GENERALIZATION OF VALUE DISTRIBUTION AND UNIQUENESS OF CERTAIN TYPES OF DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE

ABSTRACT. In this paper, we study the distribution of zeros and uniqueness of differential polynomials of the form $f^n(z)(f(z)-1)^m \prod_{j=1}^d f(z+c_j)^{s_j}$ and $f^n(z)(f^m(z)-1) \prod_{j=1}^d f(z+c_j)^{v_j}$ where $c_j(j=1,2,\cdots,d)$ are complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers and $\sigma = \sum_{j=1}^d v_j$ sharing a small function with finite weight. The result obtained improves and generalizes the recent result.

1. Introduction

In this article, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna theory (see, for example, [9],[22]). Let f(z) and g(z) be two non-constant meromorphic functions in the complex plane. By S(r, f), we denote any quantity satisfying S(r, f) = o(T(r, f)) as $r \to \infty$, possibly outside a set of finite logarithmic measure. Then, the meromorphic function α is called a small function of f(z), if $T(r, \alpha) = S(r, f)$. If $f(z) - \alpha$ and $g(z) - \alpha$ have the same zeros, counting multiplicity (ignoring multiplicity), then we say f(z) and g(z) share a small function α CM (IM). For a small function α related to f(z), we define

$$\delta(\alpha, f) = \liminf_{r \to \infty} \frac{m(r, \frac{1}{f - \alpha})}{T(r, f)},$$

1991 Mathematics Subject Classification. 30D35.

Key words and phrases. Value distribution, Difference Polynomials, Fixed points, Sharing value. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: June 27, 2017 Accepted: Sept. 24, 2017.

$$\Theta(\alpha, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, \frac{1}{f - \alpha})}{T(r, f)}.$$

In 2010, X. G. Qi, L. Z. Yang and K. Liu [14] proved the following uniqueness result.

Theorem 1.1. Let f, g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to both f and g. Suppose that c is a non zero complex constant and $n \geq 7$ is an integer. If $f^n(z)(f(z) - 1)f(z + c)$ and $g^n(z)(g(z) - 1)g(z + c)$ share $\alpha(z)$ CM, then f = g.

In 2013, S. S. Bhoosnrmath and S. R. Kabbur [2] considered the zeros of difference polynomials of the form $f^n(z)(f^m(z)-1)f(z+c)$, where n,m are positive integers and c is a non zero complex constant and obtained the following theorems.

Theorem 1.2. Let f be an entire function of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f. Suppose that c a non zero complex constant and n, m are positive integers. If $n \geq 2$, then $f^n(z)(f^m(z) - 1)f(z + c) - \alpha(z)$ has infinitely many zeros.

Theorem 1.3. Let f and g be two transcendental entire functions of finite order and $\alpha(z)(\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero complex constant and n,m are positive integers such that $n \geq m+6$. If $f^n(z)(f^m(z)-1)f(z+c)$ and $g^n(z)(g^m(z)-1)g(z+c)$ share $\alpha(z)$ CM, then f=tg, where $t^m=1$.

Theorem 1.4. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero complex constant and n, m are positive integers such that $n \geq 4m + 12$. If $f^n(z)(f^m(z)-1)f(z+c)$ and $g^n(z)(g^m(z)-1)g(z+c)$ share $\alpha(z)$ IM, then f=tg, where $t^m=1$.

Recently, P. Sahoo and B. Saha [21] studied the zeros and uniqueness of certain type of difference polynomial sharing a small function with finite weight and obtained the following results.

Theorem 1.5. Let f be a transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f. Suppose that c is a non zero complex constant, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers. If $n \geq k+2$, then $[f^n(z)(f^m(z)-1)f(z+c)]^{(k)}-\alpha(z)$ has infinitely many zeros.

Theorem 1.6. Let f be a transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f. Suppose that c is a non zero complex constant, $n, m \geq 1$ and $k(\geq 0)$ are integers. If $n \geq k+2$, when $m \leq k+1$ and $n \geq 2k-m+3$ when m > k+1, then $[f^n(z)(f(z)-1)^m f(z+c)]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem 1.7. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero complex constant, $n, m \geq 1$ and $k(\geq 0)$ are integers satisfying $n \geq 2k + m + 6$. If $[f^n(z)(f^m(z)-1)f(z+c)]^{(k)}$ and $[g^n(z)(g^m(z)-1)g(z+c)]^{(k)}$ share $(\alpha,2)$ then f=tg, where $t^m=1$.

Theorem 1.8. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero complex constant, $n, m \ge 1$ and $k(\ge 0)$ are integers satisfying $n \ge 2k + m + 6$ when $m \le k + 1$ and $n \ge 4k - m + 10$ when m > k + 1. If $[f^n(z)(f(z) - 1)^m f(z + c)]^{(k)}$ and $[g^n(z)(g(z) - 1)^m g(z + c)]^{(k)}$ share $(\alpha, 2)$ then either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

$$R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m \omega_1(z + c) - \omega_2^n (\omega_2 - 1)^m \omega_2(z + c).$$

Theorem 1.9. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero

complex constant, $n, m \ge 1$ and $k(\ge 0)$ are integers satisfying $n \ge 5k + 4m + 12$. If $[f^n(z)(f^m(z) - 1)f(z + c)]^{(k)}$ and $[g^n(z)(g^m(z) - 1)g(z + c)]^{(k)}$ share $\alpha(z)$ IM, then f = tg, where $t^m = 1$.

Theorem 1.10. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that c is a non zero complex constant, $n, m \ge 1$ and $k(\ge 0)$ are integers satisfying $n \ge 5k + 4m + 12$ when $m \le k + 1$ and $n \ge 10k - m + 19$ when m > k + 1. If $[f^n(z)(f(z) - 1)^m f(z + c)]^{(k)}$ and $[g^n(z)(g(z) - 1)^m g(z + c)]^{(k)}$ share $\alpha(z)$, then conclusion of Theorem H hold.

Regarding Theorems 1.5-1.10, the following question is inevitable which is motivation of the present paper.

Question. What would happen if one replaces the difference polynomials $[f^n(z)(f^m(z)-1)f(z+c)]^{(k)}$ by $f^n(z)(f(z)-1)^m \prod_{j=1}^d f(z+c_j)^{v_j}$ in Theorems 1.5-1.10, where k is any positive integer?

In this paper, we study the zero and uniqueness of difference polynomial of the form $f^n(z)(f(z)-1)^m \prod_{j=1}^d f(z+c_j)^{v_j}$ and $f^n(z)(f^m(z)-1) \prod_{j=1}^d f(z+c_j)^{v_j}$ where $c_j(j=1,2,\cdots,d)$ are complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers and $\sigma=v_1+v_2+\cdots+v_d=\sum_{j=1}^d v_j$ and hence obtain the following results.

Theorem 1.11. Let f be a transcendental entire function of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f. Suppose that $c_j (j = 1, 2, \dots, d)$ are non zero complex constants, $v_j (j = 1, 2, \dots, d)$ are non-negative integers, $n, m \geq 1$ and $k (\geq 0)$ are integers. If $n \geq k + 2$, then $\left[f^n(z) (f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j} \right]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem 1.12. Let f be a transcendental entire functions of finite order and $\alpha(z)$ ($\not\equiv$ 0) be a small function with respect to f. Suppose that $c_j (j = 1, 2, \dots, d)$ is a non zero complex constants, $v_j (j = 1, 2, \dots, d)$ are non-negative integers, $n, m \geq 1$ and $k (\geq 0)$

are integers. If $n \ge k+2$ when $m \le k+1$ and $n \ge 2k-m+3$ when m > k+1, then $\left[f^n(z)(f(z)-1)^m \prod_{j=1}^d f(z+c_j)^{v_j} \right]^{(k)} - \alpha(z) \text{ has infinitely many zeros.}$

Theorem 1.13. Let f and g be two transcendental entire functions of finite order and $\alpha(z)(\not\equiv 0)$ be a small function with respect to f and g. Suppose that $c_j(j=1,2,\cdots,d)$ are non-zero complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers, $n,m\geq 1$ and $k(\geq 0)$ are integers satisfying $n\geq 2k+m+\sigma+5$. If $\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$ share $(\alpha,2)$, then f=tg where $t^m=1$.

Theorem 1.14. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that $c_j (j=1,2,\cdots,d)$ are non-negative integers, $n,m \geq 1$ and $k(\geq 0)$ are integers satisfying $n \geq 2k + m + \sigma + 5$ when $m \leq k + 1$ and $n \geq 4k - m + \sigma + 9$ when m > k + 1. If $\left[f^n(z) (f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{v_j} \right]^{(k)}$ and $\left[g^n(z) (g(z) - 1)^m \prod_{j=1}^d g(z + c_j)^{v_j} \right]^{(k)}$ share $(\alpha, 2)$, then either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by $R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m \prod_{j=1}^d \omega_1 (z + c_j)^{v_j} - \omega_2^n (\omega_2 - 1)^m \prod_{j=1}^d \omega_2 (z + c_j)^{v_j}$.

Theorem 1.15. Let f and g be two transcendental entire functions of finite order and $\alpha(z)(\not\equiv 0)$ be a small function with respect to f and g. Suppose that $c_j(j=1,2,\cdots,d)$ are non-negative complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers, $n,m\geq 1$ and $k(\geq 0)$ are integers satisfying $n\geq 5k+4m+4\sigma+8$. If $\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$ share $\alpha(z)$ IM, then f=tg where $t^m=1$.

Theorem 1.16. Let f and g be two transcendental entire functions of finite order and $\alpha(z) (\not\equiv 0)$ be a small function with respect to f and g. Suppose that $c_j (j=1,2,\cdots,d)$ are non-zero complex constants, $v_j (j=1,2,\cdots,d)$ are non-negative integers, $n,m \geq 1$

and $k(\geq 0)$ are integers satisfying $n \geq 5k + 4m + 4\sigma + 8$ when $m \leq k + 1$ and $n \geq 10k - m + 4\sigma + 15$ when m > k + 1. If $\left[f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{v_j} \right]^{(k)}$ and $\left[g^n(z)(g(z) - 1)^m \prod_{j=1}^d g(z + c_j)^{v_j} \right]^{(k)}$ share $\alpha(z)$ IM, then the conclusion of theorem 4 hold.

Remark. For $\sigma = 1$ in Theorems 1.11 to 1.16, we get Theorems 1.5 to 1.10. Hence Theorems 1.11 to 1.16 generalizes Theorems 1.5 to 1.10.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in the complex plane \mathbb{C} . We denote by H the following function

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right)$$

Lemma 2.1. [13] Let f be a meromorphic function of finite order ρ and let $c(\neq 0)$ be a fixed non zero complex constant. Then

$$\overline{N}(r,\infty;f(z+c)) \leq \overline{N}(r,\infty;f) + S(r,f)$$

outside a possible exceptional set of finite logarithmic measure.

Lemma 2.2. [3] Let f be an entire function of finite order and $F = f^n(z)(f^m(z) - 1)f(z+c)$. Then T(r,F) = (n+m+1)T(r,f) + S(r,f).

Arguing in a similar manner as in Lemma 2.6[3] we obtain the following Lemma.

Lemma 2.3. Let f be an entire function of finite order and $F = f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z+c_j)$. Then $T(r,F) = (n+m+\sigma)T(r,f) + S(r,f)$.

Lemma 2.4. [20] Let f be a non-constant meromorphic functions and p, k be two positive integers. Then

$$(2.1) N_p(r,0;f^{(k)}) \le T(r,f^{(k)}) - T(r,f) + N_{p+k}(r,0;f) + S(r,f)$$

(2.2)
$$N_p(r,0;f^{(k)}) \le k\overline{N}(r,\infty,f) + N_{p+k}(r,0;f) + S(r,f)$$

Lemma 2.5. [10] Let f and g be two non-constant meromorphic functions sharing (1,2). Then one of the following cases holds.

- (i) $T(r) \le N_2(r,0;f) + N_2(r,0;g) + N_2(r,\infty;f) + N_2(r,\infty;g) + S(r)$,
- (ii) f = g,
- (iii) fg = 1, when $T(r) = max\{T(r, f), T(r, g)\}$ and $S(r) = o\{T(r)\}$.

Lemma 2.6. [1] Let F and G be two non-constant meromorphic functions sharing the value 1 IM and $H \not\equiv 0$. Then

$$T(r,F) \leq N_2(r,0;F) + N_2(r,0;G) + N_2(r,\infty;F) + N_2(r,\infty;G) + 2\overline{N}(r,0;F) + \overline{N}(r,0;G) + 2\overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + S(r,F) + S(r,G)$$

and the same inequality holds for T(r, G).

Lemma 2.7. Let f and g be two entire functions, suppose that $c_j (j = 1, 2, \dots, d)$ are non-zero complex constants, $v_j (j = 1, 2, \dots, d)$ are non-negative integers, $n, m \ge 1$ and $k(\ge 0)$ are integers and let $F = \left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $G = \left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$. If there exists non-zero constants c_1 and c_2 such that $\overline{N}(r,c_1;F) = \overline{N}(r,0;G)$ and $\overline{N}(r,c_2;G) = \overline{N}(r,0;F)$, then $n \le 2k+m+\sigma+2$. Proof. We put $F_1 = f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}$ and $G_1 = g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}$, by the second fundamental theorem of Nevanlinna, we have

(2.3)
$$T(r,F) \leq \overline{N}(r,0;F) + \overline{N}(r,c_1;F) + S(r,F)$$
$$\leq \overline{N}(r,0;F) + \overline{N}(r,0;G) + S(r,F)$$

Using equation (2.3), in Lemmas 2.2 and 2.4, we obtain

$$(n+m+\sigma)T(r,f) \leq T(r,F) - \overline{N}(r,0;F) + N_{k+1}(r,0;F_1) + S(r,f)$$

$$\leq \overline{N}(r,0;G) + N_{k+1}(r,0;F_1) + S(r,f)$$

$$\leq N_{k+1}(r,0;F_1) + N_{k+1}(r,0;G_1) + S(r,f) + S(r,g)$$

$$\leq (k+m+\sigma+1)(T(r,f)+T(r,g)) + S(r,f) + S(r,g).$$

Similarly,

$$(2.5) \quad (n+m+\sigma)T(r,g) \le (k+m+\sigma+1)(T(r,f)+T(r,g)) + S(r,f) + S(r,g).$$

Combining (2.4) and (2.5), we obtain

$$(n-2k-m-\sigma-2)(T(r,f)+T(r,g)) \le S(r,f)+S(r,g).$$

Which gives $n \leq 2k + m + \sigma + 2$.

This proves the lemma.

Lemma 2.8. Let f and g be two entire functions, suppose that $c_j(j=1,2,\cdots,d)$ are non-zero complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers, $n,m \geq 1$ and $k(\geq 0)$ are integers and let $F = \left[f^n(z)(f(z)-1)^m\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $G = \left[g^n(z)(g(z)-1)^m\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$. If there exists non-zero constants c_1 and c_2 such that $\overline{N}(r,c_1;F) = \overline{N}(r,0;G)$ and $\overline{N}(r,c_2;G) = \overline{N}(r,0;F)$, then $n \leq 2k+m+\sigma+2$ when $m \leq k+1$ and $n \leq 4k-m+\sigma+4$ when m > k+1.

Proof. By the same reasoning as in proof of Lemma 2.7, we can easily deduce the result. Hence we omit the details.

Arguing in a similar manner as in lemma 2.5([2]), we obtain the following lemma.

Lemma 2.9. Suppose that f and g are two transcendental entire function of finite order. Suppose that $c_j (j = 1, 2, \dots, d)$ are non zero complex constants, $v_j (j = 1, 2, \dots, d)$ are non-negative integers, $n, m \ge 1$ and $k (\ge 0)$ are integers. If $n \ge m + 5$

and
$$\left[f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j} \right]^{(k)} = \left[g^n(z)(g^m(z) - 1) \prod_{j=1}^d g(z + c_j)^{v_j} \right]^{(k)}$$

then $f = tg$ where $t^m = 1$.

3. Proofs of Main Theorems

Proof of Theorem 1.11. Let $F_1 = f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j}$. Then F_1 is a transcendental entire function.

If possible, we assume $F_1^{(k)} - \alpha(z)$ has only finitely many zeros. Then, we have

(3.1)
$$N(r, \alpha, F_1^{(k)}) = o\{\log r\} = S(r, f).$$

Using (2.1), (3.1) and Nevanlinna's three small function theorem, we obtain

(3.2)
$$T(r, F_1^{(k)}) \leq \overline{N}(r, 0, F_1^{(k)}) + \overline{N}(r, \alpha; F_1^{(k)}) + S(r, f)$$
$$\leq T(r, F_1^{(k)}) - T(r, F_1) + N_{k+1}(r, 0; F_1) + S(r, f)$$

Applying lemma 2.2, we obtain from (3.2),

$$(n+m+\sigma)T(r,f) \le N_{k+1}(r,0;F_1) + S(r,f)$$

 $\le (k+m+\sigma+1)T(r,f) + S(r,f)$

This gives

$$(n-k-1)T(r,f) \le S(r,f),$$

a contradiction with the assumption that $n \geq k + 2$. This proves the theorem. \square

Proof of Theorem 1.12. Let $F_2 = f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{v_j}$. Then F_2 is a transcendental entire function.

If possible, suppose that $F_2^{(k)} - \alpha(z)$ has only finitely many zeros. Then, we have

(3.3)
$$N(r, \alpha, F_2^{(k)}) = o\{\log r\} = S(r, f)$$

Now, using (2.1), (3.3) and Nevanlinna's three small function theorem, we obtain

(3.4)
$$T(r, F_2^{(k)}) \leq \overline{N}(r, 0, F_2^{(k)}) + \overline{N}(r, \alpha; F_2^{(k)}) + S(r, f)$$
$$\leq T(r, F_2^{(k)}) - T(r, F_2) + N_{k+1}(r, 0; F_2) + S(r, f)$$

Applying Lemma 2.3, we obtain from (3.4)

(3.5)
$$(n+m+\sigma)T(r,f) \le N_{k+1}(r,0;F_2) + S(r,f)$$

$$\le (k+m+\sigma+1)T(r,f) + S(r,f)$$

If $m \le k + 1$, we deduce from (3.5) that

$$(n-k-1)T(r,f) \le S(r,f),$$

a contradiction to the assumption that $n \ge k + 2$.

If m < k + 1, by (3.5) we get,

$$(n+m-2k-2)T(r,f) \le S(r,f)$$

a contradiction with the assumption that $n \ge 2k - m + 3$. This proves the theorem.

Proof of Theorem 1.13. Let $F_1 = f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j}$ and $G_1 = g^n(z)(g^m(z) - 1) \prod_{j=1}^d g(z + c_j)^{v_j}$,

 $F = \frac{F_1^{(k)}}{\alpha(z)}$ and $G = \frac{G_1^{(k)}}{\alpha(z)}$. Then F and G are transcendental meromorphic functions that share (1,2) except the zeros and poles of $\alpha(z)$. Using (2.1) and Lemma 2.2, we get

$$N_2(r,0;F) \le N_2(r,0;F_1^{(k)}) + S(r,f)$$

$$\le T(r,F_1^{(k)}) - (n+m+\sigma)T(r,f) + N_{k+2}(r,0;F_1) + S(r,f)$$

$$\le T(r,F) - (n+m+\sigma)T(r,f) + N_{k+2}(r,0;F_1) + S(r,f)$$

From this we get,

$$(3.6) (n+m+\sigma)T(r,f) \le T(r,F) + N_{k+2}(r,0;F_1) - N_2(r,0;F) + S(r,f)$$

Again by (2.2), we have

$$(3.7) N_2(r,0;F) < N_2(r,0;F_1^{(k)}) + S(r,f) < N_{k+2}(r,0;F_1) + S(r,f)$$

Suppose, if possible that (i) of Lemma 2.5 holds, Then, using (3.7), we obtain from (3.6)

$$(n+m+\sigma)T(r,f) \leq N_2(r,0;G) + N_2(r,\infty;F)$$

$$+ N_2(r,\infty;G) + N_{k+2}(r,0;F_1) + S(r,f) + S(r,g)$$

$$\leq N_{k+2}(r,0;F_1) + N_{k+2}(r,0;G_1) + S(r,f) + S(r,g)$$

$$\leq (k+2+m+\sigma)\{T(r,f) + T(r,g)\} + S(r,f) + S(r,g)$$
(3.8)

In a similar manner we obtain,

$$(3.9) \quad (n+m+\sigma)T(r,q) < (k+2+m+\sigma)\{T(r,f) + T(r,q)\} + S(r,f) + S(r,q).$$

From (3.8) and (3.9) together gives,

$$(n-2k-m-\sigma-4)\{T(r,f)+T(r,q)\} \le S(r,f)+S(r,q),$$

contradicting with the fact that $n \ge 2k + m + \sigma + 5$. Therefore, by Lemma 2.5 we have either FG = 1 or F = G.

Let FG = 1. Then,

$$\left[f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)}\cdot\left[g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}\right]^{(k)}=\alpha^{2}$$

$$\left[f^{n}(z)(f(z) - 1)(f^{m-1}(z) + f^{m-2}(z) + \dots + 1) \prod_{j=1}^{d} f(z + c_{j})^{v_{j}} \right]^{(k)} \cdot \left[g^{n}(z)(g(z) - 1)(g^{m-1}(z) + g^{m-2}(z) + \dots + 1) \prod_{j=1}^{d} g(z + c_{j})^{v_{j}} \right]^{(k)} = \alpha^{2}$$

It can be easily viewed from above that

$$N(r, 0; f) = S(r, f)$$
 and $N(r, 1; f) = S(r, f)$

Thus,

$$\delta(0, f) + \delta(1, f) + \delta(\infty, f) = 3,$$

Which is not possible. Therefore, we must have F = G, and then

$$\left[f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)} = \left[g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}\right]^{(k)}$$

Integrating above, we get,

$$\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k-1)} = \left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k-1)} + C_{k-1}$$

Where C_{k-1} is a constant. If $C_{k-1} \neq 0$, using Lemma 2.7, it follows that $n \leq 2k+m+\sigma$ a contradiction. Hence $C_{k-1} = 0$, repeating k times, we deduce that,

$$f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}=g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}$$

which by Lemma 2.9, gives f = tg where t is a constant satisfying $t^m = 1$. This proves Theorem 1.13.

Proof of Theorem 1.14. Let $F_1 = f^n(z)(f(z)-1)^m \prod_{j=1}^d f(z+c_j)^{v_j}$ and $G_1 = g^n(z)(g(z)-1)^m \prod_{j=1}^d g(z+c_j)^{v_j}$. $F = \frac{F_1^{(k)}}{\alpha(z)}$ and $G = \frac{G_1^{(k)}}{\alpha(z)}$. Then F and G are transcendental meromorphic functions that share (1,2) except possibly the zeros and poles of $\alpha(z)$.

Arguing in a manner similar to the proof of Theorem 3.13, we obtain either FG = 1 or F = G.

If F = G, then applying the same techniques as in the proof of Theorem 3.13 and using Lemma 2.8, we obtain.

(3.10)
$$f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f(z+c_{j})^{v_{j}} = g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g(z+c_{j})^{v_{j}}$$

Set $h = \frac{f}{g}$. If h is a constant, then substituting f = gh in equation (3.10), we duduce that

$$g^{n} \prod_{j=1}^{d} g(z+c_{j})^{v_{j}} \left[g^{m} (h^{n+m+\sigma}-1) - {}^{m}c_{1}g^{m-1}(h^{n+m+\sigma-1}-1) + \dots + (-1)^{m}(h^{n+\sigma}-1) \right] = 0$$

Since g is a transcendental entire function, we have $g^n \prod_{j=1}^d g(z+c_j)^{v_j} \neq 0$. So from above we obtain,

$$g^{m}(h^{n+m+\sigma}-1) - {}^{m}c_{1}g^{m-1}(h^{n+m+\sigma-1}-1) + \dots + (-1)^{m}(h^{n+\sigma}-1) = 0$$

which implies h = 1

Hence f = g. If h is not a constant, then it follows from equation (3.10) that f and g satisfy the algebraic equation R(f,g) = 0 where R(f,g) is given by

$$R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m \prod_{j=1}^d \omega_1 (z + c_j)^{v_j} - \omega_2^n (\omega_2 - 1)^m \prod_{j=1}^d \omega_2 (z + c_j)^{v_j}$$

If FG = 1, proceeding in a like manner as in the proof of Theorem 1.13 we arrive at a contradiction. This completes the proof of Theorem 1.14.

Proof of Theorem 1.15. Let F, G, F_1 and G_1 be defined as in the proof of Theorem 3.13. Then, F and G are transcendental meromorphic functions that share the value 1 IM except the zeros and poles of $\alpha(z)$. We assume, if possible, that $H \not\equiv 0$. Using

Lemma 2.6 and (3.7), we obtain from (3.6).

(3.11)

$$(n+m+\sigma)T(r,f) \leq N_2(r,0;G) + N_2(r,\infty;F) + N_2(r,\infty;G) + 2\overline{N}(r,0;F) + \overline{N}(r,0;G)$$

$$+ N_{k+2}(r,0;F_1) + 2\overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + S(r,f) + S(r,g)$$

$$\leq N_{k+2}(r,0;F_1) + N_{k+2}(r,0;G_1) + 2N_{k+1}(r,0;F_1)$$

$$+ 2N_{k+1}(r,0;G_1) + S(r,f) + S(r,g)$$

$$\leq (3k+4+3m+3\sigma)T(r,f) + (2k+3+2m+2\sigma)T(r,g) + S(r,f) + S(r,g)$$

$$\leq (5k+5m+5\sigma+7)T(r) + S(r)$$

Similarly,

$$(3.12) (n+m+\sigma)T(r,f) \le (5k+5m+12)T(r) + S(r).$$

From equations (3.11) and (3.12), together yields

$$(n-4m-4\sigma-5k-7)T(r) \le S(r),$$

which is a contradiction with the assumption that $n \geq 5k + 4m + 4\sigma + 8$. We now assume that $H \equiv 0$. Then

$$\left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right) = 0$$

Integrating both sides of above equality twice, we get

(3.13)
$$\frac{1}{F-1} = \frac{A}{G-1} + B.$$

Where $A(\neq 0)$ and B are constants.

From (3.13) it is obvious that F, G share value 1 CM and hence they share (1,2). Therefore $n \ge 2k + m + \sigma + 5$. We now discuss the following three cases separately.

case i. Suppose that $B \neq 0$ and A = B, then from (3.13) we obtain.

(3.14)
$$\frac{1}{F-1} = \frac{BG}{G-1}.$$

If B = -1, then from (3.14), we obtain FG = 1, which is a contradiction as in the proof of Theorem 1.13.

If $B \neq -1$, from (3.14), we have,

$$\frac{1}{F} = \frac{BG}{(1+B)G-1}$$

and so
$$\overline{N}\left(r, \frac{1}{1+B}; G\right) = \overline{N}(r, 0; F).$$

Using (2.1), (2.2) and Second Fundamental Theorem of Nevanlinna, we deduce that

$$T(r,G) \leq \overline{N}(r,0;G) + \overline{N}\left(r,\frac{1}{1+B};G\right) + \overline{N}(r,\infty;G) + S(r,G)$$

$$\leq \overline{N}(r,0;F) + \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + S(r,G)$$

$$\leq N_{k+1}(r,0;F_1) + T(r,G) + N_{k+1}(r,0;G_1) - (n+m+\sigma)T(r,g) + S(r,g)$$

This gives,

$$(n+m+\sigma)T(r,q) \le (k+m+\sigma+1)\{T(r,f)+T(r,q)\} + S(r,q)$$

Thus we obtain

$$(n-2k-m-\sigma-2)\{T(r,f)+T(r,g)\} \le S(r,f)+S(r,g),$$

which is a contradiction as $n \ge 2k + m + \sigma + 5$.

case ii. Let $B \neq 0$ and $A \neq B$. Then From (3.13), we get

$$F = \frac{(B+1)G - (B-A+1)}{BG + (A-B)},$$

and so
$$\overline{N}\left(r, \frac{B-A+1}{B+1}; G\right) = \overline{N}(r, 0; F),$$

Proceeding in a manner similar to case i we can arrive at a contradiction.

case iii. Let B = 0 and $A \neq 0$. Then from (3.13) we get

$$F = \frac{G+A-1}{A} \text{ and } G = AF - (A-1)$$

If $A \neq 1$, it follows that $\overline{N}\left(r, \frac{A-1}{A}; F\right) = \overline{N}(r, 0; G)$ and $\overline{N}\left(r, 1-A; G\right) = \overline{N}(r, 0; F)$ Now applying Lemma 2.7, it can be shown that $n \leq 2k + m + \sigma + 2$, which is a contradiction.

Thus, A=1 and then F=G. Now the result follows from the proof of Theorem 1.13. This completes the proof of Theorem 1.15.

Proof of Theorem 1.16. Arguing in a like manner as in proof of Theorem 1.15, the conclusion of Theorem 1.16 follows. Here we omit the details. \Box

References

- [1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22(2005), 3587-3598.
- [2] S. S. Bhoosnurmath and S. R. Kabbur, Value distribution and uniqueness theorems for dierence of entire and meromorphic functions, Int. J. Anal. Appl., 2(2013), 124-136.
- [3] M. R. Chen and Z. X. Chen, Properties of difference polynomials of entire functions with Finite order, Chinese Ann. Math. Ser. A, 33(2012), 359-374.
- [4] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane, Ramanujan J., 16(2008), 105-129
- [5] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning dif- ferential polynomials, Indian J. Pure Appl. Math., 32(2001), 1343-1348.
- [6] M. L. Fang and X. H. Hua, Entire functions that share one value, J. Nanjing Univ. Math. Biquarterly, 13(1996), 44-48.
- [7] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31(2006), 463-478.
- [8] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with application to difference equations, J. Math. Anal. Appl., **314**(2006), 477-487.

- [9] W. K. Hayman, Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
- [10] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46(2001), 241-253.
- [11] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/Newyork, 1993.
- [12] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. SerA Math. Sci., 83(2007), 148-151.
- [13] X. Luo and W. C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl., 377(2011), 441-449.
- [14] X. G. Qi, L. Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl., 60(2010), 1739-1746.
- [15] P. Sahoo, Uniqueness and weighted sharing of entire functions, Kyungpook Math. J., 51(2011), 145-164.
- [16] P. Sahoo, Entire functions that share fixed points with nite weights, Bull. Belgian Math. Soc.-Simon Stevin, 18(2011), 883-895.
- [17] C. C. Yang and X.H. Hua, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(1997), 395-406.
- [18] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
- [19] J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl., 367(2010), 401-408.
- [20] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Bruck, J. Inequal. Pure Appl. Math., 8(2007), Art. 18.
- [21] P. Sahoo and B. Saha, Value distribution and uniqueness of certain type of difference polynomials, App. Math. E-Notes, 16(2016), 33-34.
- [22] C.C. Yang and H.X. Yi, Uniqueness Theory of Meromorphic Function. Dordrecht: Kluwer, 2003.

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560 056, India.

E-mail address: harinapw@gmail.com, harina@bub.ernet.in