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GENERALIZATION OF VALUE DISTRIBUTION AND

UNIQUENESS OF CERTAIN TYPES OF DIFFERENCE

POLYNOMIALS

HARINA P. WAGHAMORE

Abstract. In this paper, we study the distribution of zeros and uniqueness of dif-

ferential polynomials of the form fn(z)(f(z)−1)m
∏d

j=1
f(z+cj)

sj and fn(z)(fm(z)−

1)
∏d

j=1
f(z+cj)

vj where cj(j = 1, 2, · · · , d) are complex constants, vj(j = 1, 2, · · · , d)

are non-negative integers and σ =
∑d

j=1
vj sharing a small function with finite

weight. The result obtained improves and generalizes the recent result.

1. Introduction

In this article, we assume that the reader is familiar with the fundamental results

and the standard notations of the Nevanlinna theory (see, for example, [9],[22]). Let

f(z) and g(z) be two non-constant meromorphic functions in the complex plane. By

S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞, possibly

outside a set of finite logarithmic measure. Then, the meromorphic function α is

called a small function of f(z), if T (r, α) = S(r, f). If f(z)− α and g(z)− α have the

same zeros, counting multiplicity (ignoring multiplicity), then we say f(z) and g(z)

share a small function α CM (IM). For a small function α related to f(z), we define

δ(α, f) = lim inf
r→∞

m(r, 1
f−α

)

T (r, f)
,
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Θ(α, f) = 1 − lim sup
r→∞

N(r, 1
f−α

)

T (r, f)
.

In 2010, X. G. Qi, L. Z. Yang and K. Liu [14] proved the following uniqueness

result.

Theorem 1.1. Let f , g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to both f and g. Suppose that c is a

non zero complex constant and n ≥ 7 is an integer. If f n(z)(f(z) − 1)f(z + c) and

gn(z)(g(z) − 1)g(z + c) share α(z) CM, then f = g.

In 2013, S. S. Bhoosnrmath and S. R. Kabbur [2] considered the zeros of difference

polynomials of the form fn(z)(fm(z) − 1)f(z + c), where n, m are positive integers

and c is a non zero complex constant and obtained the following theorems.

Theorem 1.2. Let f be an entire function of finite order and α(z)(6≡ 0) be a small

function with respect to f . Suppose that c a non zero complex constant and n, m are

positive integers. If n ≥ 2, then fn(z)(fm(z) − 1)f(z + c) − α(z) has infinitely many

zeros.

Theorem 1.3. Let f and g be two transcendental entire functions of finite order

and α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a

non zero complex constant and n, m are positive integers such that n ≥ m + 6. If

fn(z)(fm(z) − 1)f(z + c) and gn(z)(gm(z) − 1)g(z + c) share α(z) CM, then f = tg,

where tm = 1.

Theorem 1.4. Let f and g be two transcendental entire functions of finite order

and α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a

non zero complex constant and n, m are positive integers such that n ≥ 4m + 12. If

fn(z)(fm(z) − 1)f(z + c) and gn(z)(gm(z) − 1)g(z + c) share α(z) IM, then f = tg,

where tm = 1.
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Recently, P. Sahoo and B. Saha [21] studied the zeros and uniqueness of certain

type of difference polynomial sharing a small function with finite weight and obtained

the following results.

Theorem 1.5. Let f be a transcendental entire functions of finite order and α(z)(6≡ 0)

be a small function with respect to f . Suppose that c is a non zero complex constant,

n(≥ 1), m(≥ 1) and k(≥ 0) are integers. If n ≥ k+2, then [f n(z)(fm(z) − 1)f(z + c)](k)−

α(z) has infinitely many zeros.

Theorem 1.6. Let f be a transcendental entire functions of finite order and α(z)(6≡ 0)

be a small function with respect to f . Suppose that c is a non zero complex constant,

n, m ≥ 1 and k(≥ 0) are integers. If n ≥ k + 2, when m ≤ k + 1 and n ≥ 2k −m + 3

when m > k + 1, then [fn(z)(f(z) − 1)mf(z + c)](k) − α(z) has infinitely many zeros.

Theorem 1.7. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a non zero

complex constant, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k + m + 6. If

[fn(z)(fm(z) − 1)f(z + c)](k) and [gn(z)(gm(z) − 1)g(z + c)](k) share (α, 2) then f =

tg, where tm = 1.

Theorem 1.8. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a non zero

complex constant, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k + m + 6 when

m ≤ k + 1 and n ≥ 4k − m + 10 when m > k + 1. If [f n(z)(f(z) − 1)mf(z + c)](k)

and [gn(z)(g(z) − 1)mg(z + c)](k) share (α, 2) then either f = g or f and g satisfy the

algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn
1 (ω1 − 1)mω1(z + c) − ωn

2 (ω2 − 1)mω2(z + c).

Theorem 1.9. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a non zero
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complex constant, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 5k + 4m + 12.

If [fn(z)(fm(z) − 1)f(z + c)](k) and [gn(z)(gm(z) − 1)g(z + c)](k) share α(z) IM, then

f = tg, where tm = 1.

Theorem 1.10. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that c is a non zero

complex constant, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 5k +4m+12 when

m ≤ k + 1 and n ≥ 10k − m + 19 when m > k + 1.If [f n(z)(f(z) − 1)mf(z + c)](k)

and [gn(z)(g(z) − 1)mg(z + c)](k) share α(z), then conclusion of Theorem H hold.

Regarding Theorems 1.5-1.10, the following question is inevitable which is motiva-

tion of the present paper.

Question. What would happen if one replaces the difference polynomials [f n(z)(fm(z)−

1)f(z + c)](k) by fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj in Theorems 1.5-1.10, where k is

any positive integer?

In this paper, we study the zero and uniqueness of difference polynomial of the

form fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj and fn(z)(fm(z) − 1)

∏d

j=1 f(z + cj)
vj where

cj(j = 1, 2, · · · , d) are complex constants, vj(j = 1, 2, · · · , d) are non-negative integers

and σ = v1 + v2 + · · · + vd =
∑d

j=1 vj and hence obtain the following results.

Theorem 1.11. Let f be a transcendental entire function of finite order and α(z)(6≡

0) be a small function with respect to f . Suppose that cj(j = 1, 2, · · · , d) are non zero

complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥ 1 and k(≥ 0)

are integers. If n ≥ k + 2, then
[

fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

](k)

− α(z) has

infinitely many zeros.

Theorem 1.12. Let f be a transcendental entire functions of finite order and α(z)(6≡

0) be a small function with respect to f . Suppose that cj(j = 1, 2, · · · , d) is a non zero

complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥ 1 and k(≥ 0)



GENERALIZATION OF VALUE DISTRIBUTION... 37

are integers. If n ≥ k + 2 when m ≤ k + 1 and n ≥ 2k−m + 3 when m > k + 1, then
[

fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj

](k)

− α(z) has infinitely many zeros.

Theorem 1.13. Let f and g be two transcendental entire functions of finite order

and α(z)(6≡ 0) be a small function with respect to f and g. Suppose that cj(j =

1, 2, · · · , d) are non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative

integers, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k + m + σ + 5. If
[

fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

](k)

and
[

gn(z)(gm(z) − 1)
∏d

j=1 g(z + cj)
vj

](k)

share

(α, 2), then f = tg where tm = 1.

Theorem 1.14. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d)

are non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥

1 and k(≥ 0) are integers satisfying n ≥ 2k + m + σ + 5 when m ≤ k + 1 and

n ≥ 4k − m + σ + 9 when m > k + 1. If
[

fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj

](k)

and
[

gn(z)(g(z) − 1)m
∏d

j=1 g(z + cj)
vj

](k)

share (α, 2), then either f = g or f and g

satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn
1 (ω1 − 1)m

∏d

j=1 ω1(z + cj)
vj − ωn

2 (ω2 − 1)m
∏d

j=1 ω2(z + cj)
vj .

Theorem 1.15. Let f and g be two transcendental entire functions of finite order

and α(z)(6≡ 0) be a small function with respect to f and g. Suppose that cj(j =

1, 2, · · · , d) are non-negative complex constants, vj(j = 1, 2, · · · , d) are non-negative

integers, n, m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 5k + 4m + 4σ + 8.

If
[

fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

](k)

and
[

gn(z)(gm(z) − 1)
∏d

j=1 g(z + cj)
vj

](k)

share α(z) IM, then f = tg where tm = 1.

Theorem 1.16. Let f and g be two transcendental entire functions of finite order and

α(z)(6≡ 0) be a small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d)

are non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥ 1
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and k(≥ 0) are integers satisfying n ≥ 5k + 4m + 4σ + 8 when m ≤ k + 1 and

n ≥ 10k−m+4σ+15 when m > k+1. If
[

fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj

](k)

and
[

gn(z)(g(z) − 1)m
∏d

j=1 g(z + cj)
vj

](k)

share α(z) IM, then the conclusion of theorem

4 hold.

Remark. For σ = 1 in Theorems 1.11 to 1.16, we get Theorems 1.5 to 1.10.

Hence Theorems 1.11 to 1.16 generalizes Theorems 1.5 to 1.10.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in the complex

plane C. We denote by H the following function

H =

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

Lemma 2.1. [13] Let f be a meromorphic function of finite order ρ and let c(6= 0)

be a fixed non zero complex constant. Then

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f)

outside a possible exceptional set of finite logarithmic measure.

Lemma 2.2. [3] Let f be an entire function of finite order and F = f n(z)(fm(z) −

1)f(z + c). Then T (r, F ) = (n + m + 1)T (r, f) + S(r, f).

Arguing in a similar manner as in Lemma 2.6[3] we obtain the following Lemma.

Lemma 2.3. Let f be an entire function of finite order and F = f n(z)(f(z) −

1)m
∏d

j=1 f(z + cj). Then T (r, F ) = (n + m + σ)T (r, f) + S(r, f).

Lemma 2.4. [20] Let f be a non-constant meromorphic functions and p, k be two

positive integers. Then

(2.1) Np(r, 0; f (k)) ≤ T (r, f (k)) − T (r, f) + Np+k(r, 0; f) + S(r, f)
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(2.2) Np(r, 0; f (k)) ≤ kN(r,∞, f) + Np+k(r, 0; f) + S(r, f)

Lemma 2.5. [10] Let f and g be two non-constant meromorphic functions sharing

(1,2). Then one of the following cases holds.

(i) T (r) ≤ N2(r, 0; f) + N2(r, 0; g) + N2(r,∞; f) + N2(r,∞; g) + S(r),

(ii) f = g,

(iii) fg = 1, when T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.6. [1] Let F and G be two non-constant meromorphic functions sharing

the value 1 IM and H 6≡ 0. Then

T (r, F ) ≤N2(r, 0; F ) + N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + 2N(r, 0; F ) + N(r, 0; G)

+ 2N(r,∞; F ) + N(r,∞; G) + S(r, F ) + S(r, G)

and the same inequality holds for T (r, G).

Lemma 2.7. Let f and g be two entire functions, suppose that cj(j = 1, 2, · · · , d) are

non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥ 1

and k(≥ 0) are integers and let F =
[

fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

](k)

and G =
[

gn(z)(gm(z) − 1)
∏d

j=1 g(z + cj)
vj

](k)

. If there exists non zero constants c1 and c2

such that N(r, c1; F ) = N(r, 0; G) and N(r, c2; G) = N(r, 0; F ), then n ≤ 2k+m+σ+2.

Proof. We put F1 = fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj and G1 = gn(z)(gm(z) −

1)
∏d

j=1 g(z + cj)
vj , by the second fundamental theorem of Nevanlinna, we have

T (r, F ) ≤ N(r, 0; F ) + N(r, c1; F ) + S(r, F )

≤ N(r, 0; F ) + N(r, 0; G) + S(r, F )
(2.3)
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Using equation (2.3), in Lemmas 2.2 and 2.4, we obtain

(n + m + σ)T (r, f) ≤ T (r, F ) − N(r, 0; F ) + Nk+1(r, 0; F1) + S(r, f)

≤ N(r, 0; G) + Nk+1(r, 0; F1) + S(r, f)

≤ Nk+1(r, 0; F1) + Nk+1(r, 0; G1) + S(r, f) + S(r, g)

≤ (k + m + σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

(2.4)

Similarly,

(2.5) (n + m + σ)T (r, g) ≤ (k + m + σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Combining (2.4) and (2.5), we obtain

(n − 2k − m − σ − 2)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Which gives n ≤ 2k + m + σ + 2.

This proves the lemma.

Lemma 2.8. Let f and g be two entire functions, suppose that cj(j = 1, 2, · · · , d) are

non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n, m ≥ 1

and k(≥ 0) are integers and let F =
[

fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj

](k)

and G =
[

gn(z)(g(z) − 1)m
∏d

j=1 g(z + cj)
vj

](k)

. If there exists non zero constants c1 and c2

such that N(r, c1; F ) = N(r, 0; G) and N(r, c2; G) = N(r, 0; F ), then n ≤ 2k+m+σ+2

when m ≤ k + 1 and n ≤ 4k − m + σ + 4 when m > k + 1.

Proof. By the same reasoning as in proof of Lemma 2.7, we can easily deduce the

result. Hence we omit the details.

Arguing in a similar manner as in lemma 2.5([2]), we obtain the following lemma.

Lemma 2.9. Suppose that f and g are two transcendental entire function of fi-

nite order. Suppose that cj(j = 1, 2, · · · , d) are non zero complex constants, vj(j =

1, 2, · · · , d) are non-negative integers, n, m ≥ 1 and k(≥ 0) are integers. If n ≥ m+5
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and
[

fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

](k)

=
[

gn(z)(gm(z) − 1)
∏d

j=1 g(z + cj)
vj

](k)

then f = tg where tm = 1.

3. Proofs of Main Theorems

Proof of Theorem 1.11. Let F1 = fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj . Then F1 is a

transcendental entire function.

If possible, we assume F
(k)
1 − α(z) has only finitely many zeros. Then, we have

(3.1) N(r, α, F
(k)
1 ) = o{log r} = S(r, f).

Using (2.1), (3.1) and Nevanlinna’s three small function theorem, we obtain

T (r, F
(k)
1 ) ≤ N(r, 0, F

(k)
1 ) + N(r, α; F

(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 ) − T (r, F1) + Nk+1(r, 0; F1) + S(r, f)

(3.2)

Applying lemma 2.2, we obtain from (3.2),

(n + m + σ)T (r, f) ≤ Nk+1(r, 0; F1) + S(r, f)

≤ (k + m + σ + 1)T (r, f) + S(r, f)

This gives

(n − k − 1)T (r, f) ≤ S(r, f),

a contradiction with the assumption that n ≥ k + 2. This proves the theorem. �

Proof of Theorem 1.12. Let F2 = fn(z)(f(z) − 1)m
∏d

j=1 f(z + cj)
vj . Then F2 is a

transcendental entire function.

If possible, suppose that F
(k)
2 − α(z) has only finitely many zeros. Then, we have

(3.3) N(r, α, F
(k)
2 ) = o{log r} = S(r, f)
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Now, using (2.1), (3.3) and Nevanlinna’s three small function theorem, we obtain

T (r, F
(k)
2 ) ≤ N(r, 0, F

(k)
2 ) + N(r, α; F

(k)
2 ) + S(r, f)

≤ T (r, F
(k)
2 ) − T (r, F2) + Nk+1(r, 0; F2) + S(r, f)

(3.4)

Applying Lemma 2.3, we obtain from (3.4)

(n + m + σ)T (r, f) ≤ Nk+1(r, 0; F2) + S(r, f)

≤ (k + m + σ + 1)T (r, f) + S(r, f)
(3.5)

If m ≤ k + 1, we deduce from (3.5) that

(n − k − 1)T (r, f) ≤ S(r, f),

a contradiction to the assumption that n ≥ k + 2.

If m < k + 1, by (3.5) we get,

(n + m − 2k − 2)T (r, f) ≤ S(r, f)

a contradiction with the assumption that n ≥ 2k − m + 3. This proves the theorem.

�

Proof of Theorem 1.13. Let F1 = fn(z)(fm(z) − 1)
∏d

j=1 f(z + cj)
vj

and G1 = gn(z)(gm(z) − 1)
∏d

j=1 g(z + cj)
vj ,

F =
F

(k)
1

α(z)
and G =

G
(k)
1

α(z)
. Then F and G are transcendental meromorphic functions

that share (1,2) except the zeros and poles of α(z). Using (2.1) and Lemma 2.2, we

get

N2(r, 0; F ) ≤ N2(r, 0; F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 ) − (n + m + σ)T (r, f) + Nk+2(r, 0; F1) + S(r, f)

≤ T (r, F ) − (n + m + σ)T (r, f) + Nk+2(r, 0; F1) + S(r, f)
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From this we get,

(3.6) (n + m + σ)T (r, f) ≤ T (r, F ) + Nk+2(r, 0; F1) − N2(r, 0; F ) + S(r, f)

Again by (2.2), we have

(3.7) N2(r, 0; F ) ≤ N2(r, 0; F
(k)
1 ) + S(r, f) ≤ Nk+2(r, 0; F1) + S(r, f)

Suppose, if possible that (i) of Lemma 2.5 holds, Then, using (3.7), we obtain from

(3.6)

(n + m + σ)T (r, f) ≤ N2(r, 0; G) + N2(r,∞; F )

+ N2(r,∞; G) + Nk+2(r, 0; F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0; F1) + Nk+2(r, 0; G1) + S(r, f) + S(r, g)

≤ (k + 2 + m + σ){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)(3.8)

In a similar manner we obtain,

(3.9) (n + m + σ)T (r, g) ≤ (k + 2 + m + σ){T (r, f) + T (r, g)} + S(r, f) + S(r, g).

From (3.8) and (3.9) together gives,

(n − 2k − m − σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that n ≥ 2k + m + σ + 5. Therefore, by Lemma 2.5 we

have either FG = 1 or F = G.

Let FG = 1. Then,

[

fn(z)(fm(z) − 1)

d
∏

j=1

f(z + cj)
vj

](k)

·
[

gn(z)(gm(z) − 1)

d
∏

j=1

g(z + cj)
vj

](k)

= α2
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[

fn(z)(f(z) − 1)(fm−1(z) + fm−2(z) + · · · + 1)
∏d

j=1 f(z + cj)
vj

](k)

·
[

gn(z)(g(z) −

1)(gm−1(z) + gm−2(z) + · · ·+ 1)
∏d

j=1 g(z + cj)
vj

](k)

= α2

It can be easily viewed from above that

N(r, 0; f) = S(r, f) and N(r, 1; f) = S(r, f)

Thus,

δ(0, f) + δ(1, f) + δ(∞, f) = 3,

Which is not possible. Therefore, we must have F = G, and then

[

fn(z)(fm(z) − 1)

d
∏

j=1

f(z + cj)
vj

](k)

=
[

gn(z)(gm(z) − 1)

d
∏

j=1

g(z + cj)
vj

](k)

Integrating above, we get,

[

fn(z)(fm(z)− 1)

d
∏

j=1

f(z + cj)
vj

](k−1)

=
[

gn(z)(gm(z)− 1)

d
∏

j=1

g(z + cj)
vj

](k−1)

+Ck−1

Where Ck−1 is a constant. If Ck−1 6= 0, using Lemma 2.7, it follows that n ≤ 2k+m+σ

a contradiction. Hence Ck−1 = 0, repeating k times, we deduce that,

fn(z)(fm(z) − 1)

d
∏

j=1

f(z + cj)
vj = gn(z)(gm(z) − 1)

d
∏

j=1

g(z + cj)
vj

which by Lemma 2.9, gives f = tg where t is a constant satisfying tm = 1. This proves

Theorem 1.13. �

Proof of Theorem 1.14. Let F1 = fn(z)(f(z)−1)m
∏d

j=1 f(z+cj)
vj and G1 = gn(z)(g(z)−

1)m
∏d

j=1 g(z + cj)
vj . F =

F
(k)
1

α(z)
and G =

G
(k)
1

α(z)
. Then F and G are transcendental

meromorphic functions that share (1,2) except possibly the zeros and poles of α(z).

Arguing in a manner similar to the proof of Theorem 3.13, we obtain either FG = 1

or F = G.
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If F = G, then applying the same techniques as in the proof of Theorem 3.13 and

using Lemma 2.8, we obtain.

(3.10) fn(z)(f(z) − 1)m

d
∏

j=1

f(z + cj)
vj = gn(z)(g(z) − 1)m

d
∏

j=1

g(z + cj)
vj

Set h =
f

g
. If h is a constant, then substituting f = gh in equation (3.10), we duduce

that

gn

d
∏

j=1

g(z+cj)
vj

[

gm(hn+m+σ−1)−mc1g
m−1(hn+m+σ−1−1)+· · ·+(−1)m(hn+σ−1)

]

= 0

Since g is a transcendental entire function, we have gn
∏d

j=1 g(z + cj)
vj 6= 0. So from

above we obtain,

gm(hn+m+σ − 1) − mc1g
m−1(hn+m+σ−1 − 1) + · · · + (−1)m(hn+σ − 1) = 0

which implies h = 1

Hence f = g. If h is not a constant, then it follows from equation (3.10) that f and

g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn
1 (ω1 − 1)m

d
∏

j=1

ω1(z + cj)
vj − ωn

2 (ω2 − 1)m

d
∏

j=1

ω2(z + cj)
vj

If FG = 1, proceeding in a like manner as in the proof of Theorem 1.13 we arrive at

a contradiction. This completes the proof of Theorem 1.14. �

Proof of Theorem 1.15. Let F, G, F1 and G1 be defined as in the proof of Theorem

3.13. Then, F and G are transcendental meromorphic functions that share the value

1 IM except the zeros and poles of α(z). We assume, if possible, that H 6≡ 0. Using
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Lemma 2.6 and (3.7), we obtain from (3.6).

(n + m + σ)T (r, f) ≤N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + 2N(r, 0; F ) + N(r, 0; G)

+ Nk+2(r, 0; F1) + 2N(r,∞; F ) + N(r,∞; G) + S(r, f) + S(r, g)

≤Nk+2(r, 0; F1) + Nk+2(r, 0; G1) + 2Nk+1(r, 0; F1)

+ 2Nk+1(r, 0; G1) + S(r, f) + S(r, g)

≤(3k + 4 + 3m + 3σ)T (r, f) + (2k + 3 + 2m + 2σ)T (r, g)+

S(r, f) + S(r, g)

≤(5k + 5m + 5σ + 7)T (r) + S(r)

(3.11)

Similarly,

(3.12) (n + m + σ)T (r, f) ≤ (5k + 5m + 12)T (r) + S(r).

From equations (3.11) and (3.12), together yields

(n − 4m − 4σ − 5k − 7)T (r) ≤ S(r),

which is a contradiction with the assumption that n ≥ 5k + 4m + 4σ + 8. We now

assume that H ≡ 0. Then
(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

= 0

Integrating both sides of above equality twice, we get

(3.13)
1

F − 1
=

A

G − 1
+ B.

Where A(6= 0) and B are constants.

From (3.13) it is obvious that F, G share value 1 CM and hence they share (1,2).

Therefore n ≥ 2k + m + σ + 5.
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We now discuss the following three cases separately.

case i. Suppose that B 6= 0 and A = B, then from (3.13) we obtain.

(3.14)
1

F − 1
=

BG

G − 1
.

If B = −1, then from (3.14), we obtain FG = 1, which is a contradiction as in the

proof of Theorem 1.13.

If B 6= −1, from (3.14), we have,

1

F
=

BG

(1 + B)G − 1

and so N

(

r,
1

1 + B
; G

)

= N(r, 0; F ).

Using (2.1), (2.2) and Second Fundamental Theorem of Nevanlinna, we deduce that

T (r, G) ≤ N(r, 0; G) + N

(

r,
1

1 + B
; G

)

+ N(r,∞; G) + S(r, G)

≤ N(r, 0; F ) + N(r, 0; G) + N(r,∞; G) + S(r, G)

≤ Nk+1(r, 0; F1) + T (r, G) + Nk+1(r, 0; G1) − (n + m + σ)T (r, g) + S(r, g)

This gives,

(n + m + σ)T (r, g) ≤ (k + m + σ + 1){T (r, f) + T (r, g)} + S(r, g)

Thus we obtain

(n − 2k − m − σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n ≥ 2k + m + σ + 5.

case ii. Let B 6= 0 and A 6= B. Then From (3.13), we get

F =
(B + 1)G − (B − A + 1)

BG + (A − B)
,

and so N

(

r,
B − A + 1

B + 1
; G

)

= N(r, 0; F ),

Proceeding in a manner similar to case i we can arrive at a contradiction.
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case iii. Let B = 0 and A 6= 0. Then from (3.13) we get

F =
G + A − 1

A
and G = AF − (A − 1)

If A 6= 1, it follows that N

(

r,
A − 1

A
; F

)

= N(r, 0; G) and N (r, 1 − A; G) = N(r, 0; F )

Now applying Lemma 2.7, it can be shown that n ≤ 2k + m + σ + 2, which is a con-

tradiction.

Thus, A = 1 and then F = G. Now the result follows from the proof of Theorem

1.13. This completes the proof of Theorem 1.15. �

Proof of Theorem 1.16. Arguing in a like manner as in proof of Theorem 1.15, the

conclusion of Theorem 1.16 follows. Here we omit the details. �
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