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2-ABSORBING PRIMARY IDEALS OF SO-RINGS

N. RAVI BABU (1), DR. T.V. PRADEEP KUMAR (2) AND DR. P.V. SRINIVASA RAO (3)

Abstract. A partial semiring is a structure possessing an infinitary partial addi-

tion and a binary multiplication, subject to a set of axioms. The partial functions

under disjoint-domain sums and functional composition is a partial semiring. In

this paper we obtain equivalent conditions and some characteristics of 2-absorbing

primary ideals in so-rings.

1. Introduction

Partially defined infinitary operations occur in the contexts ranging from integra-

tion theory to programming language semantics. The general cardinal algebras stud-

ied by Tarski in 1949, Housdorff topological commutative groups studied by Bourbaki

in 1966, Σ-structures studied by Higgs in 1980, sum ordered partial monoids and sum

ordered partial semirings (so-rings) studied by Arbib, Manes and Benson[2], [4], and

Streenstrup[13] are some of the algebraic structures of the above type.

In [7], we studied some characteristics of 2-absorbing ideals in so-rings. In this

paper, we consider the 2-absorbing primary ideals of so-rings and obtain various

equivalent conditions of it. Also we obtain some characterizations of
√

I in the 2-

absorbing primary ideals of so-rings.
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2. Preliminaries

In this section we collect some important definitions, results and examples for our

use in this paper.

Let M be a nonempty set, and let I be a set. An I − indexed family in M is a

function x : I → M . Such a family is denoted by (xi : i ∈ I), where xi = ix for each

i in I. The empty family is the unique such family indexed by ∅.
Now let us consider an infinitary operation Σ which takes families in M to elements

of M , but which may not be defined for all families in M . By “infinitary”, we mean

that Σ may be applied to a family (xi : i ∈ I) in M , for which the cardinality of the

index set I is infinite. Since Σ(xi : i ∈ I) need not be defined for an arbitrary family

(xi : i ∈ I) in M , Σ is said to be partially-defined. A family (xi : i ∈ I) in M is said

to be summable if Σ(xi : i ∈ I) is defined and is in M .

Definition 2.1. [4] A positive partial monoid or partial monoid, for short, is a pair

(M, Σ) where M is a nonempty set and Σ is a partial addition defined on some, but

not necessarily all, families (xi : i ∈ I) in M subject to the following axioms:

(1) Unary Sum Axiom. If (xi : i ∈ I) is a one element family in M and I = {j},
then Σ(xi : i ∈ I) is defined and equals xj.

(2) Partition-Associativity Axiom. If (xi : i ∈ I) is a family in M and (Ij : j ∈ J) is

a partition of I, then (xi : i ∈ I) is summable if and only if (xi : i ∈ Ij) is summable

for every j in J and (Σ(xi : i ∈ Ij) : j ∈ J) is summable. We write

Σ(xi : i ∈ I) = Σ(Σ(xi : i ∈ Ij) : j ∈ J).

Definition 2.2. [4] A partial semiring is a quadruple (R, Σ, ·, 1), where (R, Σ) is

a partial monoid, (R, ·, 1) is a monoid with multiplicative operation ‘·’ and unit 1,

and the additive and multiplicative structures obey the following distributive laws: If

Σ(xi : i ∈ I) is defined in R, then for all y in R, Σ(y · xi : i ∈ I) and Σ(xi · y : i ∈ I)
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are defined and

y · Σ(xi : i ∈ I) = Σ(y · xi : i ∈ I), Σ(xi : i ∈ I) · y = Σ(xi · y : i ∈ I).

Definition 2.3. [4] A partial semiring (R, Σ, ·, 1) is said to be commutative, if xy =

yx ∀ x, y ∈ R.

Definition 2.4. [4] The sum ordering on a partial monoid (M, Σ) is the binary

relation ≤ such that x ≤ y if and only if there exists a h in M such that y = x + h,

for x, y ∈ M .

The binary relation sum ordering on a partial monoid (M, Σ) is always reflexive

and transitive.

Definition 2.5. [4] A sum ordered partial semiring or so-ring, for short, is a partial

semiring in which the sum ordering is a partial order.

Let X and Y be two sets. A partial function f from X to Y is a function f from

X ′ to Y , for some subset X ′ of X.

Example 2.6. [4] Let D be a set and let the set of all partial functions from D to

D be denoted by Pfn(D, D). A family (xi : i ∈ I) is summable if and only if for i, j

in I, and i 6= j, dom(xi)∩dom(xj) = ∅. If (xi : i ∈ I) is summable then for any d in D

d(Σixi) =











dxi, if d ∈ dom(xi) for some (necessarily unique) i ∈ I;

undefined, otherwise

and ‘·’ is defined as the usual functional composition. That is, for any x, y ∈
Pfn(D, D) and d in D,

d(x · y) =











(dx)y, if d ∈ dom(x) and dx ∈ dom(y);

undefined, otherwise
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and the ordering as the extension of functions. Then (Pfn(D, D), Σ, ·, 1), where 1

is the identity function on D, is a so-ring.

Example 2.7. [4] Let D be a set. A multi-function x : D → D maps each element in

D to an arbitrary subset of D. Such multi-functions correspond bijectively to relations

r ⊆ D × D, where (d, e) ∈ r if and only if e ∈ dx. The set of all multi-functions

from D to D, denoted by Mfn(D, D), together with Σ defined such that d in D,

d(Σixi) =
⋃

i(dxi), and ‘·’ defined as the usual relational composition. That is, for

each d in D and for x, y in Mfn(D, D), d(x · y) =
⋃

(ey : e ∈ dx), and d1 = {d}.
Then (Mfn(D, D), Σ, ·, 1) is a so-ring.

Definition 2.8. [1] Let R be a so-ring. A subset N of R is said to be an ideal of R

if the following are satisified

(I1). If (xi : i ∈ I) is a summable family in R and xi ∈ N ∀ i ∈ I then Σ(xi : i ∈
I) ∈ N ,

(I2). If x ≤ y and y ∈ N then x ∈ N ,

(I3). If x ∈ N and r ∈ R then xr, rx ∈ N .

A So-ring R is said to be complete if every family in R is summable.

Definition 2.9. [8] Let R be a complete so-ring and a ∈ R. Then the smallest

ideal generated by ‘a’ is < a > = {x ∈ R | x ≤ Σna + Σiriasi, where ri, si ∈
R and n is a positive integer}. We call < a > as the principal ideal generated by a.

Definition 2.10. [8] Let I and J be ideals of a so-ring R. Then IJ = {x ∈ R | x ≤
Σiaibi for some ai ∈ I, bi ∈ J}.

Definition 2.11. [8] Let A and B be any subsets of a so-ring R. Then we define

(A : B) = {r ∈ R | rB ⊆ A} where rB = {x ∈ R | x ≤ rb for some b ∈ B}.
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Definition 2.12. [8] Let (R, Σ, ·, 1) and (R′, Σ′, ∗, 1) be two so-rings. Then a mapping

f : R → R′ is said to be homomorphism if it satisfies the following:

(i). Whenever (xi : i ∈ I) is summable in R, then (f(xi) : i ∈ I) is summable in R′

and f(Σxi) = Σ′f(xi). (ii). f(x · y) = f(x) ∗ f(y) for every x, y in R.

Definition 2.13. [13] A proper ideal P of a so-ring R is said to be prime if and only

if for any ideals A, B of R, AB ⊂ P implies A ⊂ P or B ⊂ P .

Definition 2.14. [12] A proper ideal I of a so-ring R is called 2-absorbing if for any

a, b, c ∈ R, abc ∈ I implies ab ∈ I or bc ∈ I or ac ∈ I.

The set of all prime ideals of a so-ring R is denoted by spec(R). Let I be a proper

ideal of R. Then denote the set {H ∈ spec(R) | I ⊂ H} by V (I) and
⋂

V (I) by
√

I.

Theorem 2.15. [8] Let I be an ideal of a commutative so-ring R. Then
√

I =

{x ∈ R | xn ∈ I for some positive integer n}.

Definition 2.16. [8] A proper ideal I of a so-ring R is said to be primary if ab ∈ I,

a, b ∈ R implies a ∈ I or bn ∈ I for some n ∈ Z+.

Throughout this paper, R denotes a commutative so-ring.

3. 2-absorbing primary ideals

Following the notion of 2-absorbing primary ideals in [6], we define 2-absorbing

primary ideals in so-rings as follows.

Definition 3.1. Let I be a proper ideal of a so-ring R. Then I is said to be a 2-

absorbing primary ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or

bc ∈
√

I or ac ∈
√

I.

Proposition 3.2. Every 2-absorbing ideal of a so-ring R is a 2-absorbing primary

ideal of R.
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Proof. Let abc ∈ I for some a, b, c ∈ R. Since I is a 2-absorbing ideal of R, then

ab ∈ I or bc ∈ I or ac ∈ I. Then ab ∈ I or bc ∈
√

I or ac ∈
√

I ( Since I ⊆
√

I).

Hence I is a 2-absorbing primary ideal of R. �

The following is an example of a so-ring R in which the converse need not be true.

Example 3.3. Consider R = N
⋃{0} be a so-ring and I = < 8N > be an ideal of

R. As in [6], it is known that not every 2-absorbing primary ideals of semi-rings is a

2-absorbing ideal. Clearly I is a 2-absorbing primary ideal of R. Since 2·2·2 ∈< 8 >,

but 2 · 2 /∈< 8 >. Hence I is not a 2-absorbing ideal of R.

Proposition 3.4. Every primary ideal of a so-ring R is a 2-absorbing primary ideal

of R.

Proof. Let I be a primary ideal of a so-ring R. Suppose abc ∈ I for some a, b, c ∈ R.

Since I is a primary ideal of R, either a ∈ I or (bc)n ∈ I for some positive integer n.

Then ab ∈ I or bc ∈
√

I. Hence I is a 2-absorbing primary ideal of R. �

The following is an example of a so-ring R in which the converse need not be true.

Example 3.5. Define R = {0, u, v, x, y, 1} with Σ defined on R by

Σ(xi : i ∈ I) =











xj, if xi = 0 ∀ i 6= j, for some j,

undefined, otherwise
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and · defined by the following table:

. 0 u v x y 1

0 0 0 0 0 0 0

u 0 u 0 0 0 u

v 0 0 v 0 0 v

x 0 0 0 0 0 x

y 0 0 0 0 0 y

1 0 u v x y 1

As in [12], clearly R is a so-ring. Let I = {0, x} be an ideal of R. One can show

that {0, x} is a 2-absorbing primary ideal of R. Now uv = 0 ∈ I, but u /∈ I and

vn = v /∈ I for some n ∈ Z+. Hence I is not a primary ideal of R.

Theorem 3.6. If I is a 2-absorbing primary ideal of a so-ring R, then
√

I is a

2-absorbing ideal of R.

Proof. Suppose I is a 2-absorbing primary ideal of R. Let abc ∈
√

I for some a, b, c ∈
R. Then (abc)n ∈ I for some positive integer n. We have anbncn ∈ I for some positive

integer n. Since I is a 2-absorbing primary ideal of R, then anbn ∈ I or bncn ∈
√

I

or ancn ∈
√

I. We have (ab)n ∈ I or (bc)n ∈
√

I or (ac)n ∈
√

I. Then ab ∈
√

I or

bc ∈
√√

I or ac ∈
√√

I. We have ab ∈
√

I or bc ∈
√

I or ac ∈
√

I (as in [11],
√√

I

=
√

I). Hence
√

I is a 2-absorbing ideal of R. �

Theorem 3.7. Let f : R → R′ be a homomorphism of so-rings, and suppose that I ′

is a 2-absorbing primary ideal of R′. Then f−1(I ′) is a 2-absorbing primary ideal of

R.

Proof. Suppose I ′ is a 2-absorbing primary ideal of R′. Let abc ∈ f−1(I ′) for some

a, b, c ∈ R. Then f(abc) ∈ I ′. i.e., f(a)f(b)f(c) ∈ I ′. Since I ′ is a 2-absorbing primary
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ideal of R′, then f(a)f(b) ∈ I ′ or f(b)f(c) ∈
√

I ′ or f(a)f(c) ∈
√

I ′. Then f(ab) ∈ I ′

or f(bc) ∈ (
√

I ′) or f(ac) ∈ (
√

I ′). We have ab ∈ f−1(I ′) or bc ∈ f−1(
√

I ′) or

ac ∈ f−1(
√

I ′)). Since f−1(
√

I ′) ⊆
√

f−1(I ′)(as in [6]), ab ∈ f−1(I ′) or bc ∈
√

f−1(I ′)

or ac ∈
√

f−1(I ′). Hence f−1(I ′) is a 2-absorbing primary ideal of R. �

Theorem 3.8. Let f : R → R′ be a homomorphism of so-rings. If f is an epimor-

phism and I is a 2-absorbing primary ideal of R then f(I) is a 2-absorbing primary

ideal of R′.

Proof. Let a′, b′, c′ ∈ R such that a′b′c′ ∈ f(I). Since f : R → R′ is an epimorphism,

then there exist a, b, c ∈ R such that f(a) = a′, f(b) = b′, and f(c) = c′. Now f(abc)

= f(a)f(b)f(c) = a′b′c′ ∈ f(I). Then abc ∈ I. Since I is a 2-absorbing primary ideal

of R, ab ∈ I or bc ∈
√

I or ac ∈
√

I. We have f(ab) ∈ f(I) or f(bc) ∈ f(
√

I) or

f(ac) ∈ f(
√

I). Then f(a)f(b) ∈ f(I) or f(b)f(c) ∈ f(
√

I) ⊆
√

f(I) or f(a)f(c) ∈
f(
√

I) ⊆
√

f(I)(as in [6]). We have a′b′ ∈ f(I) or b′c′ ∈
√

f(I) or a′c′ ∈
√

f(I).

Hence f(I) is a 2-absorbing primary ideal of R′. �

Theorem 3.9. If
√

I is a 2-absorbing ideal of R and if abc ∈ I with bc /∈
√

I and

ac /∈
√

I. Then I is a 2-absorbing primary ideal of R.

Proof. Suppose
√

I is a 2-absorbing ideal of R and if abc ∈ I with bc /∈
√

I and

ac /∈
√

I then ab ∈ I. Let a, b, c ∈ R such that abc ∈ I ⊆
√

I. Then abc ∈
√

I. Since
√

I is a 2-absorbing ideal of R, ab ∈
√

I or bc ∈
√

I or ac ∈
√

I. Suppose bc /∈
√

I

and ac /∈
√

I, then ab ∈ I. Hence I is a 2-absorbing primary ideal of R. �

Theorem 3.10. If I is a 2-absorbing primary ideal of a so-ring R, then the following

statements hold:

(i) (
√

I : x) is a 2-absorbing ideal of R for all x ∈ R \
√

I

(ii) (
√

I : x) = (
√

I : x2) for all x ∈ R \
√

I.
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Proof. As in [11], clearly
√

I and (
√

I : x) are ideals of R. Let abc ∈ (
√

I : x) for

some a, b, c ∈ R and x ∈ R \
√

I, then (abc)x ∈
√

I. Since I is a 2-absorbing primary

ideal,
√

I is a 2-absorbing ideal of R (since by theorem 2.6.). Then (ab)c ∈
√

I or

(ab)x ∈
√

I or cx ∈
√

I. If (ab)c ∈
√

I then ab ∈
√

I or bc ∈
√

I or ac ∈
√

I. Then

(ab)x ∈
√

I or (bc)x ∈
√

I or (ac)x ∈
√

I. We have ab ∈ (
√

I : x) or bc ∈ (
√

I : x) or

ac ∈ (
√

I : x). If (ab)x ∈
√

I then ab ∈ (
√

I : x). If cx ∈
√

I then a(cx) ∈
√

I. Then

ac ∈ (
√

I : x). Therefore (
√

I : x) is a 2-absorbing ideal of R.

(ii) Let x ∈ R \
√

I. It is clear that (
√

I : x) ⊆ (
√

I : x2). Now let y ∈ (
√

I : x2),

yx2 ∈
√

I. Since
√

I is a 2-absorbing ideal of R, either x2 ∈
√

I or yx ∈
√

I. If

x2 ∈
√

I then x ∈
√

I, a contradiction. So let yx ∈
√

I, y ∈ (
√

I : x). Therefore

(
√

I : x2) ⊆ (
√

I : x). Hence (
√

I : x) = (
√

I : x2). �

Theorem 3.11. Let I be a proper ideal of a so-ring R. Then I is a 2-absorbing

primary ideal of R if and only if for any a, b ∈ R and any ideal J of R with abJ ⊆ I

and ab /∈ I then either aJ ⊆
√

I or bJ ⊆
√

I.

Proof. Suppose I is a 2-absorbing primary ideal of R. Let J be an ideal of R and

a, b ∈ R such that abJ ⊆ I and ab /∈ I. Suppose aJ 6⊂
√

I and bJ 6⊂
√

I. Then

there exist x, y ∈ J such that ax /∈
√

I and by /∈
√

I. Since abJ ⊆ I, abx ∈ I and

aby ∈ I. Then abx + aby ∈ I. We have ab(x + y) ∈ I. Since ab(x + y) ∈ I, ab /∈ I

and I is a 2-absorbing primary ideal of R, a(x + y) ∈
√

I or b(x + y) ∈
√

I. Since

ax ≤ a(x + y) ∈
√

I and by ≤ b(x + y) ∈
√

I, we have ax ∈
√

I or by ∈
√

I. Hence

either aJ ⊆
√

I or bJ ⊆
√

I.

Conversly, we assume that for any a, b ∈ R and for any ideal J of R, abJ ⊆ I and

ab /∈ I then either aJ ⊆
√

I or bJ ⊆
√

I. Let x, y, z ∈ R such that xyz ∈ I and xy /∈ I.

Take K =< z >, the principal ideal of R generated by z. Let p ∈ xyK = xy < z >.

Then p ≤ xy[Σnz + Σizri] for some ri ∈ R. We have p ≤ Σnxyz + Σi(xyz)ri for some

ri ∈ R. Since xyz ∈ I, Σnxyz and Σi(xyz)ri ∈ I. Then p ∈ I. Therefore xyK ⊆ I
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and xy /∈ I. By assumption, xK ⊆
√

I or yK ⊆
√

I. Since z ∈< z >= K, xz ∈
√

I

or yz ∈
√

I. Hence I is a 2−absorbing primary ideal of R. �

Theorem 3.12. Let I be a proper ideal of a so-ring R. Then I is a 2-absorbing

primary ideal of R if and only if for any a ∈ R, for any ideals J, K of R, aJK ⊆ I

and JK * I then aJ ⊆
√

I or aK ⊆
√

I.

Proof. Suppose I is a 2-absorbing primary ideal of R. Let a ∈ R and J, K be any

ideals of R such that aJK ⊆ I and JK * I. Since JK * I, there exist p ∈ JK

such that p /∈ I. Since p ∈ JK, p ≤ Σixiyi for some xi ∈ J , yj ∈ K. Since

p /∈ I, Σixiyi /∈ I. Then xkyk /∈ I for some xk ∈ J , yk ∈ K. Now we prove

that either aJ ⊆
√

I or aK ⊆
√

I. Suppose aJ 6⊂
√

I and aK 6⊂
√

I. Then

∃ x ∈ J and y ∈ K such that ax /∈
√

I and ay /∈
√

I. Since x, xk ∈ J and y, yk ∈ K,

we have x + xk ∈ J and y + yk ∈ K. Since aJK ⊆ I, a(x + xk)(y + yk) ∈ I. Since

I is a 2-absorbing primary ideal of R, a(x + xk)(y + yk) ∈ I,(x + xk)(y + yk) ∈ I or

a(x+xk) ∈
√

I or a(y + yk) ∈
√

I. Then xy +xyk +xky +xkyk ∈ I or ax+ axk ∈
√

I

or ay + ayk ∈
√

I. We have xkyk ∈ I or ax ∈
√

I or ay ∈
√

I, a contradiction. Hence

either aJ ⊆
√

I or aK ⊆
√

I.

Conversly, we assume that for any a ∈ R, for any ideals J, K of R, aJK ⊆ I and

JK * I we have aJ ⊆
√

I or aK ⊆
√

I. Let x, y, z ∈ R such that xyz ∈ I and

yz /∈ I. Take J =< y >, K =< z >, the principal ideal of R generated by y, z

respectively. First we prove that xJK ⊆ I. Let p ∈ xJK. Then p ∈ x < y >< z >.

We have p ≤ x(Σny + Σiyri)(Σmz + Σjzsj) for some ri, sj ∈ R, positive integers

n, m. Then p ≤ ΣnΣmxyz + ΣnΣj(xyz)sj + ΣiΣm(xyz)ri + ΣiΣj(xyz)(risj). Since

xyz ∈ I, all terms on right side are in I. Then p ∈ I. Therefore xJK ⊆ I. Since

y ∈< y >= J , z ∈< z >= K and yz /∈ I, JK * I. By assumption either xJ ⊆
√

I

or xK ⊆
√

I. We have xy ∈
√

I or xz ∈
√

I. Hence I is a 2-absorbing primary ideal

of R. �



2-ABSORBING PRIMARY IDEALS OF SO-RINGS 239

Now we generalise the definition of 2-absorbing primary ideals of so-rings in terms

of ideals in the following theorem:

Theorem 3.13. Let P be a proper ideal of a so-ring R. Then P is a 2-absorbing

primary ideal of R if and only if whenever I1I2I3 ⊆ P for some ideals I1, I2, I3 of R

then I1I2 ⊆ P or I2I3 ⊆
√

P or I1I3 ⊆
√

P .

Proof. Suppose P is a 2-absorbing primary ideal of R. Let I1, I2, I3 be ideals of R such

that I1I2I3 ⊆ P . Suppose I1I2 * P , I2I3 *
√

P and I1I3 *
√

P . Then ∃ p ∈ I1I2,

q ∈ I2I3, r ∈ I1I3 such that p /∈ P , q, r /∈
√

P . Now p ∈ I1I2. Then p ≤ Σixiyi

for some xi ∈ I1, yi ∈ I2, i ∈ I. Since p /∈ P , xkyk /∈ P for some xk ∈ I1, yk ∈ I2.

Now q ∈ I2I3. Then q ≤ Σjyjzj for some yj ∈ I2, zj ∈ I3, j ∈ I. Since q /∈
√

P ,

q /∈ P (since P ⊆
√

P ). i.e., ylzl /∈ P for some yl ∈ I2, zl ∈ I3. Now r ∈ I1I3. Then

r ≤ Σsxszs for some xs ∈ I1, zs ∈ I3, s ∈ I. Since r /∈
√

P , r /∈ P . i.e., xmzm /∈ P

for some xm ∈ I1, zm ∈ I3. Now xk + xm ∈ I1, yk + yl ∈ I2, zl + zm ∈ I3. Then

(xk + xm)(yk + yl)(zl + zm) ∈ I1I2I3 ⊆ P . Since P is a 2-absorbing primary ideal of

R, (xk + xm)(yk + yl) ∈ P or (yk + yl)(zl + zm) ∈
√

P or (xk + xm)(zl + zm) ∈
√

P .

Since P is an ideal of R, xkyk ∈ P or ylzl ∈
√

P or xmzm ∈
√

P , a contradiction.

Hence I1I2 ⊆ P or I2I3 ⊆
√

P or I1I3 ⊆
√

P .

Conversly, we assume that for any ideals I1, I2, I3 of R, I1I2I3 ⊆ P then either

I1I2 ⊆ P or I2I3 ⊆
√

P or I1I3 ⊆
√

P . Let x, y, z ∈ R such that xyz ∈ I. Take

I1 =< x >, I2 =< y >, I3 =< z >, the principal ideals of R generated by x, y, z

respectively. First we prove that I1I2I3 ⊆ P . Let p ∈ I1I2I3 = < x >< y >< z >.

Then p ≤ (Σnx + Σixri)(Σmy + Σjysj)(Σlz +Σkzs
1
k) for some ri, sj, s

1
k ∈ R and some

positive integers n, m, l. Then p ≤ ΣnΣmΣl(xyz)+ΣnΣjΣl(xyz)sj+ΣnΣmΣk(xyz)s1
k+

ΣiΣmΣl(xyz)ri + ΣiΣjΣl(xyz)(risj) + ΣiΣjΣk(xyz)(risjs
1
k) + ΣnΣjΣk(xyz)(sjs

1
k) +

ΣiΣmΣk(xyz)(ris
1
k) ( since R is commutative). Since xyz ∈ P , all terms on right

side are in P . We have p ∈ P . Therefore I1I2I3 ⊆ P . By assumption, I1I2 ⊆ P or
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I2I3 ⊆
√

P or I1I3 ⊆
√

P . Since x ∈< x > = I1, y ∈< y > = I2, z ∈< z > = I3,

xy ∈ P or yz ∈
√

P or xz ∈
√

P . Hence P is a 2-absorbing primary ideal of R. �
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