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NEW RESULTS ON BEHAVIORS OF FUNCTIONAL VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS WITH MULTIPLE

TIME-LAGS

CEMİL TUNÇ (1) AND OSMAN TUNÇ (2)

Abstract. The paper deals with a non-linear Volterra integro-differential equa-

tion (NVIDE) with multiple time-lags. Conditions are obtained which are sufficient

for stability (S), boundedness (B), globally asymptotically stability (GAS) of solu-

tions, and for every solution x of the given (NVIDE) to be belong to the solutions

classes, such as L1[0,∞) and L2[0,∞). We prove some results on stability, bound-

edness, global asymptotic stability, integrability and square integrability properties

of solutions of the considered (NVIDE). The technique of the proofs involves to

construct some suitable Lyapunov functionals (LFs). The given conditions involve

nonlinear generalizations and extensions of those conditions found in the literature.

The obtained results are new and complement that found in the literature.

1. Introduction

In the mathematical literature, a famous mathematical model is known as (VIDE),

which appeared after its establishment by Vito Volterra, in 1926. Today,linear

(VIDEs) and (NVIDEs) are very important effective mathematical models to de-

scribe many real world phenomena related to atomic energy, biology, chemistry, con-

trol theory, economy, the engineering technique fields, information theory, medicine,
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population dynamics, physics, etc. (see, Burton [3], Burton and Mahfoud [6], Cor-

duneanu [8], Gripenberg et al. [19], Lakshmikantham and Rama Mohan Rao [27],

Peschel and Mende [35], Rahman [39], Staffans [42], Wazwaz [59], the books in [63],

[64], [65] and the references therein).

In particular, during the last four decades, motivated by many applications in bi-

ology, physics, engineering, medicine, economy, etc., researchers have obtained many

interesting results on the qualitative properties of solutions of linear (VIDEs) and

(NVIDEs) by fixed point method, perturbation method or the Lyapunov’s functional

method, etc., (see, Becker [1], Burton ([2], [4)], Burton and Mahfoud [5], Chang and

Wang [7], Dung [9], Eloe et al. [10], Engler [11], Funakubo et al. [12], Furumochi and

Matsuoka [13], Grace and Akin [14], Graef, and Tunç [15], Graef et al. [16], Grimmer

and Seifert [17], Grimmer and Zeman [18], Grossman and Miller [20], Hara et al.

([21],[22]), Hino and Murakami [23], Islam et al. [24], Jin and Luo [25], Lakshmikan-

tham and Rama Mohan Rao [26], Mahfoud ([28],[29],[30]), Martinez [31], Miller [32],

Murakami [33], Napoles Valdes [34], Raffoul ([36], [37],[38]), Rama Mohana Rao and

Raghavendra [40], Rama Mohana Rao and Srinivas [41], Tunç ([43], [44], [45], [46],

[47], [48]), Tunç and Ayhan [49], Tunç and Mohammed ([50], [51],[52], [53]), Tunç

and Tunç ([54], [55], [56]), Vanualailai [57], Wang [58], Wang et al. [60], Zhang [61],

Da Zhang [62] and many relative papers or books found in the references of these

sources).

When we look at the mentioned sources, it can be seen that nearly all of the results

therein were proved by means of suitable (LFs). Indeed, this fact shows the effec-

tiveness of the Lyapunov’s functional method during investigation of the qualitative

properties of the solutions of (VIDEs), which can be raised in many researches and

applications. However, to the best of our information from the literature, in a few

results the fixed point techiques or perturbation techiques are used for investigation

of qualitative properties of certain linear (VIDEs) and (NVIDEs). This case can
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be seen by looking at the context of the mentioned works and those found in their

references. Here, we would not like to give the details of the applications of these

methods.

Meanwhile, despite its long history, today the Lyapunov’s method still the most

effective technique to reduce a complexed system into a relatively simpler system

and discuss the qualitative behaviors of solutions of ordinary differential equations,

functional differential equations , (VIDEs) and so on. However, the Lyapunov char-

acterizations for retarded (NVIDEs) with non-smooth fuctionals remain as an open

problem in the related literature till now. Here, we try to proceed an application

of this method for a (NVIDE) with multiple time lags. By this way, it is worth to

investigate qualitative properties of solutions of (NVIDEs) with multiple time lags.

First, we would now like to summarize some related papers.

In [1], Becker considered the linear (VIDE) of the form

(1.1) x′ = −a(t)x +

∫ t

0

b(t, s)x(s)ds.

In [1], a Lyapunov functional is constructed to obtain sufficient conditions for global

asymptotic stability of the trivial solution of linear (VIDE) (1.1). It is shown that the

Lyapunov functional is uniformly continuous, which in turn implies that solutions of

linear (VIDE) (1.1) are uniformly continuous, stable, bounded, etc.. Examples are

considered to illustrate the obtained results.

In ([43], [44], [16], [54]), the authors considered (NVIDEs) of the form

x′ = −a(t)h(x) +

∫ t

0

b(t, s)g(x(s))ds,

x′ = −a(t)f(x) +

∫ t

t−τ

B(t, s)g(x(s))ds + p(t),

x′ = −a(t)x +
n

∑

i=1

∫ t

t−τi

bi(t, s)fi(x(s))ds



110 CEMİL TUNÇ AND OSMAN TUNÇ

and

x′ = − a(t)g(x) +

n
∑

i=1

∫ t

t−τi

Ki(t, s)gi(s, x(s))ds

+
n

∑

i=1

ri(t, x, x(t − τi)),

respectively.

In ([43], [44], [16], [54]), defining appropriate (LFs), the authors established suffi-

cient conditions under which the solutions of these (NVIDEs) have some qualitative

properties such as stability, boundedness, convergence, global asymptotic stability

and so on.

Motivated by the mentioned papers, books and the works proceeded, in this paper,

we consider the following (NVIDE) with multiple time-lags

(1.2) x′ = −g(t, x) +

n
∑

i=1

∫ t

t−τi

bi(t, s, x(s))gi(x(s))ds,

where t ∈ <+, <+ = [0,∞), such that t− τi ≥ 0, τi is the fixed constant delay, x ∈ <,

< = (−∞,∞), g(t, 0) = 0, gi(0) = 0 and bi(t, s, 0) = 0. We assume that the function

g : <+ × < → < is continuously differentiable and the functions bi : Ω × < → < and

gi : < → < are continuous, where Ω := {(t, s) : 0 ≤ s ≤ t < ∞}.
Let

g0(t, x) =







g(t,x)
x

, x 6= 0

gx(t, 0), x = 0.

Hence, from (NVIDE) (1.2), we can write

x′ = −a(t)g0(t, x)x +
n

∑

i=1

∫ t

t−τi

bi(t, s, x(s))gi(x(s))ds.

The following notations are needed throughout this paper.

Let τ = max1≤i≤n τi. For φ ∈ C[t0 − τ, t0], it is supposed that |φ|t0 := sup{|φ(t)| :

t0 − τ ≤ t ≤ t0}. In addition, let L1[0,∞) and L2[0,∞) represent the set of all
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continuous and real-valued functions g and h, for which, we have
∫ ∞

0
|g(s)|ds < ∞

and
∫ ∞

0
|h(s)|2ds < ∞, respectively.

It should be noted that when we need x represents x(t)

2. Main results

We assume the following-hypotheses hold.

A. Hypotheses

(A1): The function g : <+ × < → < is continuously differentiable and the

functions gi : < → < and bi : Ω ×< → < are continuous for each i = 1, ..., n.

(A2): Let α and β be positive constants such that 1 ≤ g0(t, x) ≤ β and |gi(x)| ≤
α|x| for all x ∈ < and each i = 1, ..., n.

(A3): g0(s, x(s)) −
∑n

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du ≥ 0 for all t ≥ s − τ ≥ 0.

(A4): g0(t, x) −
∑n

i=1

∫ t

0
α|bi(t, s, x(s))|ds ≥ 0 for all t ≥ 0.

(A5):
∫ ∞

0
|bi(t, s, x(s))|ds ≤ L for some constant L, L > 0, and t ∈ <

Theorem 2.1. If hypotheses (A1)-(A5) hold, then all solutions of (NVIDE) (1.2)

are bounded and the zero solution of (NVIDE) (1.2) is stable.

Proof. Let t0 ≥ 0, φ ∈ C[t0 − τ, t0] be an initial function and x(t) = x(t, t0, φ)

represent the solution of (NVIDE) (1.2) on [t0 − τ,∞) such that x(t) = φ(t) for

t ∈ [t0 − τ, t0].

We define a (LF)

W : [0,∞) × C[0,∞) → [0,∞)

by

(2.1) W (t) = W (t, x(.)) = x2+

∫ t

0

{g0(s, x(s))−
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du}x2(s)ds.

In view of assumption (A4), from (2.1) we see that

W (t, x(.)) ≥ x2
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for all t ≥ s − τ ≥ 0.

From calculations of the time derivative of (LF) W , we can obtain

W ′(t) = − g0(t, x)x2 + 2x

n
∑

i=1

∫ t

t−τi

bi(t, s, x(s))gi(x(s))ds

− x2

n
∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du−
∫ t

0

n
∑

i=1

α|bi(t, s, x(s))|x2(s)ds

≤− g0(t, x)x2 + 2|x|
n

∑

i=1

∫ t

t−τi

α|bi(t, s, x(s))||x(s)|ds

− x2
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))|x2(s)ds

≤− g0(t, x)x2 +
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|(x2(t) + x2(s))ds

− x2
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))|x2(s)ds

= − [g0(t, x) −
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))|ds]x2

− [

n
∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du]x2.

Hence, we find

W ′(t) ≤ −[g0(t, x) −
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))|ds +
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du]x2

≤ −[g0(t, x) −
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))|ds]x2(2.2)

for all t ≥ 0.

In view assumption (A4), from (2.2) we can conclude that

W ′(t) ≤ 0 for all t ≥ t0 ≥ 0.
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Integrating the last inequality from 0 to t and considering the estimate W (t) ≥ x2,

we obtain

(2.3) x2 ≤ W (t) ≤ W (t0)

for all t ≥ t0 ≥ 0.

Hence, we can see from the estimate (2.3) that all solutions of (NVIDE) (1.2) are

bounded for all t ≥ t0 ≥ 0.

Indeed, from (2.3) and the estimate

W (t0) = φ2(t0) +

∫ t0

0

{g0(s, φ(s)) −
n

∑

i=1

∫ t0

s−τi

α|bi(t, u, φ(u))|du}φ2(s)ds

≤ |φ|2t0M(t0),

we can get

(2.4) |x| ≤ |φ|t0
√

M(t0)

for all t ≥ t0 ≥ s − τ , where

M(t0) := 1 +

∫ t0

0

{g0(s, φ(s)) −
n

∑

i=1

∫ t0

s−τi

α|bi(t, u, φ(u))|du}ds.

The obtained result, that is, the inequality (2.4), implies that the zero solution of

(NVIDE) (1.2) is stable. That is, for any given ε > 0, there exists a positive constant

δ = ε√
M(t0)

such that for φ ∈ C[t0 − τ, t0], |φ|t0 < δ implies that

|x| ≤ δ
√

M(t0) = ε

for all t ≥ t0 ≥ s − τ .

B. Hypotheses

We assume that following hypotheses are satisfied.

(H1): g0(t, x) − ∑n

i=1

∫ t

0
α|bi(t, s, x(s))|ds ≥ k for t1 ≥ t0, k ∈ <, k > 0.

(H2): g0(s, x(s)) −
∑n

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du ≥ k
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for all t ≥ s − τ ≥ t0.

Theorem 2.2. In addition to hypotheses (A1) − (A5), if either hypothesis (H1) or

(H2) holds, then every solution of (NVIDE) (1.2) is square integrable and all solutions

of (NVIDE) (1.2) are bounded for all t ∈ [0,∞)

Proof. We have from Theorem 2.1 that any solution x(t) of (NVIDE) (1.2) is

bounded and satisfies the estimates (2.3) and (2.4). If hypothesis (H1) holds, then

from (2.2) we have

W ′(t) ≤ −kx2

for all t ≥ t1.

Integrating the last estimate from t1 to t, we get

W (t) − W (t1) ≤ −k

∫ t

t1

x2(s)ds.

Therefore, we can write

k

∫ t

t1

x2(s)ds ≤ W (t1) − W (t) ≤ W (t1).

Let M = W (t1) > 0, M ∈ <. Hence, we can conclude that
∫ ∞

t1

x2(s)ds ≤ k−1M when t → ∞.

That is, x ∈ L2[0,∞).

If hypothesis (H2) holds, then from the definition of the functional W , we can get

x2 + k

∫ ∞

t1

x2(s)ds ≤ W (t1).

Then, we conclude that all solutions of (NVIDE) (1.2) are bounded and x ∈
L2[0,∞). These results complete the proof of Theorem 2.2.

C. Hypothesis

The following hypothesis is needed to show the (GAS) of the zero solution of

(NVIDE) (1.2).
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(C1): We assume that there exists a positive constant K such that

g0(t, x) +
n

∑

i=1

∫ t

s−τi

α|bi(t, s, φ(s))|ds ≤ K

holds for all t ≥ t1.

Theorem 2.3. In addition to hypotheses (A1)− (A5) and (C1), if either hypothesis

(H1) or (H2) holds, then the zero solution of (NVIDE) (1.2) is (GAS).

Proof. From Theorem 2.2, we have that every solution x(t) of (NVIDE) (1.2) is

square integrable. In addition, from (NVIDE) (1.2) and (2.4), it follows that

|x′(t)| ≤ |g0(t, x)||x| +
n

∑

i=1

∫ t

t−τi

|bi(t, s, x(s))||gi(x(s))|ds

≤ |g0(t, x)||x| +
n

∑

i=1

∫ t

t−τi

α|bi(t, s, x(s))||x(s)|ds

≤ |g0(t, x)||φ|t0
√

M(t0) +

n
∑

i=1

∫ t

t−τi

α|bi(t, s, x(s))|ds|φ|t0
√

M(t0)

≤ K|φ|t0
√

M(t0).

Hence, we can conclude that x′(t) is bounded. Since x′(t) is bounded and x ∈
L2[0,∞), both of these results together imply that x(t) → 0 as t → ∞. That is, the

zero solution of (NVIDE) (1.2) is (GAS). The proof of Theorem 2.3 is completed.

D. Hypothesis

We assume that the following hypothesis holds

(D1): There exist constants k1 > 0 and β1, 0 ≤ β1 < 1, such that

g0(t, x) ≥ k1, β1g0(t, x) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du ≥ 0

for all t ≥ s − τ.
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Theorem 2.4. If hypotheses (A2), (A3) and (A5) hold, then all solutions of (NVIDE)

(1.2) are bounded and the zero solution of (NVIDE) (1.2) is stable. In addition, if

hypothesis (D1) holds, then every solution of (NVIDE) (1.2) is integrable on the

interval [0,∞) Further, if hypothesis (C1) holds, then every solution of (NVIDE)

(1.2) is square integrable on the interval [0,∞) and the zero solution of (NVIDE)

(1.2) is (GAS).

Proof. Define the (LF)

W1 : [0,∞) × C[0,∞) → [0,∞)

by

W1(t) = W1(t, x(.)) :=|x(t)|

+

∫ t

0

{g0(s, x(s)) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du}|x(s)|ds.(2.5)

It is clear that W1(t, x(.)) ≥ |x| for all t ≥ s − τ .

It is known that for a continuously differentiable function h(t), |h(t)| has a right

derivative, and this right derivative Dr|h(t)| is defined by

Dr|h(t)| =







h′(t)sgnh(t), if h(t) 6= 0

|h′(t)|, if h(t) = 0.

Hence, the right derivative of W1 is given by

DrW1(t) =Dr|x| + Dr

∫ t

0

{g0(s, x(s)) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du}|x(s)|ds

= − g0(t, x)|x| +
n

∑

i=1

∫ t

t−τi

bi(t, s, x(s))gi(x(s))ds

+ g0(t, x)|x| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du|x|

−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds
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≤
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds −
n

∑

i=1

∫ t

0

α|bi(t, u, x(u))||du|x|

−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds

= −
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))||du|x| ≤ 0.

Then, we can see that

DrW1(t) ≤ 0.

This estimate implies that the zero solution of (NVIDE) (1.2) is (S).

Further, by integrating the last inequality from t0 to t and considering the (LF)

(2.5), we can obtain

|x| ≤ W1(t) ≤ W1(t0)

for all t ≥ t0 ≥ t0 − τ ≥ 0. Let W1(t0) = M1. Since the (LF) W1 is positive definite,

then it is clear that

|x| ≤ W1(t0) = M1 > 0, M1 ∈ <.

Thus, we can conclude that all of solutions (NVIDE) (1.2) are bounded.

To complete the rest of the proof of Theorem 2.4, we will modify the functional

W1.

Define

Wβ(t) =Wβ(t, x(.)) = |x|(2.6)

+

∫ t

0

{β1g0(s, x(s)) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u)|du}|x(s)|ds.(2.7)

Hence, by hypothesis (D1), we have

Wβ(t) ≥ |x|.
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On the other hand, the right derivative of functional Wβ can be calculated as

DrWβ(t) =Dr|x| + Dr

∫ t

0

{β1g0(s, x(s)) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u, x(u))|du}|x(s)|ds

= − g0(t, x)|x| +
n

∑

i=1

∫ t

t−τi

bi(t, s, x(s))gi(x(s))ds

+ β1g0(t, x)|x| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du|x|

−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds

From the hypotheses of Theorem 2.4, it can be easily shown that

DrWβ(t) ≤− g0(t, x)|x| +
n

∑

i=1

∫ t

t−τi

|bi(t, s, x(s))||gi(x(s))|ds

+ β1g0(t, x)|x| − |x|
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du

−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds

≤− g0(t, x)|x| +
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds

+ β1g0(t, x)|x| − |x|
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du

−
n

∑

i=1

∫ t

0

α|bi(t, s, x(s))||x(s)|ds

= − (1 − β1)g0(t, x)|x| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(u))|du|x|

≤ − (1 − β1)k1|x| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u, x(s))|du|x|

≤ − (1 − β1)k1|x|.(2.8)
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By the hypothesis 0 ≤ β1 < 1, it is now clear from (2.8) that

DrWβ(t) ≤ 0.

In addition, both of an integration of the estimate (2.8) and consideration of Wβ(t) ≥
|x| yield that

(1 − β1)k1

∫ t

t0

|x(s)|ds ≤ Wβ(t0 − Wβ(t).

Therefore, the improrer integral

∫ ∞

0

|x(s)|ds

converges. That is, x ∈ L1[t0,∞). The proof of Theorem 2.4 is completed.

3. Conclusion

We consider a functional (NVIDE) of first order with multiple time-lags. The (S),

(B), (GAS) properties of solutions and the solutions classes, such as L1[0,∞) and

L2[0,∞) are investigated by defining suitable (LFs). The obtained results have a

contribution to the literature, and they improve or generalize the results of Becker

[1], Graef et al. [16] and Tunç ([43],[44]) , Tunç and Tunç [54] and some the other

results that can be found in the relevant literature.
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