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REMARKS ON FUZZY MINIMAL GROUPS

M. ROOHI

Abstract. In this paper, we introduce and investigate some properties of fuzzy

minimal groups. It is shown that, the right and the left translations are relatively

fuzzy minimal continuous. Moreover, we prove that the inverse image of a fuzzy

minimal group under a fuzzy minimal homeomorphism is also a fuzzy minimal

group.

1. Introduction

After the discovery of the fuzzy sets by Zadeh [17], many attempts have been made

to extend various branches of mathematics to the fuzzy setting. Fuzzy topological

spaces as a very natural generalization of topological spaces were first put forward

in the literature by Chang [5] in 1968. He studied a number of the basic concepts

including interior and closure of a fuzzy set, fuzzy continuous mapping and fuzzy

compactness. Many authors used Chang’s definition in many directions to obtain

some results which are compatible with results in general topology. In 1976, Lowen

[8] suggested an alternative and more natural definition for achieving more results

which are compatible to the general case in topology. For example with Chang’s def-

inition, constant functions between fuzzy topological spaces are not necessarily fuzzy

continuous but in Lowen’s sense, all of the constant functions are fuzzy continuous.
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In 1985, Sostak [16] introduced the smooth fuzzy topology as an extension of Chang’s

fuzzy topology.

The concepts of minimal structures and minimal spaces, as generalizations of topol-

ogy and topological spaces were introduced in [10]. Alimohammady et. al. [1–3]

introduced and studied the notions of fuzzy minimal structures and fuzzy minimal

spaces. Nematollahi and Roohi [13] introduced and investigated some properties of

induced fuzzy minimal structures, fuzzy minimal subspaces and relatively fuzzy min-

imal continuous functions. In this paper, the concept of fuzzy minimal group and its

properties is introduced and studied.

To ease understanding of the material incorporated in this paper, we recall some

basic definitions and results. For details on the following notions we refer to [1–3],

[5, 8, 11, 12, 14] and the references cited therein.

A fuzzy set in (on) a universe set X is a function with domain X and values in

I = [0, 1]. The class of all fuzzy sets on X will be denoted by IX and symbols A,B,...

are used for fuzzy sets on X. For two fuzzy sets A and B in X, we say that A is

contained in B, denoted by A ≤ B, provided A(x) ≤ B(x) for all x ∈ X. The

complement of A, denoted by Ac, is defined by Ac(x) = 1−A(x). 0X is called empty

fuzzy set while 1X denotes the characteristic function on X.

A fuzzy set in X is called a fuzzy point if it takes the value 0 for all x ∈ X except

one, say a ∈ X. If its value at a is λ (0 < λ ≤ 1), we will denote this fuzzy point by

aλ, where the point x is called its support.

Definition 1.1. Suppose {Aγ : γ ∈ Γ} is a family of fuzzy sets in X. The

(a) union of {Aγ : γ ∈ Γ}, denoted by
∨

γ∈ΓAγ or
∨

{Aγ : γ ∈ Γ}, for each x ∈ X

is defined by

(

∨

γ∈Γ

Aγ

)

(x) := sup{Aγ(x) : γ ∈ Γ},
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(b) intersection of {Aγ : γ ∈ Γ}, denoted by
∧

γ∈ΓAγ or
∧

{Aγ : γ ∈ Γ}, is defined

by

(

∧

γ∈Γ

Aγ

)

(x) := inf{Aγ(x) : γ ∈ Γ}

for all x ∈ X.

A family τ of fuzzy sets in X is called a fuzzy topology for X if

(a) αX ∈ τ for each α ∈ I,

(b) A ∧ B ∈ τ , where A,B ∈ τ and

(c)
∨

α∈AAα ∈ τ whenever, Aα ∈ τ for all α in A.

The pair (X, τ) is called a fuzzy topological space [8]. Every member of τ is called a

fuzzy open set and its complement is called a fuzzy closed set [8]. In a fuzzy topological

space X, the interior and the closure of a fuzzy set A (denoted by Int(A) and Cl(A)

respectively) are defined by

Int(A) =
∨

{U : U ≤ A, U is fuzzy open set} and

Cl(A) =
∧

{F : A ≤ F, F is fuzzy closed set}.

Let f be a function from X to Y . f induces a fuzzy function defined by

f(A)(y) =











∨

x∈f−1({y})

A(x) f−1({y}) 6= ∅

0 f−1({y}) = ∅,

for all y in Y , where A is an arbitrary fuzzy set in X and also f−1(B) = Bof for any

fuzzy set B in Y [17].

2. Fuzzy minimal spaces and fuzzy minimal subspaces

In this section we gather some results on fuzzy minimal spaces and fuzzy minimal

subspaces which all of them with details and proofs can be found in [1–3] and specially

in [13].



96 M. ROOHI

Definition 2.1. A family M of fuzzy sets in a nonempty set X is said to be a

(a) fuzzy minimal structure in the sense of Chang on X if 0X , 1X ∈ M ([2]),

(b) fuzzy minimal structure in the sense of Lowen on X if αX ∈ M, for all α ∈ I

([3]).

In the first case, (X,M) is called a fuzzy minimal space in Chang’s sense and in the

second case, (X,M) is called a fuzzy minimal space in Lowen’s sense. In the sequel,

unless otherwise stated, we shall consider fuzzy minimal structures and fuzzy minimal

spaces in Lowen’s sense and for simplicity we call them fuzzy minimal structures and

fuzzy minimal spaces. A fuzzy set A ∈ IX is said to be fuzzy m-open if A ∈ M, and

a fuzzy m-closed set if Ac ∈ M. Let

m-Int(A) =
∨

{U : U ≤ A,U ∈ M} and(2.1)

m-Cl(A) =
∧

{F : A ≤ F, F c ∈ M}.(2.2)

Example 2.1. Let X be a nonempty set. Then

(a) {αX : α ∈ I} is a fuzzy minimal structure on X,

(b) IX is a fuzzy minimal structure on X,

(c) the family of all fuzzy open (semi open, preopen, α-open and β-open) sets on

X is a fuzzy minimal structure on X.

In [3], authors introduced the fuzzy minimal continuous functions as following.

Definition 2.2. Let (X,M) and (Y,N ) be two fuzzy minimal spaces. We say that

f : (X,M) → (Y,N ) is fuzzy minimal continuous (briefly, fuzzy m-continuous) if

f−1(B) ∈ M, for each B ∈ N .

Theorem 2.1. Let (Xγ,Mγ) be fuzzy minimal spaces for all γ ∈ Γ and let {fγ :

X → (Xγ,Mγ) : γ ∈ Γ} be a family of fuzzy functions. Equip X by the fuzzy minimal

structure M generated by {fγ : γ ∈ Γ}. Suppose f : (Y,N ) → (X,M) is a fuzzy
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function. Then f is fuzzy m-continuous if and only if fγof is fuzzy m-continuous for

each γ ∈ Γ.

In [3], it is shown that for a family of fuzzy functions, there exists a weakest

fuzzy minimal structure for which all members of it are fuzzy m-continuous. As a

consequence, fuzzy product minimal structure for an arbitrary family {(Xγ,Mγ) :

γ ∈ Γ} of fuzzy minimal spaces can be introduced. In fact, fuzzy product minimal

structure on X =
∏

γ∈ΓXγ is the weakest fuzzy minimal structure on X (denoted by

M =
∏

γ∈Γ Mγ) such that for each γ ∈ Γ the canonical projection πγ : X → Xγ is

fuzzy m-continuous. It should be noticed that fuzzy product minimal structure for

two fuzzy minimal spaces (X,M) and (Y,N ) is the family of fuzzy sets

M×N = {1X × V : V ∈ N} ∪ {U × 1Y : U ∈ M}.

Similarly one can verify that fuzzy product minimal structure of {(Xj,Mj) : j =

1, 2, . . . , n} is

n
∏

j=1

Mj =
n

⋃

j=1

{ n
∏

l=1

Fl : Fl =

{

1Xl
l 6= j

Uj l = j,
where Uj ∈ Mj

}

.

We use M1 ×M2 × · · · ×Mn instead of
n
∏

i=1

Mi and specially M1 ×M2 instead of

2
∏

i=1

Mi.

Definition 2.3. [13] Let A be a fuzzy set in X and M be a fuzzy minimal space on

X. Then MA = {U ∧A : U ∈ M} is called an induced fuzzy minimal structure on A

and (A,MA) is called fuzzy minimal subspace of (X,M).

Definition 2.4. [13] Suppose (A,MA) and (B,NA) are fuzzy minimal subspaces

of fuzzy minimal spaces (X,M) and (Y,N ) respectively. Also, suppose that f :

(X,M) → (Y,N ) is a mapping. We say that f is a mapping from (A,MA) into

(B,NA) if f(A) ≤ B.
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The mapping f from (A,MA) into (B,NB) is said to be

(a) relatively fuzzy minimal continuous (briefly, (rfm)-continuous), if f−1(W )∧A ∈

MA for every fuzzy set W in NB,

(b) relatively fuzzy minimal open (briefly, (rfm)-open), if f(V ) ∈ NB for every

fuzzy set V in MA.

Theorem 2.2. [13] Suppose (A,MA) and (B,NB) are fuzzy minimal subspaces of

fuzzy minimal spaces (X,M) and (Y,N ) respectively. If f : (X,M) → (Y,N ) is fuzzy

m-continuous with f(A) ≤ B, then f : (A,MA) → (B,NB) is (rfm)-continuous.

Theorem 2.3. [13] The composition of two (rfm)-continuous functions is (rfm)-

continuous.

Theorem 2.4. [13] Suppose {(Xj,Mj) : j ∈ {1, . . . , n}} is a family of fuzzy minimal

spaces, (X,M) is the corresponding fuzzy product minimal space, Aj is a fuzzy set

in Xj for each j ∈ {1, . . . , n} and A =
n
∏

j=1

Aj. Let (B,NB) be a fuzzy minimal

subspace of the fuzzy minimal space (Y,N ). Then f : (B,NB) → (A,MA) is (rfm)-

continuous if and only if πjof : (B,NB) → (Aj,MjAj
) is (rfm)-continuous for all

j ∈ {1, . . . , n}.

Theorem 2.5. [13] Suppose (X,M), (Y,N ) are fuzzy minimal spaces, C = A× B,

Q = M × N and also A and B are fuzzy sets in X and Y respectively. Then for

each y0 ∈ Y with B(y0) ≥ A(x) for all x ∈ X, the mapping iyo
: (A,MA) → (C,QC)

defined by iy0
(x) = (x, y0) is (rfm)-continuous.

Theorem 2.6. [13] Suppose (X,M), (Y,N ) are fuzzy minimal spaces, C = A× B,

Q = M × N and also A and B are fuzzy sets in X and Y respectively. Then for

each x0 ∈ X with A(x0) ≥ B(y) for all y ∈ Y , the mapping jxo
: (B,NB) → (C,QC)

defined by jx0
(y) = (x0, y) is (rfm)-continuous.
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3. Fuzzy minimal groups

The concept of fuzzy subgroupoid and fuzzy subgroup were introduced and studied

by Rosenfeld in [15]. Anthony and Sherwood [4] redefined the notion of fuzzy group.

Foster [7] in 1979 introduced the concept of fuzzy topological group using the Lowen’s

definition of a fuzzy topological space. Ma and Yu [9] changed the definition of fuzzy

topological group in order to make sure that an ordinary topological group is a special

case of a fuzzy topological group.

Definition 3.1. [6, 15] A fuzzy set G in a group X is called a

(a) fuzzy semi group, if G(xy) ≥ min{G(x), G(y)} for all x, y ∈ X,

(b) fuzzy group in X if G(xy) ≥ min{G(x), G(y)} for all x, y ∈ X and G(x−1) ≥

G(x) for all x ∈ X.

Proposition 3.1. [15] Suppose G is a fuzzy group in a group X and e is the identity

element of G. Then G(x−1) = G(x) and G(e) ≥ G(x) for all x ∈ X.

Proposition 3.2. [15] A fuzzy set G in a group X is a fuzzy group if and only if

G(xy−1) ≥ min{G(x), G(y)} for all x, y ∈ X.

Definition 3.2. Suppose X is a group, (X,M) is a fuzzy minimal space and G is

a fuzzy group in X endowed with induced fuzzy minimal structure MG. Then G is

said to be fuzzy minimal group, if the functions ϕ : X × X → X and ψ : X → X

defined by ϕ(x, y) = xy and ψ(x) = x−1 respectively, are (rfm)-continuous. This

fuzzy minimal group is denoted by (G,MG).

Theorem 3.1. Suppose that X is a group and (X,M) is a minimal space. A fuzzy

group G in X is a fuzzy minimal group if and only if the mapping η : (G,MG) ×

(G,MG) → (G,MG) defined by η(x, y) = xy−1 is (rfm)-continuous.
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Proof. Suppose G is a fuzzy minimal group. Since idG : (G,MG) → (G,MG) and ψ :

(G,MG) → (G,MG) are (rfm)-continuous, so it follows from Theorem 2.4 that the

mapping α : (G,MG)×(G,MG) → (G,MG)×(G,MG) defined by α(x, y) = (x, y−1)

is (rfm)-continuous. That η is (rfm)-continuous, follows from Theorem 2.3 and the

fact that η = ϕoα. Conversely, suppose the mapping η : (G,MG) × (G,MG) →

(G,MG) defined by η(x, y) = xy−1 is (rfm)-continuous. It follows from Proposition

3.1 that G(e) ≥ G(x) for all x ∈ X and so by Theorem 2.6 the mapping je is (rfm)-

continuous. Clearly ψ = ηoje, then by Theorem 2.3, ψ is (rfm)-continuous. On

the other hand, since idG : (G,MG) → (G,MG) and ψ : (G,MG) → (G,MG) are

(rfm)-continuous, it follows from Theorem 2.4 that the mapping α : (G,MG) ×

(G,MG) → (G,MG) × (G,MG) defined by α(x, y) = (x, y−1) is (rfm)-continuous.

It is easy to see that ϕ = ηoα and so by Theorem 2.3, ϕ is (rfm)-continuous. �

Definition 3.3. [7] For a fuzzy group G in a group X with identity e, set Ge := {x ∈

X : G(x) = G(e)}. Clearly, Ge is a subgroup of X. For a ∈ X, the right and left

translations ra, la : X → X are defined by ra(x) = xa and la(x) = ax respectively.

Proposition 3.3. [7] Suppose G is a fuzzy group in a group X. Then for all a ∈ Ge

we have ra(G) = la(G) = G.

Definition 3.4. Suppose (X,M) and (Y,N ) are fuzzy minimal spaces. The bijection

mapping f from (X,M) into (Y,N ) is said to be fuzzy minimal homeomorphism if f

and f−1 are fuzzy minimal continuous; i.e., f is both fuzzy minimal continuous and

fuzzy minimal open. Suppose (A,MA) and (B,NA) are fuzzy minimal subspaces

of fuzzy minimal spaces (X,M) and (Y,N ) respectively. The bijection mapping f

from (A,MA) into (B,NB) is said to be relatively fuzzy minimal homeomorphism

(briefly, (rfm)-homeomorphism), if f(A) = B and f and f−1 are (rfm)-continuous;

i.e., f(A) = B and f is both (rfm)-continuous and (rfm)-open.
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Theorem 3.2. Suppose G is a fuzzy minimal group in X and a ∈ Ge. Then ra and

la are (rfm)-homeomorphism.

Proof. It follows from Proposition 3.3 that ra(G) = la(G) = G. Obviously, ra =

ϕoia where ϕ and ia are defined in Definition 3.2 and Theorem 2.5 respectively. By

Proposition 3.1 and Definition 3.3, G(a) ≥ G(x) for all x ∈ X and hence Theorem

2.5 implies that ia is (rfm)-continuous. That ra is (rfm)-continuous follows from

Theorem 2.3. On the other hand, it is easy to see that (ra)
−1 = ra−1 and so (rfm)-

continuity of (ra)
−1 is achieved similarly. Therefore, ra is (rfm)-homeomorphism.

Finally, by using Theorem 2.6, in a similar manner, one can prove that la is (rfm)-

homeomorphism. �

Corollary 3.1. Suppose G is a fuzzy minimal group in X and a ∈ Ge. Then the

inner automorphism T : G→ G defined by T (x) = axa−1 is (rfm)-homeomorphism.

Proof. It is an immediate consequence of Theorem 3.2, Theorem 2.3 and the facts

that T = laora−1 and T−1 = raola−1 . �

Definition 3.5. [6] Suppose A and B are two fuzzy sets in X and a ∈ X. Then, the

fuzzy sets AB and A−1 in X are defined by AB(x) = sup{min{A(y), B(z)} : x = yz}

and A−1(x) = A(x−1). Also, aA means a1A.

Corollary 3.2. Suppose G is a fuzzy minimal group in X, A is a fuzzy set in X and

a ∈ Ge. If U is (rfm)-open, then aU , Ua and U−1 are (rfm)-open sets.

Proof. Suppose U is a (rfm)-open set. It is not hard to verify that la(U) = aU

and ra(U) = Ua. That aU and Ua are (rfm)-open sets, follows from Theorem

3.2. Clearly, ψ(U) = U−1 and ψ is (rfm)-homeomorphism, which imply that U−1 is

(rfm)-open. �

Corollary 3.3. Suppose G is a fuzzy minimal group in X and a ∈ Ge. If F is

(rfm)-closed, then aF , Fa, F−1 are fuzzy (rfm)-closed sets.
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Proof. Similar to the Corollary 3.2, one can deduce the result. �

Definition 3.6. Suppose (X,M) is a fuzzy minimal space and x ∈ X. A fuzzy set

W in X is called fuzzy minimal neighborhood of x if there exists U ∈ M for which

U ≤ W and U(x) = W (x) > 0.

Corollary 3.4. Suppose G is a fuzzy minimal group in X, W is a fuzzy minimal

neighborhood of e with W (e) = 1 and a ∈ Ge. Then aW is a fuzzy minimal neigh-

borhood of a such that aW (a) = 1.

Proof. Since W is a fuzzy minimal neighborhood of e with W (e) = 1, there exists

a fuzzy m-open set U ≤ W such that U(e) = W (e) = 1. On the other hand,

aU(a) = U(a−1a) = U(e) = 1, aW (a) = W (a−1a) = W (e) = 1 and

aW (x) = W (a−1x) ≥ U(a−1x) = aU(x)

for all x ∈ X. Then there exits a fuzzy minimal open set aU such that aU ≤ aW

and aU(a) = aW (a) = 1. �

Proposition 3.4. [7] Suppose X and Y are two groups and T : X → Y is a homo-

morphism. Then, for a fuzzy group G in Y , the inverse image T−1(G) of G is a fuzzy

group in X.

Theorem 3.3. Suppose X and Y are two groups and T : X → Y is a homomorphism.

Equip Y and X with fuzzy minimal structures N and M = T−1(N ) respectively. If

G is a fuzzy minimal group in Y , then the inverse image T−1(G) of G is a fuzzy

minimal group in X too.

Proof. It follows from Proposition 3.4 that T−1(G) is a fuzzy group in X. In accor-

dance with Theorem 3.1 it is sufficient to prove that

η : (T−1(G),MT−1(G)) × (T−1(G),MT−1(G)) → (T−1(G),MT−1(G))
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defined by η(x, y) = xy−1 is (rfm)-continuous. To see this, suppose U is an relatively

fuzzy minimal open set in (T−1(G),MT−1(G)). Therefore, there exists V ∈ NG for

which T−1(V ) = U . Since T : (X,M) → (Y,N ) is fuzzym-continuous, it follows from

Theorem 2.2 that T : (T−1(G),MT−1(G)) → (T−1(G),MT−1(G)) is (rfm)-continuous.

We have

η−1(U)(x1, x2) = U(x1, x
−1
2 ) = T−1(V )(x1, x

−1
2 )

= V (T (x1)(T (x2))
−1)

for all (x1, x2) ∈ X. Then

η−1(U) ∧ (T−1(G) × T−1(G)) = (T × T )−1(η−1(U)) ∧ (T−1(G) × T−1(G))

is relatively fuzzy minimal open in T−1(G) × T−1(G). We are done. �

Definition 3.7. [15] A fuzzy set A in X is said to have sup property if, for any subset

Ω ⊆ X, there exists ω0 ∈ Ω such that A(ω0) = sup
ω∈Ω

A(ω).

Proposition 3.5. [7] Suppose X and Y are two groups and T : X → Y is a homo-

morphism. Also suppose that G is a fuzzy group in X with sup property. Then the

image T (G) of G is a fuzzy group in Y .

Definition 3.8. [15] A fuzzy minimal group G in X is called f -invariant, if for all

x, y ∈ X, f(x) = f(y) implies that G(x) = G(y).

Conjecture 3.1. SupposeX and Y are two groups and T : X → Y is a homomorphism.

Equip X and Y with fuzzy minimal structures M and T (M) respectively. If the fuzzy

minimal group G in X is T -invariant, then the image T (G) of G is a fuzzy minimal

group in Y too.
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Remark 1. It follows from Proposition 3.5 that T (G) is a fuzzy group in Y . In

accordance with Theorem 3.1 it is sufficient to prove that

η : (T (G),MT (G)) × (T (G),MT (G)) → (T (G),MT (G))

defined by η(x, y) = xy−1 is (rfm)-continuous. We think that Conjecture 3.1 without

any additional conditions is not true. But, may be with the property U for the

minimal space (i.e., arbitrary union of fuzzy m-open sets is also fuzzy m-open), one

can prove Conjecture 3.1.
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