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EFFICIENCY OF ADAPTIVE METHODS USING SIMULATED
ALPHA SKEW NORMAL TWO-STAGE DATA

NESREEN M. AL-OLAIMAT (1) AND LOAI M. A. AL-ZOU’BI (2)

Abstract. Two-stage sampling improves variances for estimators of means and

regression coefficients because of intra-class homogeneity. To choose the appropri-

ate way of allowing for clustering using sample data, an adaptive method will be

evaluated in this paper based on testing the null hypothesis that the variance com-

ponent of the random effect is zero. Rejecting the null hypothesis, clustering will be

allowed for in variance estimation; otherwise clustering will be ignored. The data

will be simulated from alpha-skew normal distribution with different values of the

parameter.

1. Introduction

Two-stage sampling designs are used instead of simple random sampling (SRS)

when the population is too large or scattered ([15]). Two stage sampling is a sampling

technique which is obtained by dividing the population into groups (clusters) called

primary sampling units (PSUs), then selecting a random sample from each PSU

([6]). Cluster sampling is a two stage sampling but selecting all PSUs in the first

stage ([24]). The advantages of two stage sampling are: obtaining a list of all clusters
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may be easier and cheaper than obtaining a list of all elements in the population

([36]). It saves time as the data can be collected and summarized quickly. It is more

flexible than one stage sampling with respect to the types of information that can be

obtained. It gives more accurate results comparing with the other sampling ([6]).

A complication of two-stage sampling is that: values of a variable of interest may

tend to be more similar for units from the same PSU than for units from different

PSUs. The intraclass correlation (ICC), ρ, is a measure of the association between

the observations for members of the same PSU. If the intraclass correlation is non-

zero, the clustered nature of the design should be reflected in the analysis procedure.

One way of doing this is by fitting a multilevel model (MLM) ([12]).

The intra-class correlation is defined as the ratio of the variance between clusters

(σ2
b ) to the total variance (σ2

b + σ2
e) ([38]). It is given by ρ =

σ2
b

σ2
b+σ2

e
. Which can be

estimated as: ρ̂ =
σ̂2
b

σ̂2
b+σ̂2

e
.

In practice the intraclass correlation is often quite small. For example, if units

within PSUs are no more homogenous than units over all PSUs, then the intraclass

correlation is zero. On the other hand, if units from the same PSU have equal values

then the intraclass correlation is 1.

Adaptive methods using LM , LMM and Huber-White for Normal data were used

by [3]. These methods were used for Log-normal data ([3]), for Exponential data [2],

and for Skew Normal data ([1]). They tested H0 : σ2
b = 0. If H0 is rejected they

used the LMM or the Huber-White methods to estimate the variance of β̂. If H0 is

not rejected, the LM is used to estimate the variance of β̂. [3] used another adaptive

method based on testing H0 : σ2
b = 0 and comparing d̂eff to predefined cutoff

values (d ). If H0 is rejected and d̂eff ≥ d they used the LMM or the Huber-White

methods to estimate the variance of β̂. Otherwise they used the LM to estimate the

variance of β̂.
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This paper is divided into 9 sections. In Section 2 we have defined the model.

The alpha-skew normal distribution is explained in Section 3. Estimation of model

parameters using the likelihood theory is discussed in Section 4. In Section 5 the

robust Huber-White estimator of var(β̂) is discussed. While in Section 6, we have

explained the test of H0 : σ2
b = 0 using the restricted likelihood ratio test. In Section

7 the adaptive methods used throughout this paper and the confidence intervals of

the estimated regression parameters are explained. In Section 8, a simulation study

is conducted to test the superiority of the adaptive methods. Finally, concluding

remarks and future work are included in Section 9.

2. Multilevel analysis

Multilevel models are generalizations of regression models which provide an alter-

native type of analysis for univariate or multivariate analysis of repeated measures

([14]). Models with fixed effects only, which assume that all observations are inde-

pendent, are not suitable to analyze some types of correlated data, specifically for

clustered data. To analyse multilevel data, cluster effect must be considered and

added to the regression model to take into account the correlation of the data. The

resulting model is called a linear mixed model ([23]).

A linear mixed model (LMM) is a mix of fixed effects and random effects where

the fixed effects called regression coefficients, describe the relationship between the

dependent variable and predictor variables for an entire population of units of anal-

ysis, the fixed effects are assumed to be unknown fixed quantities in a LMM and we

estimate them, but the random effects are random values associated with the levels

of a random factor in LMM , the random effects are represented as random variables

in a LMM , which is displayed in Equation (2.1) below, containing the random effect

bi and the error eij. Random effects are not directly estimated but they are estimated

according to variance and covariance ([41]).
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[12] defined the two-level linear mixed model (LMM) as:

(2.1) yij = β
′
xij + bi + eil, i = 1, 2, ..., c, j = 1, 2, ...,m,

where yij is the response of jth unit in PSU i, c is the number of clusters or PSUs in the

sample, m is the number of observations selected from PSU i, xij is the independent

vector of jth unit in PSU i for fixed effects, β is the vector of unknown regression

coefficients, bi is the random effect and eij is the error term.

A simple special case of (2.1) is the intercept-only model, which assumes that all

xij = 1, ∀ i, j, where

(2.2) yij = β + bi + eij, i = 1, 2, ..., c, j = 1, 2, ...,m

([33]).

In this paper, we will assume that bi has an alpha-skew normal distribution with

skewness parameters a = 0, ±1, ±2 and the error term eij has an alpha-skew normal

distribution with skewness parameter a = 0, as well.

3. Alpha Skew Normal distribution

The normal distribution is one of the most important and most widely used dis-

tribution in statistics, the density function of the normal probability distribution is

symmetric about the mean, the normal probability distribution appears in a wide

rang of fields. For example, in Biology, it has been observed that the normal prob-

ability distribution fits data on the heights and weights of human and populations

([31]). We know that the probability density function (pdf) and cumulative distribu-

tion function (cdf) of the standard normal random variable are given as:

(3.1) φ(x) =
1√
2π
e
−x2
2 , Φ(x) =

∫ x

−∞
φ(u)du.
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The Skew Normal distribution is an asymmetric distribution which is extended the

normal distribution through a shape parameter a; they reduce to the standard normal

distribution when a = 0 ([4]). The pdf of the skew normal distribution is defined as:

(3.2) fa(x) = 2φ(x)Φ(a).

[28] introduced a new family of distributions, it is called alpha-skew normal (ASN)

family, which is a skew-symmetric distribution that is flexible enough to support both

unimodal and bimodal shape, this family is denoted as {ASN(a) : a ∈ R}. The pdf

of the random variable X which follow ASN(a) is defined as:

(3.3) f(x) =
(1− ax)2 + 1

2 + a2
φ(x), x ∈ R, a ∈ R.

The ASN distribution has the following properties:

(1) The first and second moments and the variance of the ASN(a) are given by

µ = E(X) = − 2a

2 + a2
,

E(X2) =
2 + 3a2

2 + a2
,

and σ2 =
3a4 + 4a2 + 4

(2 + a2)2

(2) There is no close form for the maximum likelihood estimate of the skewness

parameter a.

(3) X ∼ N(0, 1) when the skewness parameter a = 0;

(4) X ∼ BN if the skewness parameter a ⇒ ±∞ with f(x) = x2φ(x), x ∈ R,

where BN stands for the bivariate normal distribution.

(5) −X ∼ ASN(−a).

Figure 1 shows the graph of the alpha-skew normal distribution for different skewness

parameters a = ±2,±1.5,±1,±0.5 and 0. When a = 0, it is clear that the distribution

is symmetric about 0. This means that the distribution reduces to standard normal
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Figure 1. Alpha Skew Normal distribution with different skewness parameters
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distribution. It is skewed to the left when a = −2,−1.5,−1, and −0.5 and to the

right when a = 0.5, 1, 1.5 and 2. When a = ±1, the property of bi-modality starts

appear clearly. This property appears much clearer when the absolute value of a

increases.

4. Likelihood theory estimation of model parameters

The principle tool for estimating regression coefficient β, variance component σ2
b

and error term variance, σ2
e in multilevel modeling is the maximum likelihood method

([26]). This method is used because it has many advantages as it is generally robust

and produces estimates that are asymptotically efficient and consistent, moreover; its

estimates has lower variances than other methods. The function used to estimate

the variance components σ2
b and σ2

e is called the restricted maximum likelihood

(REML) function ([16]). The REML method is basically the same as the max-

imum likelihood method except for one difference: the REML method takes into

account the degrees of freedom used for estimating fixed effects when estimating

variance components, while the maximum likelihood method does not use it ([44]).
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The REML estimate of β̂ is given by

β̂ols =
( c∑
i=1

x′ixi
)−1

c∑
i=1

(
x′iyi

)
,(4.1)

The estimated variance of the regression coefficient β̂ is defined as:

v̂ar(β̂) =

( c∑
i=1

x′iV̂
−1
i xi

)−1

(4.2)

where

(4.3) Vi = σ2
bJm + σ2

eIm

where Jm is an m×m matrix with all entries equal to 1, and Im is an m×m identity

matrix ([33]). Which simplifies when we have balanced data and the intercept-only

model to:

v̂ar(β̂) =
1

c

[
σ̂2
b +

σ̂2
e

m

]
,(4.4)

where

σ̂2
e = min

(
MSE,

n− c
n− 1

MSE +
c− 1

n− 1
MSA

)
;

σ̂2
b =

1

m
max(MSA−MSE, 0);

β̂ = ȳ...

([34]).

5. Huber-White estimation of var(β̂)

The ordinary least squares (OLS) is one of the simplest methods for estimating the

parameters of multilevel regression models ([16]). This method is applied by minimiz-

ing the sum of squares of vertical distance between actual and predicted values. An

alternative of ML and REML estimates of v̂ar(β̂) is the robust variance estimator
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which was first suggested by [17, 42] then introduced by [25] who applied it to longi-

tudinal data using generalized estimating equations (GEE). This approach is often

used for cluster sampling provide that the observations within PSUs might be corre-

lated and the observations in different PSUs are independent. The robust estimator

procedure is a general method for estimating the covariance matrix of parameter es-

timates, which yields asymptotically consistent covariance matrix estimates without

making distribution assumptions and even if the assumed model (2.1) is incorrect

([5]).

The estimator v̂ar(β̂) in (4.2) will be approximately unbiased provided that the

variance model (4.3) is correct. If this is not the case, v̂ar(β̂) will be biased and

inference will be incorrect. This approach can be referred to as robust or Huber-

White variance estimation ([17, 42]).

An alternative estimator of Vi is V̂ Hub
i = êiê

′
i where êi = yi− x

′
iβ̂, V̂ Hub

i is approx-

imately unbiased for Vi (i.e E(V̂ Hub
i ) ≈ Vi). But

(5.1) var(β̂) = var((
c∑
i=1

x′iV̂
−1
i xi)

−1(
c∑
i=1

x′iV̂
−1
i yi)).

([33]).

Therefore, the Huber-White variance estimator for β̂ is defined by [25] as:

(5.2) v̂arHub(β̂) = (
c∑
i=1

x
′

iV̂
−1
i xi)

−1(
c∑
i=1

x′iV̂
−1
i V̂ Hub

i V̂ −1
i xi)(

c∑
i=1

x
′

iV̂
−1
i xi)

−1

where V̂ Hub
i is the robust variance estimator of Vi.

Using the intercept-only with balanced data case, Equation (5.2) reduces to

(5.3) v̂arHub(β̂) =
1

c(c− 1)

c∑
i=1

(yi. − y..)
2

6. Testing H0 : σ2
b = 0 in the linear mixed model

One of the main problems in mixed models is the inclusion or exclusion of the

random effect term in the model because of the location of its variance component
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(σ2
b ) on the boundary of the parameter space under the null hypothesis H0. Such

tests was first worked by [37] and [39].

The work of [37] focused on deriving the properties of the likelihood by allowing

the true parameter value to be on the boundary of its parameter space. Under non-

standard conditions, the asymptotic null distribution of the likelihood ratio tests will

not have the typical χ2 distribution. Although, it has been proved that the cor-

rect asymptotic distribution is a mixture of χ2 distributions assuming that response

variables are iid. [39] applied the results of [37] specifically to test for H0 : σ2
b = 0

in linear mixed models. They also showed that likelihood ratio test for σ2
b has an

asymptotic 0.5χ2
0 : 0.5χ2

1. This means that under H0 the χ2 statistic has mixture

distribution of 50 : 50 χ2 with zero and one degrees of freedom under the null and

alternative hypothesis if the data are iid. This is because there is a 50% chance of

finding a positive estimate if the null hypothesis is true and a 50% chance of finding a

negative estimate. Since the variance can’t be negative, usual procedure is to change

the negative estimate to zero with a 50% chance of getting zero estimate ([21]). For

the important special case of the null hypothesis H0 : σ2
b = 0; the distribution of

the likelihood ratio test (LRT ) is the most commonly used test because its desirable

theoretical properties and the fact that it is easy to construct, which can be computed

using restricted maximum likelihood (REML) ([43]). The restricted likelihood ratio

test given by the restricted log-likelihood function for the balanced data with the

intercept-only model the restricted likelihood ratio test RLRT is defined as:

(6.1) Λ =

{
(n− 1) log(n−c

n−1
+ c−1

n−1
F )− (c− 1) log(F ), if F > 1

0 , if F ≤ 1

}
where F = MSB

MSE
, with MSB is the mean square between clusters and MSE is the

mean square error within clusters ([40]), where,

MSE =
1

n− c

c∑
i=1

m∑
j=1

(yij − ȳi.)2, and MSB =
m

c− 1

c∑
i=1

(ȳi. − ȳ..)2
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.

7. Adaptive strategies

There are number of possible approaches for estimating regression coefficients and

their variances when the intraclass correlation (ρ) is thought to be small or has been

estimated as a small value. One approach is to fit a linear mixed model regardless.

Another is to fit a linear model assuming independent observations, i.e. ρ=0. How-

ever, if the sample design is relatively clustered, that is a large number of final units

are selected from each PSU, the estimated variances resulting from a linear mixed

model can be much larger than those obtained from a linear model assuming inde-

pendent observations, leading to wider confidence intervals. Moreover, a linear mixed

model is more complicated to fit and explain than a simple linear model, so the latter

is preferable provided it does not give misleading inference. This paper will explore a

third alternative: an adaptive strategy based on testing the null hypothesis that the

PSU-level variance component, σ2
b , is zero. If the null hypothesis is not rejected we

use the linear model for estimating the variances of the estimated regression coeffi-

cients β̂. On the other hand, if the null hypothesis is rejected we use the estimated

variance for β̂ either using the standard likelihood theory variance estimator for the

LMM or the Huber-White method.

In this paper we will test the methods applied in [3] using non-normal data. Data

will be simulated from the alpha-skew normal distribution to see if these methods are

still working.

The confidence interval in LMMs contain confidence intervals for fixed effects and

confidence intervals for variance components ([19]). When using the intercept-only

model (2.2) in the balanced data case, the confidence interval for β can be defined as

(7.1) (1− α)100%CI = β̂ ± t(df, 1−α
2

)ŜE(β̂),
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where ŜE(β̂) =

√
v̂ar(β̂) ([3]). Since the degrees of freedom are unclear, so we need

to estimate them from the data, there are several method to estimate the degree of

freedom such as Satterthwaite’s approximation ([35]), the approximations of ([20])

and [10]. [9] suggested the following form which is based on a scaled t-distribution:

(7.2) (1− α)100%CI = β̂ ± δ−1t(v, 1−α
2

)ŜE(β̂)

where δ is a scaled factor which is given by

δ =

√
ν

(ν − 2)V̂ (T )

with ν is the degrees of freedom which is approximated as:

(7.3) ν̂ =
c∑
i=1

m

1 + (m− 1)ρ̂
− 1

and V̂ (T ) is the approximation of the variance of the t-statistic T which is given by:

(7.4) V̂ (T ) = 1 +
β̂2

4(v̂ar(β̂))3
v̂ar(v̂ar(β̂))

where T = β̂√
v̂ar(β̂)

.

8. Simulation Study

A simulation study is conducted to evaluate the adaptive methods and to compare

them to the non-adaptive methods. Data are generated from Alpha Skew-Normal

distribution based on the intercept only model (2.2) assuming each PSU have the

same number of observations. The intraclass correlation (ρ), is varied over a range

of values of 0, 0.025 and 0.1. The number of PSUs (c) are varied over a range of

values of 2, 5 and 25, with number of observations (m) equals to 2, 10 and 50 per

PSU. The skewness parameters (a) will have a range of values of 0, ±1, and ±2. 1000

samples are generated. The values of σ2
b and σ2

e are set to be ρ
1−ρ and 1 respectively; to

ensure that the intraclass correlation is ρ. We used R statistical programme which is a
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computer language and software environment for statistical computing and graphics

([30]). The lmer() function which can be found in the lme4 packages in R is used to

fit the LMM. The lm function is used to fit the linear model as well. These functions

are used to estimate the regression coefficients β̂ and the estimates of their variances

([41]).

The adaptive approach, which is another approach, relies on the idea of testing

H0 : σ2
b = 0 in model 2.2. If we do not reject H0 then the linear model is used to

estimate var(β̂). On the other hand, if we reject H0, the linear mixed model or the

Huber-White robust method of estimation is used to estimate var(β̂). 90% confidence

intervals was calculated for the LMM method using the method of [10].

Tables 1 - 10 show the number of PSUs, c, and the number of observations per

PSU, m. The ratio between the expected value of the estimate of the variance of β̂

and the variance of β̂ (E(v̂ar(β̂))/var(β̂)) using four methods of estimation (ADM,

ADH, LMM and Huber −White) are also shown. Non-coverage rates for testing

H0 : σ2
b = 0 are also appeared in the tables as well as the lengths of the confidence

intervals calculated using the four methods.

Based on these tables, the Huber-White variance ratios are, in general, unbiased

regardless the value of ρ and a. The non-coverage rates are close to the nominal rate

(10%) as well.

For ρ = 0 and regardless of the value of a, the ADM and ADH variance ratios

were unbiased in all cases, except when there were 2 sample PSUs with all values of

m and when c = 5 with values of m of 5, 10 and 50. The LMM method gives bias

estimators of var(β̂) when c ≤ 5 for all values of m.

Non-coverage rates, in this case, were close to the nominal rate for adaptive meth-

ods in all cases, except when c = 2 with m = 10, c = 5 with m = 10 and 50 and

when c = 25 with m = 2 with about 5-20%.
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For ρ = 0.025 and a = 0, the variance estimates using ADM and ADH methods

are unbiased except for c = 2 with m ≤ 10. In this case, the LMM variance estimator

is unbiased, except for c = 2 with all values of m. For ρ = 0.1 and a = 0, the ADM

and ADH variance estimates are still unbiased except for c = 2 with m = 10. In this

case, the variance estimates using the LMM method were unbiased as well, except

for c = 2 with m ≤ 10.

In case of a = 0 and ρ 6= 0, non-coverage rates increase obviously with high rates

when there were 5 or less PSUs with m ≥ 10 observations per PSU. This rate of

increase was less for other values of c.

For a = 2 and ρ = 0.025, the variance estimates using the ADM and ADH methods

of estimation were unbiased, except when c = 2 with m ≥ 10 and when c = 5 with

m ≤ 10. The LMM variance estimators were biased for almost all values of c ≤ 5 with

all values of m. The ADM and ADH non-coverage rates were close to the nominal

rate (10%), except when c = 2 with m = 10 and 25, for c = 5 with m 10, as well as

for c = 25 with m = 50.

When ρ = 0.1, The ADM and ADH variance estimators were unbiased, except for

c = 2 with m =2 and 50. The LMM methods give biased estimators for c ≤ 5 with

all values of m.

Non-coverage rates using the ADM and ADH, as well as the LMM methods of

estimation were in this case, (a=2), away from the nominal rate (10%) with about

5-20%.

In case of a = 1 with ρ = 0.025, the ADM and ADH variance estimators were

unbiased, except when there were 2 PSUs with all numbers of observations each.

The LMM variance estimators were biased for all c ≤ 5 regardless the number of

observations each.

The variance ratios using the adaptive methods of estimation were unbiased when

ρ = 0.1 except when there 2 PSUs with 2 observations each and when there were
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5 PSUs with 5 observations each. The LMM method gave biased estimators when

c = 2 with all m, when c = 5 and with m ≤ 10. In this case, non-coverage rates

approximately higher than the nominal rate with about 5-135% for the adaptive

methods. For the LMM method, these rates were about 5-90% higher than the

nominal rate.

The results for a = −1 and a = −2 were identical to the results of a = 1 and a = 2;

respectively for all values of ρ.

Confidence intervals get shorter as the number of observations per PSU get higher.

Adaptive confidence intervals were, in general shorter than congruent non-adaptive

ones with high rate in designs with small number of sample PSUs.

9. Conclusion

(1) The Huber-White variance ratios were approximately unbiased for all values

of ρ and a. The non-coverage rates were close to the nominal rate (10%).

This is because the degrees of freedom for this method are exact and equal to

c-1.

(2) The ADH method perform similar to the Huber-White method except for the

extreme designs with c ≤ 5. The Huber-White method has wider confidence

intervals than the ADH method, especially in the extreme designs.

(3) The ADM confidence intervals are noticeably narrower than the LMM for

c ≤ 5. The variance estimates using the ADM method of estimation were

approximately unbiased, except for (c ≤ 5). The non-coverage rates were

higher in these designs than other designs.

Therefore, we recommend avoiding designs with 5 or less PSUs, even if ρ is

thought to be low.

(4) a = ±2 gave the best non-coverage rates, they were close to the nominal rate

(10%) with a rate of about 5-20%.
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(5) a = 0 gave unbiased variance estimators using the adaptive methods of esti-

mation except for the extreme designs with approximately c = 2 with m ≤ 10.

(6) There was no discrimination between the results of positive and negative

values of a.
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