x_m)(y_k+y_l)(z_l+z_m)\in I_1I_2I_3\subseteq P$. Since P is a 2-absorbing primary ideal of R, $(x_k+x_m)(y_k+y_l)\in P$ or $(y_k+y_l)(z_l+z_m)\in \sqrt{P}$ or $(x_k+x_m)(z_l+z_m)\in \sqrt{P}$. Since P is an ideal of R, $x_ky_k\in P$ or $y_lz_l\in \sqrt{P}$ or $x_mz_m\in \sqrt{P}$, a contradiction. Hence $I_1I_2\subseteq P$ or $I_2I_3\subseteq \sqrt{P}$ or $I_1I_3\subseteq \sqrt{P}$.

Conversly, we assume that for any ideals I_1, I_2, I_3 of R, $I_1I_2I_3 \subseteq P$ then either $I_1I_2 \subseteq P$ or $I_2I_3 \subseteq \sqrt{P}$ or $I_1I_3 \subseteq \sqrt{P}$. Let $x,y,z \in R$ such that $xyz \in I$. Take $I_1 = \langle x \rangle$, $I_2 = \langle y \rangle$, $I_3 = \langle z \rangle$, the principal ideals of R generated by x,y,z respectively. First we prove that $I_1I_2I_3 \subseteq P$. Let $p \in I_1I_2I_3 = \langle x \rangle \langle y \rangle \langle z \rangle$. Then $p \leq (\sum_n x + \sum_i xr_i)(\sum_m y + \sum_j ys_j)(\sum_l z + \sum_k zs_k^1)$ for some $r_i, s_j, s_k^1 \in R$ and some positive integers n, m, l. Then $p \leq \sum_n \sum_m \sum_l (xyz) + \sum_n \sum_j \sum_l (xyz)s_j + \sum_n \sum_m \sum_k (xyz)s_k^1 + \sum_i \sum_m \sum_l (xyz)r_i + \sum_i \sum_j \sum_l (xyz)(r_is_j) + \sum_i \sum_j \sum_k (xyz)(r_is_js_k^1) + \sum_n \sum_j \sum_k (xyz)(s_js_k^1) + \sum_i \sum_m \sum_k (xyz)(r_is_k^1)$ (since R is commutative). Since $xyz \in P$, all terms on right side are in P. We have $p \in P$. Therefore $I_1I_2I_3 \subseteq P$. By assumption, $I_1I_2 \subseteq P$ or

 $I_2I_3 \subseteq \sqrt{P}$ or $I_1I_3 \subseteq \sqrt{P}$. Since $x \in \langle x \rangle = I_1$, $y \in \langle y \rangle = I_2$, $z \in \langle z \rangle = I_3$, $xy \in P$ or $yz \in \sqrt{P}$ or $xz \in \sqrt{P}$. Hence P is a 2-absorbing primary ideal of R. \square

Acknowledgement

We would like to thank the editor and the referees

References

- [1] Acharyulu, G.V.S.: A Study of Sum-Ordered Partial Semirings, Doctoral thesis, Andhra University, 1992.
- [2] Arbib, M.A., Manes, E.G.: Partially Additive Categories and Flow-diagram Semantics, Journal of Algebra, Vol. 62, pp. 203-227, 1980.
- [3] Chaudhari J.N.: 2-absorbing Ideals in Semirings, International Journal of Algera, Vol. 6(6), 265-270, 2012.
- [4] Manes, E.G., and Benson, D.B.: The Inverse Semigroup of a Sum-Ordered Partial Semirings, Semigroup Forum, Vol. 31, pp. 129-152, 1985.
- [5] Prathibha Kumar, Manish Kant Dubey and Poonam Sarohe.: Some results on 2-absorbing ideals in Commutative Semirings, Journal of Mathematics and Applications, Vol. 38, pp. 77-84, 2015.
- [6] Prathibha Kumar, Manish Kant Dubey and Poonam Sarohe.: On 2-absorbing Primary Ideals in Commutative Semirings, European Journal of Pure and Applied Mathematics, Vol. 9, No. 2, pp. 186-195, 2015.
- [7] Ravi Babu, N., Pradeep Kumar, T.V., Srinivasa Rao, P.V.: 2-absorbing ideals in so-rings, Accepted by International Journal of Pure and Applied Mathematics.
- [8] Srinivasa Rao, P.V.: *Ideals Of Sum-ordered Semirings*, International Journal of Computational Cognition(IJCC), Vol. 7(2), pp. 59-64. June 2009.
- [9] Srinivasa Rao, P.V.: Euclidean Partial Semirings, Jordan Journal of Mathematics and Statistics(JJMS), Vol. 4(3), pp. 157-170. 2011.
- [10] Srinivasa Rao, P.V.: A Class of Primary Subsemimodules, Jordan Journal of Mathematics and Statistics(JJMS), Vol. 6(4), pp. 251-264. 2013.
- [11] Srinivasa Rao, P.V.: Ideal Theory of Sum-ordered Partial Semirings, Doctoral thesis, Acharya Nagarjuna University, 2011.

- [12] Srinivasa Reddy, M., Amarendra Babu, V., Srinivasa Rao, P.V.: 2-absorbing Subsemimodules of Partial Semimodules, Gen.Math.Notes, Vol. 23(2), pp. 43-50, 2014.
- [13] Streenstrup, M.E.: Sum-ordered Partial Semirings, Doctoral thesis, Graduate school of the University of Massachusetts, Feb 1985 (Department of computer and Information Science).
- (1) Department of Basic Engineering, DVR & Dr.HS MIC College of Technology, Kanchikacherla 521180, Andhra Pradesh, INDIA

E-mail address: ravibabu.narahari@gmail.com

- (2) DEPARTMENT OF SCIENCE AND HUMANITIES, ANU COLLEGE OF ENGINEERING, ACHARYA NAGARJUNA UNIVERSITY, NAGARJUNA NAGAR, GUNTUR 522510, ANDHRA PRADESH, INDIA E-mail address: pradeeptv5@gmail.com
- (3) Department of Basic Engineering, DVR & Dr. HS MIC College of Technology, Kanchikacherla 521180, Andhra Pradesh, INDIA

E-mail address: srinu_fu2004@yahoo.co.in