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SOME TIGHT POLYNOMIAL-EXPONENTIAL LOWER BOUNDS
FOR AN EXPONENTIAL FUNCTION

CHRISTOPHE CHESNEAU

Abstract. This note is devoted to new sharp lower bounds for exp(x2) over the

whole real line. We first introduce and study a new lower bound defined with

polynomial of degree 2 and exponential (or hyperbolic) functions. Then we propose

two improvements of this lower bound by using two different approaches; the first

approach consists in adding well-chosen polynomial term to it, whereas the second

approach aims to transform it for large values of |x|. We show that they are better

to well-known lower bounds. The analytic results are supported by some numerical

studies and graphics. A part of the study is devoted to some integral methods

having the ability to generate new lower bounds for exp(x2).

1. Introduction

Inequalities involving exponential functions are useful in all the areas of mathemat-

ics. The most famous of them can be found in [12], [5] and [9]. See also [13], [1], [8]

and [2] for current developments on lower and upper bound for exp(x). The purpose

of this note is to provide simple and tight lower bounds for exp(x2). Such bounds are

important tools to evaluate lower or upper bounds of mathematical terms involving

exp(x2). Basic examples include the functions cosh(x2), sinh(x2) and tanh(x2), the

integral
∫ x
0

exp(y2)dy, the sum
∞∑
k=0

exp(−k2), the cumulative distribution function of
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the Gaussian or Kolmogorov distributions and the Marcum Q function (see [10, 11]

and [14]). Well-known lower bounds for exp(x2) are cosh(
√

2x), sinh
(√

6x
)
/(
√

6x),

exp(x) − x, 1 + x2 + x4/2 and (1 + x2/a)
a

with a > 0. The last one is sharp for |x|

large only for large values of a, corresponding to a polynomial with a high degree and

large coefficients when a is an integer. Recent sharp lower bounds can be found in

[3] for x is a an interval of the form [0, b] with a precise value for b.

The motivation of this paper is to introduce new sharp lower bounds for exp(x2)

defined with simple functions, at least uniformly better to the two benchmarks:

cosh(
√

2x) and 1 + x2 + x4/2, for all x ∈ R. In a first part, a first lower bound

is introduced. It is defined as an even function on R with simple polynomial of de-

gree 2 and exponential functions (without power of x2). Comparison to cosh(
√

2x),

exp(x) − x and 1 + x2 + x4/2 are made analytically and with the used of graphics.

Then we propose two significant improvements of this lower bound via two different

approaches. The first approach aims to add well chosen polynomial terms to the for-

mer lower bound. The second approach adopts the transformation suggested in [6]. It

consists in weighting and translating the former lower bound when |x| is large enough.

Only polynomial of degree 2 and exponential functions are used. In each case, the

theoretical results are supported by a short numerical study and some graphics, il-

lustrating the tightness of the new lower bounds. Finally, we present new integration

approaches to generate lower bounds for exp(x2) using existing lower bounds. The

link existing with this approach and the main lower bound of the study is discussed.

The rest of this note is structured as follows. Section 2 presents our main lower

bound. Section 3 is devoted to an improvement of this lower bound. Another im-

provement is developed in Section 4. Applications are given in Section 5. Section

6 presents some integral approaches to determine lower bounds for exp(x2). All the

proofs of our results are postponed in Section 7.
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2. Lower bound

The main lower bound for exp(x2) is presented in the proposition below.

Proposition 2.1. Let us define the function f(x) by

f(x) =
1

2

[
exp

(√
2x
)

(7− 4
√

2x+ 2x2)

+ exp
(
−
√

2x
)

(7 + 4
√

2x+ 2x2)− 12

]
.(2.1)

Then, for all x ∈ R,

exp(x2) ≥ f(x) ≥ 1.

The proof of Proposition 2.1 is based on the study of the function g(x) = exp(x2)−

f(x) and the inequality exp(x2) ≥ cosh
(√

2x
)

for all x ∈ R.

Let us observe that f(x) is a continuous even function on R using simple polynomial-

exponential functions. It is of the form f(x) = (1/2)[G(x) + G(−x) − 12], where

G(x) = exp
(√

2x
)

(7 − 4
√

2x + 2x2). It can be also express in terms of hyperbolic

cosh and sinh functions as:

f(x) = (7 + 2x2) cosh
(√

2x
)
− 4
√

2x sinh
(√

2x
)
− 6.(2.2)

A visual comparison between exp(x2) and f(x) is performed in Figure 1, for x ∈

[−1, 1] for the first graphic and x ∈ [−2.5, 2.5] for the second graphic. We can see

that the two curves are relatively close, specially for small value for |x|. This comment

is also supported by Table 1 which indicates the numerical values of the error measure:

R(b) =
∫ b
−b [f(x)− exp(x2)]

2
dx, for several values for b. The numerical studies are

done with the software Mathematica (version 11), see [15].

The tightness of f(x) is highlighted in Proposition 2.2 below; we proves that f(x) is

uniformly greater to most well-known simple lower bounds for exp(x2): cosh
(√

2x
)
,

exp(x)− x, 1 + x2 + x4/2.
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Figure 1. Superimposed curves of exp(x2) and f(x) for x ∈ [−1, 1] in

the first graphic, and for x ∈ [−2.5, 2.5] in the second graphic.

Table 1. Numerical evaluations of R(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R(b) 1.57828× 10−8 0.000465217 0.478101 149.8 34020.2 1.02037× 107

Proposition 2.2. Let f(x) be the function given by (2.1). We have, for all x ∈ R,

f(x) ≥ max

[
cosh

(√
2x
)
, exp(x)− x, 1 + x2 +

x4

2

]
.

Hence f(x) can be viewed as the best lower bounds among cosh
(√

2x
)
, exp(x)−x

and 1 + x2 + x4/2. Owing to its simple definition, f(x) provides a simple alternative

to the sharp but sophisticated lower bound proved by [4], which involves x2 in the

exponent: m(x; a) = (1 + x2/a)
√
a(a+x2)

for a > 0.

Figure 2 illustrates this result by considering two intervals of values for x : [−1, 1]

and [−3, 3], one for each graphics. It shows that f(x) is closer to exp(x2) is comparison

to cosh
(√

2x
)
, exp(x)− x and 1 + x2 + x4/2.

Since cosh
(√

2x
)
≥ 1 or exp(x) − x ≥ 1 or 1 + x2 + x4/2 ≥ 1, Proposition 2.2

implies that f(x) ≥ 1, which is the second inequality in Proposition 2.1.

If we consider the polynomial of degree 6: 1+x2 +x4/2+x6/6, which is also a loser

bound for exp(x2), we have f(x) ≥ 1 +x2 +x4/2 +x6/6 for some x, but their exists x

such that the reverse holds. This motivates the study of some improvements of f(x).
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Figure 2. Superimposed curves of f(x), 1 + x2 + x4/2, cosh
(√

2x
)

and exp(x) − x for x ∈ [−1, 1] in the first graphic, and for x ∈ [−3, 3]

in the second graphic.

In Sections 3 and 4 below, two modifications are proposed: adding a well-chosen

polynomial term to f(x) or transforming f(x) for |x| large.

Remark 1. Let us mention that some continuous even upper bounds for exp(x2) using

hyperbolic cosh and sinh functions can be proved. An example with |x| bounded is the

following: For any a > 0 and |x| ≤ a, we have exp(x2) ≤ cosh (ax) + (x/a) sinh (ax)

(≤ exp(a|x|)). Further details on this inequality is provided in Section 7.

3. First improvement of the lower bound

First of all, let us consider an intermediary result which can be viewed as an

improvement of the well-known inequality: for all x ∈ R, exp(x2) ≥ cosh
(√

2x
)
.

Lemma 3.1. For all x ∈ R and n ∈ N, we define the polynomial Pn(x) by

Pn(x) = 2x4
n∑
k=0

x2k

k!(2k + 3)(k + 2)

Then, for all x ∈ R and n ∈ N, we have

exp(x2) ≥ cosh
(√

2x
)

+ Pn(x).

Since Pn(x) ≥ 0 for all x ∈ R and n ∈ N, it is clear that exp(x2) ≥ cosh
(√

2x
)

+

Pn(x) ≥ cosh
(√

2x
)
. Let us observe that Pn(x) satisfies the recurrence relation:
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Pn(x) = Pn−1(x) + 2x2(n+2)/(n!(2n + 3)(n + 2)), with P0(x) = x4/3. Expressions of

Pn(x) for several values of n are given in Table 2.

Table 2. Analytic expressions for Pn(x) with n ∈ {0, . . . , 5}.

n = 0 n = 1 n = 2 n = 3

Pn(x) 1
3
x4 1

3
x4 + 2

15
x6 1

3
x4 + 2

15
x6 + 1

28
x8 1

3
x4 + 2

15
x6 + 1

28
x8 + 1

135
x10

n = 4 n = 5

1
3
x4 + 2

15
x6 + 1

28
x8 + 1

135
x10 + 1

792
x12 1

3
x4 + 2

15
x6 + 1

28
x8 + 1

135
x10 + 1

792
x12 + 1

5460
x14

Lemma 3.1 is a key tool to the proof of the following proposition in which we

determine a tight lower bound of exp(x2) uniformly greater to f(x).

Proposition 3.1. For all x ∈ R and n ∈ N, we define the polynomial Qn(x) by

Qn(x) = 4x6
n∑
k=0

x2k

k!(2k + 3)(k + 2)

(
1

2(2k + 5)(k + 3)
+

x2

(k + 4)(2k + 7)

)
.

Let f(x) be the function given by (2.1). We define the function f∗(x;n) by

f∗(x;n) = f(x) +Qn(x).

Then, for all x ∈ R and n ∈ N, we have

exp(x2) ≥ f∗(x;n) ≥ f(x).

Thus f∗(x;n) is a better lower to f(x) for exp(x2), for all x ∈ R. Remark that

Qn(x) satisfies the recurrence relation: Qn(x) = Qn−1(x) + 4x2(n+3)/(n!(2n+ 3)(n+

2))[1/(2(2n + 5)(n + 3)) + x2/((n + 4)(2n + 7))], with Q0(x) = x6/45 + x8/42. Ex-

pressions of Qn(x) for several values of n are given in Table 3.

The result of Proposition 3.1 is illustrated in Figure 3. The two graphics consider

the two intervals for x: [−1, 1] and [−2.5, 2.5].
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Table 3. Analytic expressions for Qn(x) with n ∈ {0, . . . , 4}.

n = 0 n = 1 n = 2

Qn(x) 1
45
x6 + 1

42
x8 1

45
x6 + 1

35
x8 + 4

675
x10 1

45
x6 + 1

35
x8 + 127

18900
x10 + 1

924
x12

n = 3

1
45
x6 + 1

35
x8 + 127

18900
x10 + 149

124740
x12 + 2

12285
x14

n = 4

1
45
x6 + 1

35
x8 + 127

18900
x10 + 149

124740
x12 + 191

1081080
x14 + 1

47520
x16
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Figure 3. Superimposed curves of exp(x2), f∗(x;n) for n = 0 and

f(x) for x ∈ [−1, 1] in the first graphic, and for x ∈ [−2.5, 2.5] in the

second graphic.

Table 4 shows the numerical values of the error measure:

R∗(b) =
∫ b
−b [f∗(x;n)− exp(x2)]

2
dx, for n = 0 and several values for b.

Table 4. Numerical evaluations of R∗(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R∗(b) 4.89107× 10−11 0.0000226587 0.1001 73.0819 26273.5 9.5921× 106
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4. Second improvement of the lower bound

We now investigate a transformation of f(x) for large |x|, based on a multiplicative

exponential weight and translation. It is an adaptation of the method developed by

[6] to f(x).

Proposition 4.1. Let f(x) be the function given by (2.1). For any a ≥ 0, we define

the function f(x; a) by

f◦(x; a) = f(x)1{|x|<a/2}(x) + f(|x| − a) exp(2a|x| − a2)1{|x|≥a/2}(x),

where 1A(x) denotes the indicator function over A, i.e. 1A(x) = 1 if x ∈ A and 0

elsewhere. Then, for all a ≥ 0 and x ∈ R, we have

exp(x2) ≥ f◦(x; a) ≥ f(x).

Another look of the function f◦(x; a) is given by

f◦(x; a) = max
[
f(x), f(|x| − a) exp(2a|x| − a2)

]
.

Note that f◦(x; a) is an even continuous function on R. It follows from Proposition

4.1 that f◦(x; a) is a better lower to f(x) for exp(x2), for all a ≥ 0 and x ∈ R. Figure

4 proposes a graphical illustration of Proposition 4.1. The two graphics consider the

two intervals respectively: [−1, 1] and [−3, 3]. We see that exp(x2) and f◦(x, a) with

a = 1 are near confounded for the considered values for x, showing the sharpness of

the lower bound.

Owing to Proposition 2.2, defining with the same a, this lower bound is sharper to

the lower bounds exhibited in [6]. However, due to the complexity of f(x), it is more

complicated from a mathematical point of view.

Table 5 shows the numerical values of the error measure:

R◦(b) =
∫ b
−b [f◦(x; a)− exp(x2)]

2
dx, for a = 1 and several values for b.
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Figure 4. Superimposed curves of exp(x2), f◦(x; a) for a = 1 and

f(x) for x ∈ [−1, 1] in the first graphic, and for x ∈ [−2.5, 2.5] in the

second graphic.

Table 5. Numerical evaluations of R◦(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R◦(b) 1.57828× 10−8 3.39908× 10−8 7.93014× 10−7 0.151264 1081.86 2.42278× 106

The value a = 1 in the numerical study is arbitrary chosen; one can find a more

optimal value for the problem for a given criteria of optimization.

A comparison of the two lower bounds f∗(x;n) and f◦(x; a) is now discussed. When

|x| is small, say |x| < a/2 for a fixed a, we have f∗(x;n) ≥ f(x) = f◦(x; a), so f∗(x;n)

is better. When |x| is large, in view of Figure 4, and Tables 4 and 5, we claim that

f◦(x;n) is better for some a and n.

5. Applications

Let us now present some direct applications of our results. First of all, sharp

polynomial-exponential lower bounds for exp(x2) give sharp polynomial-exponential

lower bounds for cosh(x2) or sinh(x2); using the inequality exp(y) ≥ 1 + y, for all

y ∈ R, for any ψ(x) ∈ {f(x), f∗(x;n), f◦(x; a)}, for all x ∈ R, we have

cosh(x2) =
exp(x2) + exp(−x2)

2
≥ 1

2

(
ψ(x) + max(1− x2, 0)

)
.
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On the other hand, using the inequality: exp(−y) ≤ 1 − y + y2/2, for all y ≥ 0, for

any x ∈ R, we have

sinh(x2) =
exp(x2)− exp(−x2)

2
≥ 1

2

(
ψ(x)−max

(
1− x2 +

x4

2
, 1

))
.

These inequalities can be useful in various mathematical settings.

Another example concerns integrals involving exp(−x2): for any positive integrable

function φ(x) and any ψ(x) ∈ {f(x), f∗(x;n), f◦(x; a)}, for all x ∈ R and a > 0, we

have ∫ ∞
x

φ(t) exp(−at2)dt ≤
∫ ∞
x

φ(t)[ψ(
√
at)]−1dt.

For instance, this can be used to bound the error function erfc(x) = 2√
π

∫∞
x

exp(−t2)dt,

or functions involving erfc(x) since

erfc(x) ≤ min

(
exp(−x2), 1

6
exp(−x2) +

1

2
exp(−4

3
x2)

)
(see [7]), or the Marcum Q function (see [10, 11] and [14]).

6. On some generators of lower bounds

We now present and discuss some general approaches based on integration to gen-

erate new lower bounds for exp(x2) from existing lower bounds. When it is possible,

conditions are mentioned to improved the tightness of the former lower bounds.

6.1. First integral approach. The main result is described in the proposition be-

low.

Proposition 6.1. Let θ(x) be a positive function on R and ω(x) be the function

defined by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1.

• Suppose that exp(x2) ≥ θ(x) for all x ∈ R. Then exp(x2) ≥ ω(x) for all

x ∈ R.
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• Suppose that θ(x) is even, two times differentiable with θ(0) = 1, θ′(0) = 0

and 2(1 + 2x2)θ(x)− θ′′(x) ≥ 0 for all x ≥ 0. Then, for all x ∈ R, we have

ω(x) ≥ θ(x).

Under the assumptions of the two points above, we have

exp(x2) ≥ ω(x) ≥ θ(x).

So ω(x) is a better lower bound to θ(x).

Connections between Proposition 6.1 and 2.1 exist. Indeed, let us consider the well-

known lower bound for exp(x2): θ(x) = cosh
(√

2x
)
. We have θ′(x) =

√
2 sinh

(√
2x
)

and θ′′(x) = 2 cosh
(√

2x
)
. Therefore θ(0) = 1, θ′(0) = 0 and 2(1+2x2)θ(x)−θ′′(x) =

4x2 cosh
(√

2x
)
≥ 0. It follows from Proposition 6.1 that a better lower bound of

θ(x) = cosh
(√

2x
)

is given by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1

=

∫ |x|
0

(
−4y cosh

(√
2y
)

+ 3
√

2 sinh
(√

2y
)

+ 2
√

2y2 sinh
(√

2y
))

dy + 1

= (7 + 2x2) cosh
(√

2x
)
− 4
√

2x sinh
(√

2x
)
− 6.

We thus obtain the hyperbolic expression of the lower bound f(x) given by (2.2).

Naturally, the first point of Proposition 6.1 can be used to generate new lower

bounds for exp(x2). For instance, using the inequality exp(y) ≥ 1 + y for all y ∈ R,

we have exp(x2) = exp(x2 − |x|) exp(|x|) ≥ (1 + x2 − |x|) exp(|x|). Let us set θ(x) =

(1 + x2 − |x|) exp(|x|). Hence a new lower bound for exp(x2) is given by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1

=

∫ |x|
0

[
exp(y)

(
136− 134y + 66y2 − 20y3 + 4y4

)
− 136

]
dy + 1

= exp(|x|)
(
618− 482|x|+ 174x2 − 36|x|3 + 4x4

)
− 617− 136|x|.
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However, note that this lower bound is not better to θ(x). In particular, the assump-

tion 2(1 + 2x2)θ(x)− θ′′(x) ≥ 0 for all x ∈ R is not satisfied. This bound is tight but

not shaper than f(x) for all x ∈ R. Moreover, from a mathematical point of view, it

is more difficult to manipulate to f(x).

Let us mention that the well-known lower bounds: 1+x2 +x4/2 and exp(|x|)−|x|,

also satisfy θ(0) = 1, θ′(0) = 0 and 2(1 + 2x2)θ(x)− θ′′(x) ≥ 0 for all x ≥ 0, yielding

more sharp lower bounds ω(x) for exp(x2). However, one can show that they are not

better to f(x) for all x ∈ R (and the presented improvements).

6.2. Generalization. Proposition 6.2 below presents a generalization of Proposition

6.1. From two lower bounds θ1(x) and θ2(x) of exp(x2), one can construct a lower

bound better to θ1(x) or θ2(x), under some assumptions.

Proposition 6.2. Let θ1(x) and θ2(x) be two positive functions on R and κ(x) be

the function defined by

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1.

• Suppose that exp(x2) ≥ max [θ1(x), θ2(x)] for all x ∈ R. Then exp(x2) ≥ κ(x)

for all x ∈ R.

• Suppose that θ1(x) and θ2(x) are even, two times differentiable with

– θ1(0) = 1, θ′1(0) = 0, 2(θ1(x)+2x2θ2(x))−θ′′1(x) ≥ 0 for all x ≥ 0. Then,

for all x ∈ R, we have

κ(x) ≥ θ1(x).

This inequality holds with θ2(x) by inverting the role of θ1(x) and θ2(x)

in the definition of κ(x) and the conditions.

– θ1(0) = 1, θ2(0) = 1, θ′1(0) = 0, θ′2(0) = 0, 2(θ1(x)+2x2θ2(x))−θ′′1(x) ≥ 0

and 2(θ1(x) + 2x2θ2(x)) − θ′′2(x) ≥ 0 for all x ≥ 0. Then, for all x ∈ R,
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we have

κ(x) ≥ max [θ1(x), θ2(x)] .

Under the assumptions of the first point and the second item of the second

point, we have

exp(x2) ≥ κ(x) ≥ max [θ1(x), θ2(x)] .

So κ(x) is a better lower bound to θ1(x) for exp(x2), or both of them.

Taking θ1(x) = θ2(x) in Proposition 6.2, we obtain Proposition 6.1 with θ(x) =

θ1(x).

Note that, taking θ1(x) = cosh
(√

2x
)

and θ2(x) =
n∑
k=0

x2k/(k!), the first point and

the first item of the second point of Proposition 6.2 are satisfied; we thus obtain

Lemma 3.1.

Another example is given by chosing θ1(x) = f(x) and θ2(x) = cosh
(√

2x
)
. After

some calculus, we have

κ(x) = 27 cosh
(√

2x
)
− 2x2

(
3− 2 cosh

(√
2x
))
− 12
√

2x sinh
(√

2x
)
− 26.

Also, one can show that the first point and the second item of the second point of

Proposition 6.2 are satisfied; κ(x) is a better lower bound to f(x). However, the

comparison with the proposed improvements for f(x) need further investigations.

6.3. Another integral approach. We conclude this section by presenting another

generator of lower bounds for exp(x2).

Proposition 6.3. Let θ(x) be a positive function on R and γ(x) be the function

defined by

γ(x) = exp(−|x|)
∫ |x|
0

exp(t) [(1 + 2t)θ(t)− 1] dt+ 1.

If exp(x2) ≥ θ(x) for all x ∈ R. Then exp(x2) ≥ ω(x) for all x ∈ R.
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For instance, if θ(x) = cosh
(√

2x
)
, we have

γ(x) = 8 exp(−|x|)− (7 + 2|x|) cosh
(√

2x
)

+
√

2(5 + 2|x|) sinh
(√

2|x|
)
.

However, one can show that γ(x) is not better to f(x) for all x ∈ R.

7. Proofs

Proof of Proposition 2.1. Let us set g(x) = exp(x2) − f(x). We aim to study this

function. It follows from several algebraic manipulations that

g′(x) = 2x exp(x2)

− 1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)

]
.(7.1)

In order to study the sign of g′(x), let us investigate g′′(x). Algebraic manipulations

and simplifications give

g′′(x) = 2(1 + 2x2)
[
exp(x2)− cosh

(√
2x
)]
.(7.2)

Owing to the elementary inequality: exp(x2) ≥ cosh
(√

2x
)
, we have g′′(x) ≥ 0. Thus

g′(x) is increasing. Since g′(0) = 0 and g(0) = 0, we have g(x) ≥ 0 for all x ∈ R.

The second inequality can be prove in a similar manner. Let us set h(x) = f(x)−1.

It follows from several algebraic manipulations that

h′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)
]

and

h′′(x) = 2(1 + 2x2) cosh
(√

2x
)
.

So h′′(x) ≥ 0. Since h′(0) = 0 and h(0) = 0, we have h(x) ≥ 0 for all x ∈ R. This

ends the proof of Proposition 2.1. �

Proof of Proposition 2.2. Let us prove that, for all x ∈ R, f(x) ≥ cosh
(√

2x
)
, f(x) ≥

exp(x)− x and f(x) ≥ 1 + x2 + x4/2, in turn.
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• Proof for f(x) ≥ cosh
(√

2x
)
. Let us set k(x) = f(x) − cosh

(√
2x
)
. After

calculus and simplifications, we obtain

k′(x) = (
√

2− 2x+
√

2x2) exp
(√

2x
)
− (
√

2 + 2x+
√

2x2) exp
(
−
√

2x
)

and

k′′(x) = 4 cosh
(√

2x
)
x2.

Since k′′(x) ≥ 0, k′(0) = 0 and k(0) = 0, we have k(x) ≥ 0 for all x ∈ R,

implying the desired inequality.

• Proof for f(x) ≥ exp(x)− x. Let us set `(x) = f(x)− exp(x) + x. We have

`′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)

− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)− 2 exp(x) + 2

]

and

`′′(x) = 2(1 + 2x2) cosh
(√

2x
)
− exp(x).

Observe that `′′(x) ≥ 2 cosh
(√

2x
)
−exp(x) ≥ 0. Since `′(0) = 0 and `(0) = 0,

we have `(x) ≥ 0 for all x ∈ R, ending the proof of this point.

• Proof for f(x) ≥ 1 + x2 + x4/2. Let us set m(x) = f(x) − (1 + x2 + x4/2).

After calculus and simplifications, we obtain

m′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)

− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)− 4x(1 + x2)

]

and

m′′(x) = 2(1 + 2x2) cosh
(√

2x
)
− 2− 6x2.
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Since cosh
(√

2x
)

=
+∞∑
k=0

(√
2x
)2k

/(2k)! > 1 + x2 (see [12]), we have m′′(x) ≥

2(1 + 2x2)(1 + x2) − 2 − 6x2 = 4x4 ≥ 0. Since m′(0) = 0 and m(0) = 0, we

have m(x) ≥ 0 for all x ∈ R. This implies the result.

The proof of Proposition 2.2 is complete. �

On Remark 1. Let us set ρ(x) = (1/2)[1 + (x/a)]. Since |x| ≤ a, observe that ρ(x) ∈

[0, 1]. Also, we can write x2 = ρ(x)(ax) + (1 − ρ(x))(−ax). Owing to the convexity

of the function exp(y), we have

exp(x2) = exp [ρ(x)(ax) + (1− ρ(x))(−ax)]

≤ ρ(x) exp(ax) + (1− ρ(x)) exp(−ax) = cosh (ax) +
x

a
sinh (ax) .

This completes Remark 1. �

Proof of Lemma 3.1. Let us set p(x) = exp(x2)− cosh
(√

2x
)
−Pn(x). Then we have

p′(x) = 2x exp(x2)−
√

2 sinh
(√

2x
)
− 4

n∑
k=0

x2k+3

k!(2k + 3)

and

p′′(x) = 2 exp(x2) + 4x2 exp(x2)− 2 cosh
(√

2x
)
− 4x2

n∑
k=0

x2k

k!

= 2
(

exp(x2)− cosh
(√

2x
))

+ 4x2

(
exp(x2)−

n∑
k=0

x2k

k!

)
.

It follows from the well-know inequalities: exp(x2) ≥ cosh
(√

2x
)

and exp(x2) =
+∞∑
k=0

x2k/k! >
n∑
k=0

x2k/k! (see [12]) that p′′(x) ≥ 0. Noticing that p′(0) = 0 and p(0) = 0,

we have p(x) ≥ 0 for all x ∈ R. This concludes the proof of Lemma 3.1. �

Proof of Proposition 3.1. Set g(x) = exp(x2)− f(x) and q(x) = exp(x2)− f∗(x;n) =

g(x) − Qn(x). Let us recall that g′(x) and g′′(x) have been determined in (7.1) and
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(7.2) respectively. We have

q′(x) = g′(x)− 4x5
n∑
k=0

x2k

k!(2k + 3)(k + 2)

(
1

2k + 5
+

2x2

2k + 7

)
and, by (7.2),

q′′(x) = g′′(x)− 4(1 + 2x2)x4
n∑
k=0

x2k

k!(2k + 3)(k + 2)

= 2(1 + 2x2)

[
exp(x2)− cosh

(√
2x
)
− 2x4

n∑
k=0

x2k

k!(2k + 3)(k + 2)

]
.

It follows from Lemma 3.1 that q′′(x) ≥ 0. Owing to q′(0) = 0 and q(0) = 0, we

have q(x) ≥ 0 for all x ∈ R. So exp(x2) ≥ f∗(x;n). Since Qn(x) ≥ 0 for all x ∈ R and

n ∈ N, it is clear that f∗(x;n) ≥ f(x). The proof of Proposition 3.1 is complete. �

Proof of Proposition 4.1. We follow the approach to the proof of [6, Proposition 1].

Using x2 = (|x| − a)2 + 2a|x| − a2 and Proposition 2.1, we have

exp(x2) = exp((|x| − a)2) exp(2a|x| − a2) ≥ f(|x| − a) exp(2a|x| − a2).

Let us set v(x; a) = f(|x|−a) exp(2a|x|−a2). Hence we have exp(x2) ≥ max [f(x), v(x; a)].

We will now show that v(x; a) can be a better lower bound to f(x) for some x. Let

us study it according to the variable a. After several algebraic calculus and simplifi-

cations, we obtain

∂

∂a
v(x; a) = exp

(
2a|x| − a2

)
w(|x| − a),

where w(y) is the function defined by

w(y) =
1

2

[
exp

(
−
√

2y
)

(3
√

2 + 18y + 10
√

2y2 + 4y3)

+ exp
(√

2y
)

(−3
√

2 + 18y − 10
√

2y2 + 4y3)

]
− 12y,
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Since exp (2a|x| − a2) > 0, we need to determine the sign of w(|x| − a). Let us show

that w(y) is increasing on R. After several algebraic calculus and simplifications, we

have

w′(y) = exp
(
−
√

2y
)

(6 +
√

2y − 4y2 − 2
√

2y3)

+ exp
(√

2y
)

(6−
√

2y − 4y2 + 2
√

2y3)− 12,

w′′(y) = exp
(
−
√

2y
)

(−5
√

2− 10y − 2
√

2y2 + 4y3)

+ exp
(√

2y
)

(5
√

2− 10y + 2
√

2y2 + 4y3)

and

w′′′(y) = 2y
[
exp

(
−
√

2y
)

(3
√

2 + 8y − 2
√

2y2) + exp
(√

2y
)

(−3
√

2 + 8y + 2
√

2y2)
]
.

Let us observe that this last function is even and of the form w′′′(y) = 2y (R(y)−R(−y)),

with R(y) = exp
(√

2y
)

(−3
√

2 + 8y + 2
√

2y2). So it is enough to study its sign on

[0,∞), which corresponds to the sign of R(y) − R(−y) on [0,∞). We have, for all

y ≥ 0,

(R(y)−R(−y))′

= 2
[
exp

(
−
√

2y
)

(1− 6
√

2y + 2y2) + exp
(√

2y
)

(1 + 6
√

2y + 2y2)
]

= 4(1 + 2y2) cosh
(√

2y
)

+ 24
√

2y sinh
(√

2y
)
≥ 0.

So R(y)−R(−y) is increasing on [0,∞), we have R(y)−R(−y) ≥ R(0)−R(−0) = 0

for all y ≥ 0, and, a fortiori, w′′′(y) = 2y (R(y)−R(−y)) ≥ 0 for all y ≥ 0. Since

w′′′(y) is even, we have w′′′(y) ≥ 0 for all y ∈ R. This implies that w′′(y) is increasing

on R. Since w′′(0) = 0, w′(y) is decreasing (−∞, 0] and increasing on (0,∞). So

w′(y) ≥ w′(0) = 0 implying that w(y) is increasing on R.

It follows from this result that, if a < |x|, we have w(|x|− a) > w(0) = 0, implying

that ∂
∂a
v(x; a) > 0, so v(x; a) is strictly increasing according to a. If a > |x|, we have
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w(|x| − a) < w(0) = 0, implying that ∂
∂a
v(x; a) < 0, so v(x; a) is strictly decreasing

according to a. Clearly, we have ∂
∂a
v(x; a) = 0 if and only if a = |x|. Since f(x) is an

even function and v(x; 0) = v(x; 2|x|) = f(x), for all |x| ≥ a/2, we have

exp(x2) = v(x; |x|) = sup
a∈[0,2|x|]

v(x; a) ≥ v(x; a) ≥ inf
a∈[0,2|x|]

v(x; a)

= inf [v(x; 0), v(x; 2|x|)] = f(x).

For |x| < a/2, we have

f(x) = inf
a∈[0,2|x|]

v(x; a) ≥ sup
a>2|x|

v(x; a) ≥ v(x; a).

Hence, for all x ∈ R, we have

exp(x2) ≥ max [f(x), v(x; a)] = f(x)1{|x|<a/2}(x) + v(x; a)1{|x|≥a/2}(x)

= f◦(x; a) ≥ f(x).

Proposition 4.1 is proved. �

Proof of Proposition 6.1. Let us prove the two points in turn.

• Let us remark that, by two successive integrations, we have∫ |x|
0

(∫ y

0

2(1 + 2t2) exp(t2)dt

)
dy =

∫ |x|
0

2y exp(y2)dy = exp(x2)− 1,

so

exp(x2) =

∫ |x|
0

(∫ y

0

2(1 + 2t2) exp(t2)dt

)
dy + 1.(7.3)

Owing to exp(x2) ≥ θ(x), we have

exp(x2)− ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)
[
exp(t2)− θ(t)

]
dt

)
dy ≥ 0.

Hence exp(x2) ≥ ω(x).
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• Let us define the function β(x) by

β(x) =

∫ x

0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1− θ(x).

Then we have

β′(x) =

∫ x

0

2(1 + 2t2)θ(t)dt− θ′(x), β′′(x) = 2(1 + 2x2)θ(x)− θ′′(x).

Thanks to the assumption 2(1 + 2x2)θ(x) − θ′′(x) ≥ 0, we have β′′(x) ≥ 0.

Since θ′(0) = 0, we have β′(0) = 0 and, using θ(0) = 1, we have β(0) = 0. So

β(x) ≥ 0 for all x ≥ 0. Therefore β(|x|) ≥ 0 for all x ∈ R. Since θ(x) is even,

we have

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1 ≥ θ(x).

The proof of Proposition 6.1 is complete. �

Proof of Proposition 6.2. We proceed as the proof of Proposition 6.1.

• If follows from the equality (7.3), exp(x2) ≥ θ1(x) and exp(x2) ≥ θ2(x) that

exp(x2)− κ(x)

=

∫ |x|
0

(∫ y

0

2
[
(exp(t2)− θ1(t)) + 2t2(exp(t2)− θ2(t))

]
dt

)
dy ≥ 0.

The first point is proved.

• Let us define the function φ(x) by

φ(x) =

∫ x

0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1− θ1(x).

Two differentiations give

φ′(x) =

∫ x

0

2(θ1(t) + 2t2θ2(t))dt− θ′1(x), φ′′(x) = 2(θ1(x) + 2x2θ2(x))− θ′′1(x).

Since 2(θ1(x) + 2x2θ2(x))− θ′′1(x) ≥ 0, we have φ′′(x) ≥ 0, implying that φ′(x)

is increasing. Since θ′1(0) = 0, we have φ′(0) = 0, and using θ(0) = 1, we have



SOME TIGHT POLYNOMIAL-EXPONENTIAL LOWER ... 293

φ(0) = 0. Therefore, we have φ(x) ≥ 0 for all x ≥ 0, implying that φ(|x|) ≥ 0

for all x ∈ R. Since θ(x) is even, we have

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1 ≥ θ1(x).

By exchanging the role of θ1(x) and θ2(x), we obtain

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1 ≥ θ2(x).

This ends the proof of Proposition 6.2. �

Proof of Proposition 6.3. We have∫ |x|
0

exp(t)
[
(1 + 2t) exp(t2)− 1

]
dt =

[
exp(t2 + t)− exp(t)

]|x|
0

= exp(|x|)
(
exp(x2)− 1

)
,

so

exp(x2) = 1 + exp(−|x|)
∫ |x|
0

exp(t)
[
(1 + 2t) exp(t2)− 1

]
dt.

If exp(x2) ≥ θ(x) for all x ∈ R, we have

exp(x2) ≥ 1 + exp(−|x|)
∫ |x|
0

exp(t) [(1 + 2t)θ(t)− 1] dt = γ(x).

Proposition 6.3 is proved. �
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