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I-CONVERGENCE CLASSES OF SEQUENCES AND NETS IN
TOPOLOGICAL SPACES

AMAR KUMAR BANERJEE (1) AND APURBA BANERJEE (2)

Abstract. In this paper we have used the idea of I-convergence of sequences and

nets to study certain conditions of convergence in a topological space. It has been

shown separately that a class of sequences and a class of nets in a non-empty set

X which are respectively called I-convergence class of sequences and I-convergence

class of nets satisfying these conditions generate a topology on X . Further we

have correlated the classes of I-convergent sequences and nets with respect to these

topologies with the given classes which satisfy these conditions.

1. Introduction

The concept of convergence of a sequence of real numbers was extended to statis-

tical convergence independently by H.Fast [5] and I.J.Schoenberg [7] as follows:

If K is a subset of the set of all natural numbers N then natural density of the set

K is defined by d(K) = limn→∞
|Kn|

n
if the limit exists ([6],[8]) where |Kn| stands for

the cardinality of the set Kn = {k ∈ K : k ≤ n} .

A sequence {xn} of real numbers is said to be statistically convergent to ` if for

every ε > 0 the set

K(ε) = {k ∈ N : |xk − `| ≥ ε}
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has natural density zero ([5],[7]).

This idea of statistical convergence of real sequence was generalized to the idea of

I-convergence of real sequences ([13],[14]) using the notion of ideal I of subsets of the

set of natural numbers. Several works on I-convergence and on statistical convergence

have been done in ([16],[10],[13],[14],[2],[12]).

The idea of I-convergence of real sequences coincides with the idea of ordinary con-

vergence if I is the ideal of all finite subsets of N and with the statistical convergence

if I is the ideal of subsets of N of natural density zero. Later B.K. Lahiri and P.

Das ([3]) extended the idea of I-convergence to an arbitrary topological space and

observed that the basic properties are preserved also in a topological space. They also

introduced ([4]) the idea of I-convergence of nets in a topological space and examined

how far it affects the basic properties.

The study of Moore-Smith convergence of sequences and nets ([9]) deals with the

construction of a topology on a given non-void set X as follows:

Let C be a class consisting of pairs (S, s) where S is a net in X and s is a point of X.

Then C is called a convergence class for X if and only if it satisfies the conditions (a)

to (d) given below. For convenience, we say that S converges (C) to s or limnSn=s

(C) if and only if (S, s) ∈ C.

(a) If S is a net such that Sn=s for each n, then S converges (C) to s.

(b) If S converges (C) to s, then so does each subnet of S.

(c) If S does not converge (C) to s, then there is a subnet of S, no subnet of which

converges (C) to s.

(d) (Theorem on iterated limits) Let D be a directed set and let Em be a directed

set for each m in D. Let F be the product D × (×{Em : m ∈ D}) and for (m, f) in

F let R(m, f)=(m, f(m)). If limmlimnS(m, n)=s (C), then S ◦R converges (C) to s.
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Indeed if S is a net in a topological space (X, τ), then convergence of S with respect

to the topology τ implies all the conditions listed above and in turn a convergence

class C determines a topology σ on X such that (S, s) ∈ C if and only if S converges

to s relative to this topology σ. The study of convergence class of sequences in X

and construction of topology is almost similar to that of convergence class of nets.

Here we have used the idea of I-convergence of sequences and nets to study cer-

tain conditions of convergence of sequences and nets which are in turn sufficient to

determine a topology on a given non-void set X. Also we have obtained a corre-

lation between the given classes of I-convergent sequences and nets satisfying these

conditions and the classes of I-convergent sequences and nets with respect to the

topologies generated by the given classes of I-convergent sequences and nets.

2. I-convergence class of sequences and I-limit space

First we recall the following definitions.

Definition 2.1. ([11]) If X is a non-void set then a family of sets I ⊂ 2X is called

an ideal if

(i) A, B ∈ I implies A ∪ B ∈ I and

(ii) A ∈ I, B ⊂ A imply B ∈ I.

The ideal I is called nontrivial if I 6= {∅} and X /∈ I.

Definition 2.2. ([11]) A non-empty family F of subsets of a non-void set X is called

a filter if

(i) ∅ /∈ F

(ii) A, B ∈ F implies A ∩ B ∈ F and

(iii) A ∈ F, A ⊂ B imply B ∈ F .
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If I is a nontrivial ideal of X then F = F (I) = {A ⊂ X : X − A ∈ I} is clearly a

filter on X and conversely.

A nontrivial ideal I is called admissible ([13]) if it contains all the singleton sets.

Several examples of nontrivial admissible ideals may be seen in [13].

Let (X, τ) be a topological space and I be a nontrivial ideal of N, the set of all

natural numbers.

Definition 2.3. ([3]) A sequence {xn} in X is said to be I-convergent to x0 ∈ X if

for any non-empty open set U containing x0, {n ∈ N : xn /∈ U} ∈ I.

In this case, x0 is called an I-limit of {xn} and written as x0=I-lim xn.

Remark 1. If I is an admissible ideal then ordinary convergence implies I-convergence

and if I does not contain any infinite set then the converse is also true.

If I contains an infinite set then there exists a sequence in (X, τ) which is I-

convergent but not ordinary convergent. The following example will make it clear.

Example 2.1. Let (R, τ) be the real number space with its usual topology τ . Let Id

be a nontrivial ideal of N defined by Id = {A ⊂ N : d(A) = 0}, where d(A) denotes

natural density of A ⊂ N. It contains the infinite set B = {k ∈ N : k = n2 for some

n ∈ N}. [In fact, for each fixed positive integer m ≥ 2, Id contains the infinite set of

the form {p ∈ N : p = qm for some q ∈ N}.] Let us consider the sequence {xn} in

(R, τ) defined by

xn =







k if n = k2 for some k ∈ N

2 otherwise

Then it is easy to verify that {xn} is Id-convergent to 2 in (R, τ) but {xn} is not

convergent in (R, τ) since it is unbounded sequence.
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Definition 2.4. ([3]) An element y ∈ X is said to be an I-cluster point of a sequence

{xn} of elements of X if for every non-empty open set U containing y we have the

set {n ∈ N : xn ∈ U} /∈ I.

We prove below some properties of a convergent sequence in a topological space

which remain invariant in case of I-convergence of a sequence in a topological space.

Throughout (X, τ) stands for a topological space and I an admissible ideal of N.

If {xn} is a sequence in (X, τ) and {x
nk
} is a subsequence of {xn} then we define

an ideal I ′ of N which we call ideal associated with the subsequence defined by

I ′ = {A ⊂ N : {nk : k ∈ A} ∈ I} where n : N → N is the strictly increasing function

associated with the subsequence {x
nk
}. We can easily verify that if I ′ is a nontrivial

ideal of N then I ′ is admissible.

Theorem 2.1. Let (X, τ) be a topological space. Then the following conditions hold

C(1): For any point x0 ∈ X the sequence {x0, x0, x0, . . .} is I-convergent to x0.

C(2): Addition of a finite number of terms to a sequence affects neither its I-

convergence nor its I-limit.

C(3): If a sequence {xn} in (X, τ) is I-convergent to x0 ∈ X then every subsequence

of it is I ′-convergent to x0, if I ′ is a nontrivial ideal of N.

Proof. Since for any non-empty open set U containing x0 we have {n ∈ N : xn /∈

U}=∅ ∈ I, the property C(1) holds.

Let {xn} be a sequence in (X, τ) which is I-convergent to x0 ∈ X. Now let finite

number of points say y1, y2, . . . , yr be included into the sequence {xn} and let us

denote the new sequence by {zn}. Then for any non-empty open set U containing x0

we have {n ∈ N : zn /∈ U}={n ∈ N : xn /∈ U} ∪ {n ∈ N : yn /∈ U}. Now the first set

on the right hand side belongs to I and the second set being a finite set also belongs

to I, since I is an admissible ideal. Thus C(2) holds.
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Let {x
nk
} be a subsequence of {xn} and U be any open set containing x0. Let us call

the set P = {k ∈ N : x
nk

/∈ U}. Now since {nk : k ∈ P} ⊂ {n ∈ N : xn /∈ U} and the

set {n ∈ N : xn /∈ U} ∈ I we have {nk : k ∈ P} ∈ I. Then by definition of the ideal

I ′ the set P = {k ∈ N : x
nk

/∈ U} ∈ I ′. Hence the result C(3) follows. �

The following two properties hold in a topological space in case of ideal convergence.

Theorem 2.2. Let G be an open set in (X, τ). Then no sequence lying in X −G has

any I-limit in G and no subsequence of a sequence lying in X − G has any I ′-limit

in G.

Proof. If possible let {xn} be a sequence in X − G which is I-convergent to x0 ∈ G.

Since G is an open set containing x0, we must have by definition of I-convergence

that the set {n ∈ N : xn /∈ G} ∈ I i.e., N ∈ I, which leads to a contradiction, since I

is a non-trivial ideal. Similarly we can show that no subsequence of a sequence lying

in X − G has any I ′-limit in G. Hence the proof follows. �

Theorem 2.3. If F is a closed set in (X, τ) then every I-convergent sequence lying

in F has all its I-limits in F and every I ′-convergent subsequence of a sequence lying

in F has all its I ′-limits in F .

The proof is similar to the proof of Theorem 2.2 so we omit the proof.

We shall now show that a topology can be generated in terms of a class of sequences

satisfying the conditions C(1),C(2),C(3) of Theorem 2.1. In fact the open sets are

determined by the conditions above.

Theorem 2.4. Let X be a given non-void set and let a class of infinite sequences

Ω over X, be distinguished whose members are called ’I-convergent sequences’, and

let each I-convergent sequence be associated with an element of X which is called an

’I-limit’ of the sequence subject to the conditions C(1),C(2),C(3) of Theorem 2.1.



I-CONVERGENCE CLASSES OF SEQUENCES AND... 19

Let now, σ = {G ⊂ X : no sequence lying in X − G has any I-limit in G}. Then σ

forms a topology on X.

Proof. Clearly ∅ and X are open sets.

Let {Gλ}λ∈Λ be a collection of open sets and G=
⋃

λ∈Λ Gλ, where Λ is an indexing

set. If possible let G be not an open set. Then there exists an I-convergent sequence

{xn} in X − G which has an I ′-limit say x0 in G. Then x0 ∈ Gλ for some λ ∈ Λ. So

the sequence {xn} lying in X −Gλ has an I-limit x0 ∈ Gλ which is impossible, since

Gλ is an open set. Hence G must be an open set.

Let G, H be two open sets. If possible let G ∩ H be not an open set. Then there

exists a sequence {xn} ⊂ X − (G ∩ H) with an I-limit say x0 in G ∩ H. Now since

x0 ∈ G∪H and G∪H is open, only a finite number of terms of {xn} can lie outside

G∪H[For that, if infinite number of terms of {xn} lie outside G ∪H we can extract

a subsequence {x
nk
} from those infinite number of terms which is I ′-convergent to x0

also by C(3)]. Again since G∪H=(G−H)∪ (G∩H)∪ (H −G) and since {xn} lies

wholly outside G∩H we must have either G−H or H −G contains infinite number

of terms of {xn}. Let us suppose that G − H contains infinite number of terms of

{xn}. Then again we can get a subsequence of {xn} lying wholly outside H which

is I ′-convergent to x0 ∈ H by C(3). But this contradicts that H is an open set. So

G ∩ H must be an open set. �

The topology σ defined as above is called I-convergence topology on X and (X, σ)

is called I-limit space.

It should however be noted that the family of all I-convergent sequences in I-limit

space (X, σ) need not be identical with the given family Ω stated in Theorem 2.4.

However the following results are true.
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Theorem 2.5. Let (X, σ) be an I-limit space with Ω as the given collection of I-

convergent sequences on X. If Γ is the collection of all I-convergent sequences with

respect to the topology σ on X, then Ω ⊂ Γ.

Proof. Let {xn} be a sequence in Ω with ’I-limit’ x0. Let G be an open set in (X, σ)

containing x0. Then only a finite number of terms can possibly lie outside G, because

otherwise an infinite subsequence of {xn} lying outside G would have an I-limit x0

in G which leads to a contradiction, since G is an open set. So {n ∈ N : xn /∈ G} ∈ I,

since I is a nontrivial admissible ideal. Therefore {xn} is I-convergent to x0 with

respect to the topology σ. Hence Ω ⊂ Γ. �

Theorem 2.6. Let Γ be the family of I-convergent sequences in a topological space

(X, τ) and let τ ′ be the I-convergence topology on X determined by the family Γ.

Then τ ⊂ τ ′.

Proof. Let G ∈ τ and {xn} be a sequence in Γ which is I-convergent to x0 ∈ G.

Then the set {n ∈ N : xn /∈ G} ∈ I. So {xn} cannot lie wholly in X − G, since I

is a nontrivial ideal. So we conclude that no sequence lying wholly in X − G can be

I-convergent to a point in G. Hence G becomes τ ′-open. Thus τ ⊂ τ ′. �

3. I-convergence class of nets and I-convergence topology

The following definitions are widely known.

Definition 3.1. A binary relation ’≥’ directs a set D if D is non-void and

(a) m ≥ m for each m ∈ D;

(b) if m,n and p are members of D such that m ≥ n and n ≥ p, then m ≥ p; and
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(c) if m and n are members of D, then there is a member p of D such that p ≥ m

and p ≥ n.

The pair (D,≥) is called a directed set.

Definition 3.2. Let (D,≥) be a directed set and let X be a non-void set. A mapping

S : D → X is called a net in X denoted by {Sn : n ∈ D} or simply by {Sn} when

the set D is clear.

Definition 3.3. Let (D,≥) be a directed set and {Sn : n ∈ D} be a net in X. A net

{Tm : m ∈ E} where (E,�) is a directed set is said to be a subnet of {Sn : n ∈ D} if

and only if there is a function θ on E with values in D such that

(a) T=S ◦ θ, or equivalently, Ti=Sθi
for each i ∈ E; and

(b) for each m in D there is n in E with the property that, if p ∈ E and p � n, then

θp ≥ m.

Throughout our discussion (X, τ) will denote a topological space and I will denote

a nontrivial ideal of a directed set D unless otherwise stated.

For n ∈ D let Mn={k ∈ D : k ≥ n}. Then the collection F0={A ⊂ D : A ⊃ Mn

for some n ∈ D} forms a filter in D. Let I0={B ⊂ D : D −B ∈ F0}. Then I0 is also

a nontrivial ideal of D.

Definition 3.4. ([4]) A nontrivial ideal I of D will be called D-admissible if Mn ∈

F (I) for all n ∈ D, where F (I) is the filter associated with the ideal I of D.

Definition 3.5. ([4]) A net {Sn : n ∈ D} in X is said to be I-convergent to x0 ∈ X

if for any open set U containing x0 the set {n ∈ D : Sn /∈ U} ∈ I.

Symbolically we write I-lim Sn=x0 and we say that x0 is an I-limit of the net {Sn}.
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Remark 2. If I is D-admissible, then convergence of net in the topology τ implies

I-convergence and the converse holds if I=I0. In other words, I0-convergence implies

net convergence.

If I 6= I0 then I-convergence of a net in (X, τ) does not necessarily imply conver-

gence of the net with respect to the topology τ . The following example will give a

clear view.

Example 3.1. Let X = {1, 2, 3, 4} and τ = {∅, X, {2}, {2, 3}, {2, 4}, {2, 3, 4}}. Let

D = {{2}, {2, 3}, {2, 4}, {2, 3, 4}, X} with the binary relation ’≥’ defined by A ≥ B

if A ⊂ B for any A, B ∈ D. Then (D,≥) is a directed set. Let us take I =

{{{2}, {2, 3}}, {{2}}, {{2, 3}}, ∅}. Then clearly I is a nontrivial ideal of D. Now for

each A ∈ D if we denote MA = {B ∈ D : B ≥ A} we see that M{2} = {{2}}, M{2,3} =

{{2}, {2, 3}}, M{2,4} = {{2}, {2, 4}}, M{2,3,4} = {{2}, {2, 3}, {2, 4}, {2, 3, 4}}, MX =

D. Then the collection F0 = {P ⊂ D : P ⊃ MA for some A ∈ D} forms a filter in

D and I0 = {B ⊂ D : D − B ∈ F0} forms a nontrivial ideal of D. Here I 6= I0 since

{{2}, {2, 3}} ∈ I but {{2}, {2, 3}} /∈ I0. We define a net S : (D,≥) → X by

SA =







1 if A = {2} or {2, 3}

2 otherwise

Then for any open set U containing 2, the set {A ∈ D : SA /∈ U} is either the void

set ∅ or {{2}, {2, 3}}. Since both the above sets belong to I we conclude that the

net {SA : A ∈ (D,≥)} is I-convergent to 2. But the net {SA : A ∈ (D,≥)} is not

convergent to 2 in (X, τ) because for any open set U containing 2, there does not exist

an element A ∈ D such that SB ∈ U for all B ∈ D such that B ≥ A.

Definition 3.6. ([4]) A point y ∈ X is called an I-cluster point of a net {Sn : n ∈ D}

if for every open set U containing y, {n ∈ D : Sn ∈ U} /∈ I.
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The following result is very useful.

Theorem 3.1. ([4]) Let {Sn : n ∈ D} be a net in a topological space (X, τ) and I

be a nontrivial ideal of D. Then x0 ∈ X is an I-cluster point of {Sn} if and only if

x0 ∈ AT for every T ∈ F (I), where AT={x ∈ X : x=St for t ∈ T} and F (I) is the

filter associated with the ideal I of D. Here bar denotes the closure in (X, τ).

In case of ideal convergence of a subnet of a net in a topological space (X, τ) the

following results hold.

Theorem 3.2. Let {Sn : n ∈ D} be a net in a topological space (X, τ) and ID

be a nontrivial ideal of D. Let {Tm : m ∈ (E,�)} be a subnet of {Sn : n ∈ D}

and IE={A ⊂ E : θ(A) ∈ ID} where θ : E → D is the function associated with

{Tm : m ∈ (E,�)} to be a subnet of {Sn : n ∈ D}. Then IE is an ideal of E and

if {Sn : n ∈ D} is ID-convergent to x0 ∈ X and IE is a nontrivial ideal of E then

{Tm : m ∈ E} is IE-convergent to x0.

Proof. Since {Tm : m ∈ (E,�)} is a subnet of {Sn : n ∈ D}, θ : E → D is

a function such that Tm=S ◦ θ(m) for all m ∈ E i.e., Tm=Sθm
for all m ∈ E.

Now since {Sn : n ∈ D} is ID-convergent to x0 so for every open set U containing

x0, the set {n ∈ D : Sn /∈ U} ∈ ID. If possible let {Tm : m ∈ E} be not IE

convergent to x0. Then there exists an open set V containing x0 such that the set

M={m ∈ E : Tm=Sθm
/∈ V } /∈ IE. Then by definition of the ideal IE, the set

θ(M)={θ(m) ∈ D : Sθm
/∈ V } /∈ ID. But since θ(M)={θ(m) ∈ D : Sθm

/∈ V } ⊂ {n ∈

D : Sn /∈ V } ∈ ID, by definition of ideal we get that θ(M) ∈ ID. Thus we arrive

at a contradiction. Hence we must have the set M={m ∈ E : Tm=Sθm
/∈ V } ∈ IE.

Therefore the result follows. �

Theorem 3.3. Let {Sn : n ∈ D} be a net in a topological space (X, τ). Let ID be

a D-admissible ideal of D. Let {Sn} be not ID-convergent to a point x0 ∈ X. Then
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there exists a subnet of {Sn}, no subnet of which is ideal convergent to x0 with respect

to any nontrivial ideal.

Proof. Let the net {Sn : n ∈ D} be not ID-convergent to x0 ∈ X. Then there exists

a non-empty open set U containing x0 such that the set A={n ∈ D : Sn /∈ U} /∈ ID

and consequently the set Ac={p ∈ D : Sp ∈ U} /∈ F (ID), where F (ID) is the filter

on D associated with the ideal ID. Since ID is D-admissible, F (ID) contains all sets

of the form Mn={m ∈ D : m ≥ n} for each n ∈ D. Again since Ac /∈ F (ID), we

conclude that for no n ∈ D, Mn ⊂ Ac. Consequently for each n ∈ D there is some

m ∈ Mn such that m /∈ Ac and so Sm /∈ U . Let Bn={m ∈ Mn : m /∈ Ac} and

M=
⋃

n∈D Bn. Then clearly M is a cofinal subset of D. Let {Tr : r ∈ M} be a subnet

of {Sn : n ∈ D}. Then we see that Tr /∈ U , for all r ∈ M . Now if {Kp : p ∈ E} is a

subnet of {Tr : r ∈ M} where (E,�) is a directed set and IE is any nontrivial ideal of

E then we note that {Kp : p ∈ E} is not IE-convergent to x0, since for the open set

U containing x0 we have {p ∈ E : Kp /∈ U}=E /∈ IE. Hence the result follows. �

We now recall the definition of product directed set.

Suppose that for each member a of a set A we are given a directed set (Da, >a),

where A is an indexing set. The Cartesian product ×{Da : a ∈ A} is the set of

all functions d on A such that da(=d(a)) is a member of Da for each a in A. The

product directed set is (×{Da : a ∈ A},≥) where, if d and e are members of the

product ×{Da : a ∈ A} then d ≥ e if and only if da >a ea for each a in A. The

product order is ≥.

Definition 3.7. Let D be a directed set and for each m ∈ D, let Em be a directed

set. Consider a function S to a topological space (X, τ) such that S(m, n) is defined

whenever, m ∈ D, n ∈ Em. Let ID be a nontrivial ideal of D and IEm
be a nontrivial

ideal of Em for each m ∈ D. We say that ID-limmIEm
-limnS(m, n)=x0 ∈ X if for any
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non-empty open set U containing x0 we have the set {m ∈ D : IEm
-limnS(m, n) /∈

U} ∈ ID.

Theorem 3.4. (THEOREM ON ITERATED I-LIMIT) Let D be a directed set,

let Em be a directed set for each m in D. Let F be the product D× (×{Em : m ∈ D})

and for (m, f) in F let R(m, f)=(m, f(m)). Let ID be a nontrivial ideal of D and

for each m ∈ D, let IEm
be a nontrivial ideal of Em. Let IF be a nontrivial ideal of

F defined as follows:

A subset H ⊂ F belongs to IF if and only if H=H1 ∪ H2, where H2 may be empty

set and H1, H2 are such that

H ′
1 = {m ∈ D : (m, f) ∈ H1} ∈ ID,

H ′
2 = {p ∈ D : (p, g) ∈ H2} /∈ ID

and for each p ∈ H ′
2, the set

{g(p) : (p, g) ∈ H2} ∈ IEp

if H2 6= ∅. If S(m, n) is a member of a topological space (X, τ) for each m in D and n

in Em then S ◦R is IF -convergent to ID-limmIEm
-limnS(m, n) whenever this iterated

limit exists.

Proof. Let ID-limmIEm
-limnS(m, n)=x0 and U be an open set containing x0. Then

the set {m ∈ D : IEm
-limnS(m, n) /∈ U} ∈ ID. Consequently, the set A={m ∈ D :

IEm
-limnS(m, n) ∈ U} /∈ ID. So for each m ∈ A, the set Am={n ∈ Em : S(m, n) /∈

U} ∈ IEm
. Consequently, for each m ∈ A, the set (say) Bm={t ∈ Em : S(m, t) ∈

U} /∈ IEm
. For each m ∈ A, let Cm={f ∈ (×{Em : m ∈ D}) : f(m) ∈ Bm}. Now we

write C={(m, f) ∈ F : m /∈ A, f /∈ Cm}∪ {(m, f) ∈ F : m /∈ A, f ∈ Cm} ∪ {(m, f) ∈

F : m ∈ A, f /∈ Cm}. Let P={(m, f) ∈ F : m /∈ A, f /∈ Cm}, Q={(m, f) ∈ F :

m /∈ A, f ∈ Cm} and R={(m, f) ∈ F : m ∈ A, f /∈ Cm}. Then C=P ∪ Q ∪ R.
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Let M={(m, f) ∈ F : S ◦ R(m, f) /∈ U}={(m, f) ∈ F : S(m, f(m)) /∈ U}. Let us

take a member (p, g) ∈ F such that (p, g) /∈ C. Then (p, g) ∈ F such that p ∈ A

and g ∈ Cp. This implies g(p) ∈ Bp which in turn implies that S(p, g(p)) ∈ U

i.e, S ◦ R(p, g) ∈ U i.e., (p, g) /∈ M . Hence M ⊂ C. Now we see that the sets

P ′={m ∈ D : (m, f) ∈ P} ∈ ID and Q′={m ∈ D : (m, f) ∈ Q} ∈ ID, since

P ′, Q′ ⊂ D − A ∈ ID. Note that the set R′={m ∈ D : (m, f) ∈ R} may or may not

belong to ID. Now we can write the set C as below:

C=C1 ∪ C2, where C1=P ∪ Q and C2=R if R′ /∈ ID, otherwise C1=P ∪ Q ∪ R and

C2=∅. The case that C2=∅ is trivial. If C2 is non-empty then the set {f(m) : (m, f) ∈

R} /∈ Bm which implies that {f(m) ∈ Em : (m, f) ∈ R} ⊂ Am, since S(m, f(m)) /∈ U

in this case. But this implies that the set {f(m) ∈ Em : (m, f) ∈ R} ∈ IEm
for each

fixed m ∈ R′={m ∈ D : (m, f) ∈ C2}. Hence the result follows. �

Let X be a fixed non-empty set and M be the class consisting of all pairs (S, x0)

where {Sn : n ∈ D} is a net in X and x0 is a point of X. Throughout our discussion

we will consider the following facts:

If {Sn : n ∈ (D,≥)} is a net in X then ID will denote a D-admissible ideal of D and

if {Tm : m ∈ (E,�)} is a subnet of {Sn : n ∈ D} then IE will denote an ideal of E

defined by IE={A ⊂ E : θ(A) ∈ ID} where θ : E → D is a function as in Definition

3.3. We are taking into account the case where IE is nontrivial. Also F (ID) will

denote the filter on D associated with the ideal ID of D.

We shall say that M is an ideal convergence class for X if and only if it satisfies

the following conditions (a) to (d) listed below. For convenience we say that S is

ID-convergent(M) to x0 or that ID-limmSm=x0(M) if and only if (S, x0) ∈ M.

(a) If {Sn : n ∈ D} is a net such that Sn=x0 for all n ∈ D, then {Sn} is ID-

convergent(M) to x0.

(b) If a net {Sn : n ∈ D} is ID-convergent(M) to x0, then every subnet {Tm : m ∈ E}
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is IE-convergent(M) to x0.

(c) If {Sn : n ∈ D} is not ID-convergent(M) to x0, then there is a subnet of {Sn},

no subnet of which is ideal convergent(M) to x0 with respect to any nontrivial ideal.

(d) (THEOREM ON ITERATED I-LIMIT) Let D be a directed set, let Em

be a directed set for each m ∈ D. Let F be the product D × (×{Em : m ∈ D})

and for (m, f) in F , let R be the net defined by R(m, f)=(m, f(m)). Let ID be a

nontrivial ideal of D and for each m ∈ D let IEm
be a nontrivial ideal of Em and IF

be a nontrivial ideal of F as defined in Theorem 3.4. Let S(m, n) be a member of X

whenever m ∈ D and n ∈ Em. Now if ID-limmIEm
-limnS(m, n)=x0(M) then S ◦ R

is IF -convergent(M) to x0.

Already we have shown that if a net {Sn : n ∈ (D,≥)} is ID-convergent to a

point s in a topological space (X, τ) then the conditions (a), (b), (c) and (d) are

satisfied. We now show that every ideal convergence class M determines a topology

on X for which {Sn} is ID-convergent with respect to this topology if {Sn} is ID-

convergent(M). The converse part is also true if an additional condition (J) holds.

Theorem 3.5. Let M be an ideal convergence class for a non-empty set X, and for

each subset A of X let Acl be the set of all points x0 such that, for some net {Sn :

n ∈ D} in A, {Sn} is ID-convergent(M) to x0. Then ’cl’ is a closure operator and

if (S, x0) ∈ M then S is ID-convergent to x0 with respect to the topology associated

with the closure operator.

Conversely, (S, x0) ∈ M if {Sn : n ∈ D} is ID-convergent to x0 with respect to the

topology associated with the closure operator and if the following additional condition

(J) holds:

(J): Let {Sn : n ∈ D} be a net in X and {Tm : m ∈ (E,�)} be a subnet of

{Sn : n ∈ D}. If ID be a D-admissible ideal of D then IE is an E-admissible ideal of

E.
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Proof. We first prove that ’cl’ is a closure operator. Since a net is a function on a

directed set so by definition ∅cl is void. In view of condition (a) for each member

y0 of a set A there is a net {Sn : n ∈ D} defined by Sn=y0 for all n ∈ D, which

is ID-convergent(M) to y0 and hence A ⊂ Acl. If x0 ∈ Acl then by the defini-

tion of the operator ’cl’ we have x0 ∈ (A ∪ B)cl and consequently Acl ⊂ (A ∪ B)cl

for each set B. Therefore Acl ∪ Bcl ⊂ (A ∪ B)cl. To show the reverse inclusion,

suppose that {Sn : n ∈ D} is a net in A ∪ B and let {Sn : n ∈ D} be ID-

convergent(M) to x0. If DA={n ∈ D : Sn ∈ A} and DB={n ∈ D : Sn ∈ B} then

DA ∪ DB=D. Hence either DA or DB is cofinal in D and so either {Sn : n ∈ DA}

or {Sn : n ∈ DB} is a subnet of {Sn : n ∈ D} which is also IDA
-convergent(M)

or IDB
-convergent(M) respectively to x0, by virtue of the condition (b). Hence we

get that x0 ∈ Acl ∪ Bcl and thus we have shown that Acl ∪ Bcl=(A ∪ B)cl. We now

show that (Acl)cl=Acl. If {Tm : m ∈ D} is a net in Acl which is ID-convergent(M)

to ’t’, then for each m ∈ D, there is a directed set Em and a net {S(m, n) : n ∈ Em}

which is IEm
-convergent(M) to Tm. Now condition (d) shows that there is a net

{R(m,f) : (m, f) ∈ D × (×{Em : m ∈ D})} such that S ◦ R is IF -convergent(M) to t

and consequently t ∈ Acl, where F=D × (×{Em : m ∈ D}). Hence (Acl)cl=Acl.

We now prove that ideal convergence (M) is identical with the ideal convergence

relative to the topology τ associated with the operator ’cl’.

First suppose that {Sn : n ∈ D} is ID-convergent(M) to x0 and S is not ID-

convergent to x0 relative to the topology τ . Then there is an open set U containing

x0 such that the set M={n ∈ D : Sn /∈ U} /∈ ID. So the set K=D − M={n ∈ D :

Sn ∈ U} /∈ F (ID). Now ID being D-admissible ideal of D, we have for each r ∈ D

the set Br={p ∈ D : p ≥ r} ∈ F (ID). Since K /∈ F (ID), Br is not a subset of K for

all r ∈ D. Hence for every r ∈ D, we can find some p ∈ Br such that p /∈ K. Let us
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denote for each r ∈ D, the set Nr={p ∈ Br : p /∈ K} and E=
⋃

r∈D Nr. Clearly E is

a cofinal subset of D. So {Sn : n ∈ E} is a subnet of {Sm : m ∈ D} and Sn /∈ U for

all n ∈ E. Again the subnet {Sn : n ∈ E} in X − U is IE-convergent(M) to x0, by

condition (b). So X − U 6= (X − U)cl and hence U is not open relative to τ , which

is a contradiction.

Conversely, suppose that a net {Pn : n ∈ D} is ID-convergent to a point x0

and fails to ID-convergent(M) to x0. Then by condition (c), there is a subnet

{Tm : m ∈ E} no subnet of which is ideal convergent(M) to x0 relative to any

nontrivial ideal. Since IE is E-admissible ideal of E, by definition for each r ∈ E

the set Br={m ∈ E : m ≥ r} ∈ F (IE). Since {Tm : m ∈ E} is IE-convergent to

x0 relative to τ , the point x0 must lie in the closure of each set AM={Tm : m ∈

M} for each M ∈ F (IE). Consequently for each M in F (IE) there is a directed

set EM and a net {S(M, n) : n ∈ EM} in M , such that the composition {T ◦

S(M, n) : n ∈ EM} lying in AM is IEM
-convergent(M) to x0. Let F (IE) be directed

by set inclusion ’⊂’. Hence we get that IF (IE)-limMIEM
-limn(T ◦ S)(M, n)=x0(M).

Now we apply the condition (d). If we take R(M, f)=(M, f(M)) for each (M, f) in

F (IE) × (×{EM : M ∈ F (IE)}) then T ◦ S ◦ R is IF -convergent(M) to x0, where

F=F (IE) × (×{EM : M ∈ F (IE)}). Moreover for each m ∈ E there exists Bm

in F (IE) such that S ◦ R(Bm, f)=S(Bm, f(Bm)) ∈ Bm; i.e., S ◦ R(Bm, f) ≥ m for

any f ∈ (×{EM : M ∈ F (IE)}). Thus we see that for each m ∈ E there exists

(Bm, f) ∈ F (IE)× (×{EM : M ∈ F (IE)}) such that S ◦R(Bm, f) ≥ m i.e., S ◦R(F)

is cofinal in E. Therefore, T ◦ S ◦ R is a subnet of T which is IF -convergent(M) to

x0 which leads to a contradiction and the result follows. �
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