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NON-UNIFORM WAVELET FRAMES ON LOCAL FIELDS

O. AHMAD (1) AND N. A. SHEIKH (2)

Abstract. Tight wavelet frames are distinct from the orthonormal wavelets be-

cause of redundancy. By relinquishing orthonormality and permitting redundancy,

the tight wavelet frames turn out to be significantly easier to construct than the

orthonormal wavelets. In this paper, we introduce a notion of nonuniform wavelet

system on nonarchimedean local fields of positive characteristic and gave a com-

plete characterization of such systems to be tight nonuniform wavelet frames on

local fields of positive characteristic by using Fourier transforms.

1. Introduction

The concept of frames in a Hilbert space was originally introduced by Duffin and

Schaeffer [6] in the context of non-harmonic Fourier series. In signal processing, this

concept has become very useful in analyzing the completeness and stability of lin-

ear discrete signal representations. Frames did not seem to generate much interest

until the ground-breaking work of Daubechies et al. [3]. They combined the the-

ory of continuous wavelet transforms with the theory of frames to introduce wavelet

(wavelet) frames for L2(R). Since then the theory of frames began to be more widely

investigated, and now it is found to be useful in signal processing, image processing,

harmonic analysis, sampling theory, data transmission with erasures, quantum com-

puting and medicine. Today more applications of the theory of frames are found in
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diverse areas including optics, filter banks, signal detection and in the study of Bosev

spaces and Banach spaces. We refer [5, 4] for an introduction to frame theory and

its applications.

In applications, tight wavelet frames provide representations of signals and im-

ages where repetition of the representation is favored and the ideal reconstruction

property of the associated filter bank algorithm, as in the case of orthonormal wavelets

is kept.

A field K equipped with a topology is called a local field if both the additive and

multiplicative groups of K are locally compact Abelian groups. For example, any

field endowed with the discrete topology is a local field. For this reason we consider

only non-discrete fields. The local fields are essentially of two types (excluding the

connected local fields R and C). The local fields of characteristic zero include the p-

adic field Qp. Examples of local fields of positive characteristic are the Cantor dyadic

group and the Vilenkin p-groups. Even though the structures and metrics of local

fields of zero and positive characteristics are similar, their wavelet and multiresolution

analysis theory are quite different. For more details we refer to [1].

The local field K is a natural model for the structure of wavelet frame systems,

as well as a domain upon which one can construct wavelet basis functions. There is a

substantial body of work that has been concerned with the construction of wavelets

on K, or more generally, on local fields of positive characteristic. For example, Jiang

et al.[9] pointed out a method for constructing orthogonal wavelets on local field K

with a constant generating sequence and derived necessary and sufficient conditions

for a solution of the refinement equation to generate a multiresolution analysis of

L2(K). Shah and Debnath [10] have constructed tight wavelet frames on local fields

of positive characteristic using the extension principles. As far as the construction
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of wavelet frames on K via Fourier transforms is concerned, Li and Jiang [8] have

established a necessary condition and a set of sufficient conditions for the system

(1.1)
{

ψj,k =: qj/2ψ
(

p−jx− u(k)
)

: j, k ∈ N0

}

to be a frame for L2(K). These studies were continued by Shah and his colleagues in

series of papers [11, 12, 13, 14, 15].

Motivated and inspired by the above work, we provide the complete characterization

of nonuniform tight wavelet frames on local fields of positive characteristic by means of

Fourier transform technique. The paper is tailored as follows. In section 2, we discuss

some basic facts about local fields of positive characteristic including the notion of

nonuniform wavelet frames on local fields of positive characteristic. In section 3, we

provide the complete characterization of nonuniform tight wavelet frames on local

fields of positive characteristic by using the machinery of Fourier transform.

2. Basic Fourier analysis on local fields

Let K be a field and a topological space. Then K is called a local field if both K+ and

K∗ are locally compact Abelian groups, where K+ and K∗ denote the additive and

multiplicative groups of K, respectively. If K is any field and is endowed with the

discrete topology, then K is a local field. Further, if K is connected, then K is either

R or C. If K is not connected, then it is totally disconnected. Hence by a local field,

we mean a field K which is locally compact, non-discrete and totally disconnected.

The p-adic fields are examples of local fields. More details are referred to [16, 7]. In

the rest of this paper, we use N,N0 and Z to denote the sets of natural, non-negative

integers and integers, respectively.

Let K be a fixed local field. Then there is an integer q = pr, where p is a fixed

prime element of K and r is a positive integer, and a norm |.| on K such that for

all x ∈ K we have |x| ≥ 0 and for each x ∈ K \ {0} we get |x| = qk for some
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integer k. This norm is non-Archimedean, that is |x + y| ≤ max {|x|, |y|} for all

x, y inK and |x+ y| = max {|x|, |y|} whenever |x| 6= |y|. Let dx be the Haar measure

on the locally compact, topological group (K,+). This measure is normalized so

that
∫

D
dx = 1, where D = {x ∈ K : |x| ≤ 1} is the ring of integers in K. Define

B = {x ∈ K : |x| < 1}. The set B is called the prime ideal in K. The prime ideal

in K is the unique maximal ideal in D and hence as result B is both principal and

prime. Therefore, for such an ideal B in D, we have B = 〈p〉 = pD.

Let D∗ = D \ B = {x ∈ K : |x| = 1}. Then, it is easy to verify that D∗ is a group

of units in K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗. Moreover, each

Bk = pkD =
{

x ∈ K : |x| < q−k
}

is a compact subgroup of K+ and usually known

as the fractional ideals of K+ (see [16]). Let U = {ai}
q−1
i=0 be any fixed full set of coset

representatives of B in D, then every element x ∈ K can be expressed uniquely as

x =
∑∞

`=k c`p
` with c` ∈ U . Let χ be a fixed character on K+ that is trivial on D

but is non-trivial on B−1. Therefore, χ is constant on cosets of D so if y ∈ Bk, then

χy(x) = χ(yx), x ∈ K. Suppose that χu is any character on K+, then clearly the

restriction χu|D is also a character on D. Therefore, if {u(n) : n ∈ N0} is a complete

list of distinct coset representative of D in K+, then it is proved in [19] that the set
{

χu(n) : n ∈ N0

}

of distinct characters on D is a complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}n∈N0
. Since D/B ∼= GF (q) =

Γ, where GF (q) is a c-dimensional vector space over the field GF (p)(see [16]). We

choose a set {1 = ε0, ε1, ε2, ..., εc−1} ⊂ D∗ such that span {1 = ε0, ε1, ε2, ..., εc−1} ∼=

GF (q). For n ∈ N0 such that

0 ≤ n < q, n = a0 + a1p+ ...+ ac−1p
c−1, 0 ≤ ak < p and k = 0, 1, ..., c− 1,

we define

(2.1) u(n) = (a0 + a1ε1 + ... + ac−1εc−1)p
−1.
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Also, for n = b0 + b1q + ... + bsq
s, n ≥ 0, 0 ≤ bk < q, we set

u(n) = u(b0) + p−1u(b1) + ... + p−su(bs).

Then, it is easy to verify that (see [16])

{u(k) : k ∈ N0} = {−u(k) : k ∈ N0} , {u(k) + u(`) : k ∈ N0} = {u(k) : k ∈ N0} , for ` ∈ N0

and u(n) = 0 ⇔ n = 0. Further, hereafter we will denote χu(n) by χn, n ≥ 0. We

also denote the test function space on K by Ω, i.e., each function f in Ω is a finite

linear combination of functions of the form 1k(x− h), h ∈ K, k ∈ Z, where 1k is the

characteristic function of Bk. Then, it is clear that Ω is dense in Lp(K), 1 ≤ p <∞,

and each function in Ω is of compact support and so is its Fourier transform.

The Fourier transform of a function f ∈ L1(K) is defined by

f̂(ξ) =

∫

K

f(x)χξ(x)dx.

Note that

f̂(ξ) =

∫

K

f(x)χξ(x)dx =

∫

K

f(x)χ(−ξx)dx.

The properties of the Fourier transform on the local field K are quite similar to those

of the Fourier analysis on the real line [16, 7]. In particular, if f ∈ L1(K) ∩ L2(K),

then f̂ ∈ L2(K) and

‖f̂‖2 = ‖f‖2.

The following are the standard definitions of frames in Hilbert spaces.

Definition 2.1 A sequence {fk : k ∈ Z} of elements of a Hilbert space H is called a

frame for H if there exist constants A,B > 0 such that

A
∥

∥f
∥

∥

2

2
≤

∑

k∈Z

|〈f, fk〉|
2 ≤ B

∥

∥f
∥

∥

2

2
.
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holds for every f ∈ H, and we call the optimal constants A and B the lower frame

bound and the upper frame bound, respectively. A tight frame refers to the case

when A = B, and a Parseval frame refers to the case when A = B = 1.

Given an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1, r and N are

relatively prime, we consider the translation set Λ as

Λ =

{

0,
u(r)

N

}

+ Z =

{

u(r)k

N
+ u(n) : n ∈ N0, k = 0, 1

}

It is easy to verify that Λ is not necessarily a group nor a uniform discrete set, but is

the union of Z and a translate of Z.

For a given ψ ∈ L2(K), define the nonuniform wavelet (wavelet) system

(2.2) W(ψ, j, λ) =
{

ψj,λ =: (qN)j/2ψ
(

(p−1N)jx− λ
)

; j ∈ Z, λ ∈ Λ
}

.

On taking Fourier transform, the system (2.2) can be rewritten as

(2.3) ψ̂j,λ(ξ) = (qN)−j/2ψ̂
(

(p−1N)−jξ
)

χλ
(

(p−1N)−jξ
)

.

We call the wavelet system W(ψ, j, λ) a nonuniform wavelet(or wavelet) frame for

L2(K), if there exist constants A and B, 0 < A ≤ B <∞ such that for all f ∈ L2(K)

(2.4) A
∥

∥f
∥

∥

2

2
≤

∑

j∈Z

∑

λ∈Λ

∣

∣

〈

f, ψj,λ
〉
∣

∣

2
≤ B

∥

∥f
∥

∥

2

2
.

The largest constant A and the smallest constant B satisfying (2.4) are called the

lower and upper wavelet frame bound, respectively. A nonuniform wavelet frame is a

tight nonuniform wavelet frame if A and B are chosen so that A = B and the nonuni-

form wavelet frame is called a Parseval nonuniform wavelet frame if A = B = 1, i.e.,
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(2.5)
∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2 = ‖f‖2, ∀ f ∈ L2(K)

and in this case, every function f ∈ L2(K) can be written as

f(x) =
∑

j∈Z

∑

λ∈Λ

〈f, ψj,λ〉ψj,λ(x).

Since Ω is dense in L2(K) and closed under the Fourier transform, the set

Ω0 =
{

f ∈ Ω : suppf̂ ⊂ K\{0}
}

is also dense in L2(K). Therefore, it is sufficient to verify that the system W(ψ, j, λ)

given by (2.2) is a frame and tight frame for L2(K) if (2.4) and (2.5) hold for all

f ∈ Ω0.

3. Characterization of Nonuniform Tight wavelet Frames on L2(K)

In order to prove the main result to be presented in this section, we need the following

lemma whose proof can be found in [16].

Lemma 3.1 Let f ∈ Ω0 and ψ be in L2(K). If

ess sup

{

∑

j∈Z

|ψ̂
(

(p−1N)−jξ
)

|2 : ξ ∈ B−1\D

}

<∞,

then

(3.1)
∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2 =

∫

K

∣

∣

∣
f̂(ξ)

∣

∣

∣

2 ∑

j∈Z

∣

∣

∣
ψ̂

(

(p−1N)−jξ
)

∣

∣

∣

2

dξ +Rψ(f)
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where

(3.2)

Rψ(f) =
∑

j∈Z

∫

K

f̂(ξ)ψ̂
(

(p−1N)−jξ
)

{

qN−1
∑

`=0

f̂
(

ξ + (p−1N)ju(`)
)

ψ̂ ((p−1N)−jξ + u(`))

}

dξ

=
∑

j∈Z

qN−1
∑

`=0

∫

K

f̂(ξ)ψ̂
(

(p−1N)−jξ
)

f̂
(

ξ + (p−1N)ju(`)
)

ψ̂ ((p−1N)−jξ + u(`))dξ.

Furthermore, the iterated series in (3.2) is absolutely convergent.

The L.H.S of (3.1) converges for all f ∈ Ω0 if and only if
∑

j∈Z
|ψ̂ ((p−1N)−jξ) |2 is

locally integrable inK\∪j∈ZE
c
j , where Ej is the set of regular points of |ψ ((p−1N)−jξ)|

2
,

which means that for each x ∈ Ej, we have

(qN)n
∫

ξ−x∈Cn

|ψ̂
(

(p−1N)−jξ
)

|2dξ → |ψ̂
(

(p−1N)−jξ
)

|2 as n→ ∞.

where Cn = {x ∈ K : |x| ≤ (qN)−n}. Then |Ec
j | = 0 . Thus |

⋃

j∈Z
Ec
j | = 0.

Now we state and prove our main result concerning the characterization of the wavelet

system W(ψ, j, λ) given by (2.2) to be tight frame for L2(K).

Theorem 3.2 The wavelet system W(ψ, j, λ) given by (2.2) is a tight nonuniform

wavelet frame for L2(K) if and only if ψ satisfies

(3.3)
∑

j∈Z

∣

∣

∣
ψ̂

(

(p−1N)−jξ
)

∣

∣

∣

2

= 1, for a.e. ξ ∈ C−1\D

and

(3.4)
∑

j∈N0

ψ̂
(

(p−1N)−jξ
)

ψ̂ ((p−1N)j(ξ + u(m))) = 0, for a.e. ξ ∈ C−1\D, 0 ≤ m ≤ qN−1.
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Proof Define

tψ(u(m), ξ) =
∑

k∈N0

ψ̂
(

(p−1N)kξ
)

ψ̂ ((p−1N)k(ξ + u(m))).

Assume f ∈ Ω0, then for each ` ∈ N, there exists k ∈ N0 and a unique 0 ≤ m ≤

qN − 1 such that ` = (qN)km. Thus, by virtue of (2.1) we have that {u(`)}`∈N =

{(p−1N)ku(m) : k ∈ N, 0 ≤ m ≤ qN − 1}. Since the series in (3.2) is absolutely

convergent, we can estimate Rψ(f) as follows:

Rψ(f) =
∑

j∈Z

∫

K

f̂(ξ)ψ̂
(

(p−1N)−jξ
)

{

∑

`∈N

f̂
(

ξ + (p−1N)ju(`)
)

ψ̂ ((p−1N)−jξ + u(l))

}

dξ

=
∑

j∈Z

∫

K

f̂(ξ)ψ̂
(

(p−1N)−jξ
)

{

∑

k∈N0

qN−1
∑

m=0

f̂
(

ξ + (p−1N)j+ku(m)
)

×ψ̂ ((p−1N)−jξ + (p−1N)ku(m))
}

dξ

=

∫

K

f̂(ξ)

{

∑

k∈N0

qN−1
∑

m=0

∑

j∈Z

f̂
(

ξ + (p−1N)−ju(m)
)

ψ̂
(

(p−1N)−j−kξ
)

×ψ̂ ((p−1N)−j+kξ + (p−1N)ku(m))
}

dξ

=

∫

K

f̂(ξ)

{

∑

j∈Z

qN−1
∑

m=0

f̂
(

ξ + (p−1N)ju(m)
)

∑

k∈N0

ψ̂
(

(p−1N)−j+kξ
)

×ψ̂ ((p−1N)k ((p−1N)−jξ + u(m)))
}

dξ

=

∫

K

f̂(ξ)

{

∑

j∈Z

qN−1
∑

m=0

f̂
(

ξ + (p−1N)ju(m)
)

tψ(u(m), (p−1N)−jξ)

}

dξ.
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Let us collect the results we have obtained: If ψ ∈ L2(K) and f ∈ Ω0, then

(3.5)
∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2 =

∫

K

|f̂(ξ)|2
∑

j∈Z

|ψ̂
(

(p−1N)−jξ
)

|2dξ

+

∫

K

f̂(ξ)
∑

j∈Z

qN−1
∑

m=0

f̂
(

ξ + (p−1N)−ju(m)
)

tψ(u(m), (p−1N)−jξ)dξ.

The last integrand is integrable and so is the first when
∑

j∈Z

∣

∣ψ̂ ((p−1N)−jξ)
∣

∣

2
is

locally integrable in K\ ∪j∈Z E
c
j . Further, equation (3.4) implies that

tψ(u(m), ξ) = 0 for all 0 ≤ m ≤ qN − 1.

On Combining (3.5) together with (3.3) and (3.4), we obtain

∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2 = ‖f‖2

2, ∀ f ∈ Ω0.

Since Ω0 is dense in L2(K), hence the wavelet system W(ψ, j, λ) given by (2.2) is a

tight nonuniform wavelet frame for L2(K).

Conversely, suppose that the system W(ψ, j, λ) given by (2.2) is a tight nonuni-

form wavelet frame for L2(K), then we need to show that the two equations (3.3)

and (3.4) are satisfied. Since {ψj,λ(x) : j ∈ Z, λ ∈ Λ} is a tight nonuniform wavelet

frame for L2(K), then we have

(3.6)
∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2 = ‖f‖2

2, ∀ f ∈ Ω0.

Since
∑

j∈Z
|ψ̂ ((p−1N)−jξ) |2 is locally integrable in K\ ∪j∈Z E

c
j . Therefore, for each

ξ0 ∈ K\ ∪j∈Z E
c
j , we consider

f̂1(ξ) = (qN)
M
2 1M(ξ − ξ0)
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where f = f1 and 1M (ξ−ξ0) is the characteristic function of ξ0 +CM . Then, it follows

that for 0 ≤ ` ≤ qN − 1, f̂(ξ)f̂(ξ + (p−1N)−ju(`)) ≡ 0, since ξ and ξ + (p−1N)−ju(`)

cannot be in ξ0 + CM simultaneously and hence, ‖f1‖
2
2 = 1. Furthermore, we have

1 = ‖f1‖
2
2

= ‖f̂1‖
2
2

=
∑

j∈Z

∑

λ∈Λ

|〈f, ψj,λ〉|
2

=

∫

ξ0+CM

∑

j∈Z

(qN)M
∣

∣

∣
ψ̂

(

(p−1N)−jξ
)

∣

∣

∣

2

dξ +Rψ(f1)

By letting M → ∞, we obtain

(3.7) 1 =
∑

j∈Z

∣

∣

∣
ψ̂

(

(p−1N)−jξ0
)

∣

∣

∣

2

+ lim
M→∞

Rψ(f1).

Now, we proceed to estimate Rψ(f1) as:

Rψ(f1) =
∑

j∈Z

∫

K

f̂1(ξ)ψ̂
(

(p−1N)−jξ
)

{

∑

`∈N

f̂1

(

ξ + (p−1N)ju(`)
)

ψ̂ ((p−1N)−jξ + u(`))

}

dξ

|Rψ(f1)| ≤
∑

j∈Z

∑

`∈N

∫

K

∣

∣

∣
f̂1(ξ)ψ̂

(

(p−1N)−jξ
)

f̂1

(

ξ + (p−1N)ju(`)
)

ψ̂
(

(p−1N)−jξ + u(`)
)

∣

∣

∣
dξ

=
∑

j∈Z

∑

`∈N

(qN)j
∫

K

∣

∣

∣
f̂1((p

−1N)jξ)f̂1

(

(p−1N)j(ξ + u(`))
)

ψ̂ (ξ) ψ̂ (ξ + u(`))
∣

∣

∣
dξ.

Note that

∣

∣

∣
ψ̂(ξ)ψ̂ (ξ + u(`))

∣

∣

∣
≤

1

2

(

∣

∣

∣
ψ̂(ξ)

∣

∣

∣

2

+
∣

∣

∣
ψ̂ (ξ + u(`))

∣

∣

∣

2
)
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Therefore, we have

(3.8) |Rψ(f1)| ≤
∑

j∈Z

∑

`∈N

(qN)j
∫

K

∣

∣

∣
f̂1

(

(p−1N)jξ
)

f̂1

(

(p−1N)j(ξ + u(`))
)

||ψ̂(ξ)
∣

∣

∣

2

dξ.

Since u(`) 6= 0, (` ∈ N) and f1 ∈ Ω0, there exists a constant J > 0 such that

f̂1

(

(p−1N)jt
)

f̂1

(

(p−1N)jt+ (p−1N)ju(`))
)

= 0, ∀ |j| > J.

On the other hand, for each |j| ≤ J, there exists a constant L such that

f̂1

(

(p−1N)jt+ (p−1N)ju(`))
)

= 0, ∀ ` > L.

This means that only finite terms of the series on the R.H.S of (3.8) are non-zero.

Consequently, there exits a constant C such that

|Rψ(f1)| ≤ C‖f̂1‖
2
∞‖ψ̂‖2

2 = C(qN)m‖ψ̂‖2
2

which implies

lim
M→∞

|Rψ(f1)| = 0.

Hence equation (3.7) becomes

∑

j∈Z

∣

∣

∣
ψ̂

(

(p−1N)−jξ0
)

∣

∣

∣

2

= 1.

Finally, we must show that if (3.6) hold for all f ∈ Ω0, then equation (3.4) is true.

From equalities (3.5), (3.6) and just established equality (3.3), we have

∑

j∈Z

qN−1
∑

m=0

∫

K

f̂(ξ)f̂
(

ξ + (p−1N)ju(m)
)

tψ(u(m), (p−1N)jξ)dξ = 0, ∀ f ∈ Ω0.

By invoking polarization identity, we then have

(3.9)
∑

j∈Z

qN−1
∑

m=0

∫

K

f̂(ξ)ĝ
(

ξ + (p−1N)ju(m)
)

tψ(u(m), (p−1N)−jξ) dξ = 0, ∀ f, g ∈ Ω0.
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Let us fix m0 ∈ {0, 1, 2, · · · , qN − 1} and ξ0 ∈ K\ ∪j∈Z E
c
j such that neither ξ0 6= 0

nor ξ0 + u(m0) 6= 0. Setting f = f1 and g = g1 such that

f̂1(ξ) = (qN)
M
2 1M(ξ − ξ0) and ĝ1(ξ) = f̂1(ξ − u(m0)).

Then, we have

(3.10) f̂1(ξ)ĝ1(ξ + u(m0)) = (qN)M1M (ξ − ξ0).

Now, equality (3.9) can be written as

0 = (qN)M
∫

ξ0+CM

tψ(u(m0), ξ)dξ + I1,

where

(3.11) I1 =
∑

j∈Z

qN−1
∑

m=0

(j,m)6=(0,m0)

∫

K

f̂1(ξ)ĝ1

(

ξ + (p−1N)ju(m)
)

tψ(u(m), (p−1N)−jξ)dξ.

Since the first summand in (3.11) tends to tψ(u(m0), ξ0) as M → ∞. Therefore, we

shall prove that

lim
M→∞

I1 = 0.

Since u(m) 6= 0, (m ∈ N) and f1, g1 ∈ Ω0, there exists a constant J0 > 0 such that

f̂1(ξ) ĝ1

(

ξ + (p−1N)ju(m)
)

= 0 ∀ j > J0.

Therefore, we have

I1 =
∑

j≤J0

qN−1
∑

m=0

∫

K

f̂1(ξ)ĝ1

(

ξ + (p−1N)ju(m)
)

tψ(u(m), (p−1N)−jξ)dξ

|I1| ≤
∑

j≤J0

qN−1
∑

m=0

(qN)j
∫

K

∣

∣

∣
f̂1((p−1N)jξ)ĝ1

(

(p−1N)j(ξ + u(m))
)

∣

∣

∣
|tψ(u(m), ξ)|dξ.

Since

2 |tψ(u(m), ξ)| ≤
∑

k∈N0

|ψ̂
(

(p−1N)kξ
)

|2 +
∑

k∈N0

∣

∣

∣
ψ̂

(

(p−1N)k(ξ + u(m))
)

∣

∣

∣

2

,
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hence

|I1| ≤ I
(1)
1 + I

(2)
1

where

I
(1)
1 =

∑

j≤J0

qN−1
∑

m=0

(qN)j
∫

K

∣

∣

∣
f̂1((p

−1N)jξ)
∣

∣

∣

∣

∣ĝ1

(

(p−1N)j(ξ + u(m))
)
∣

∣ [τ(ξ)]2dξ,

with

∫

K

[τ(ξ)]2dξ =
1

2

∑

k∈N0

∫

K

∣

∣

∣
ψ̂

(

(p−1N)kξ
)

∣

∣

∣

2

dξ = ‖ψ̂‖2
2 <∞,

and

I
(2)
1 =

∑

j≤J0

qN−1
∑

m=0

(qN)j
∫

K

∣

∣

∣
f̂1((p

−1N)jξ)
∣

∣

∣

∣

∣ĝ1

(

(p−1N)j(ξ + u(m))
)
∣

∣ [τ(ξ + u(m))]2dξ

=
∑

j≤J0

qN−1
∑

m=0

(qN)j
∫

K

∣

∣

∣
f̂1((p

−1N)j(η − u(m)))
∣

∣

∣

∣

∣ĝ1

(

(p−1N)jη
)
∣

∣ [τ(η)]2dξ.

Thus I
(2)
1 has the same form as I

(1)
1 with the roles of f̂1 and ĝ1 interchanged. As

f̂1(ξ) = (qN)
M
2 1M(ξ − ξ0),

therefore, we deduce that

I
(1)
1 =

∑

j≤J0

qN−1
∑

m=0

(qN)j(qN)
M
2

∫

(p−1N)jξ0+C−j+M

∣

∣ĝ1

(

(p−1N)j(ξ + u(m))
)
∣

∣ [τ(ξ)]2dξ.
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Now, if ĝ1 ((p−1N)j(ξ + u(m))) 6= 0, then we must have (p−1N)jξ + (p−1N)ju(m) ∈

ξ0 + CM + u(m0) and |(p−1N)ju(m)| ≤ (qN)−M , hence |u(m)| ≤ (qN)−M−j . Thus,

(3.12)

I
(1)
1 =

∑

j≤J0

(qN)j(qN)
M
2

∫

(p−1N)jξ0+C−j+M

[τ(ξ)]2
qN−1
∑

m=0

∣

∣ĝ1

(

(p−1N)j(ξ + u(m))
)∣

∣ dξ

≤
∑

j≤J0

(qN)j(qN)
M
2

∫

(p−1N)jξ0+C−j+M

[τ(ξ)]2(qN)−M−j(qN)
M
2 dξ

≤
∑

j≤J0

∫

(p−1N)jξ0+C−j+M

[τ(ξ)]2dξ

For given ξ0 6= 0, we choose

(qN)J0 < |ξ0| = (qN)−M .

Then, we obtain

(3.13) (p−1N)jξ0 + C−j+M ⊂ C−J0+M ∀ j ≤ J0,

as |(p−1N)jξ0| = (qN)j(qN)−M ≤ qJ0(qN)−M and C−j+M ⊂ C−J0+M . On the other

hand, for any j1 < j2 ≤ J0, we claim that

(3.14) {(p−1N)j1ξ0 + C−j1+M} ∩ {(p−1N)j2ξ0 + C−j2+M} = ∅.

In fact, for any x ∈ (p−1N)j1ξ0 + C−j1+M and y ∈ (p−1N)j2ξ0 + C−j2+M , write

x = (p−1N)j1ξ0 + x1 and y = (p−1N)j2ξ0 + y1, then |x − y| = max{|(p−1N)j1ξ0 −

(p−1N)j2ξ0|, |x1 − y1|} = (qN)j2−M 6= 0. implies that (3.14) holds. Combining (3.12)

- (3.14), we obtain

I
(1)
1 ≤

∫

C−J0+M

[τ(ξ)]2dξ → 0 as M → ∞.

This completes the proof of the theorem.
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Example 3.3 Let

ψ1(x) =







1 x ∈ D,

0 x /∈ D,
and ψ2(x) =







(qN)−1 x ∈ C−1,

0 x /∈ C−1.

Setting ψ(x) = ψ1(x) − ψ2(x). Since ψ̂1(ξ) = ψ1(ξ) and

ψ̂2(ξ) =







1 x ∈ C,

0 x /∈ C.

Therefore, we have

ψ̂(ξ) =







1 x ∈ C−1\D,

0 otherwise.

Now, for ξ 6= 0, we see that

∑

j∈Z

∣

∣ψ̂
(

(p−1N)jξ
)
∣

∣

2
= 1,

and since (p−1N)jξ and (p−1N)j(ξ + u(m)) cannot be in C−1\D simultaneously.

Therefore,
∞

∑

j=0

ψ̂
(

(p−1N)jξ
)

ψ̂ ((p−1N)j(ξ + u(m))) = 0.
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2015.

[5] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
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