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ON CONES ASSOCIATED WITH SCHAUDER FRAMES

SHAH JAHAN (1) AND VARINDER KUMAR (2)

Abstract. In this paper, we define cone CF associated with Schauder frame F =

({xn}, {fn}) in Banach spaces. A necessary and sufficient condition for a cone CF

to be normal has been given. Also, we have obtained a sufficient condition for

the cone CF to be minihedral and show that the converse is not true in general.

Moreover, we have given some necessary and sufficient conditions for the cone CF

to be generating and has a bounded base. Finally, a characterization of normalized

Schauder frames of type P ∗, al+ and w0 and a sufficient condition for the cone

CF1
associated with normalized shrinking Schauder frame F1 = {(enxn, enfn)} has

been given.

1. Introduction

Dennis Gabor [13] in 1946 gave a fundamental approach to signal decomposition

in terms of elementary signals. Later, in 1952, Duffin and Schaeffer [10] abstracted

Gabor’s method to define frames for Hilbert spaces. These ideas did not gener-

ate much interest outside of non-harmonic Fourier series and signal processing until

Daubechies, Grossmann and Meyer reintroduced frames in their land mark paper

[8]. Frames are generalizations of orthonormal bases in Hilbert spaces. The main

property of frames which makes them useful is their redundancy. Representation
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of signals using frames is advantageous over basis expansions in a variety of practi-

cal applications in science and engineering. In particular, frames are widely used in

sampling theory [1, 11], wavelet theory [9], wireless communication [16, 28], signal

processing [5], image processing [22], pseudo-differential operators [14], filter banks

[3], geophysics [7], quantum computing [12], wireless sensor network [18], coding the-

ory [29] and many more. The reason for such wide applications is that frames provide

both great liberties in design of vector space.

Han and Larson [15] defined Schauder frames for Banach spaces. Casazza et al. [6]

gave various definitions of frames for Banach spaces including that of Schauder frame

for Banach spaces. Casazza et al. [4] in 2008 studied the coefficient quantization

of Schauder frames in Banach spaces. Liu and Zheng [25] gave a characterization

of Schauder frames which are near Schauder bases, which generalized some result

due to Holub [17]. Beanland et al. [2] proved that the upper and lower estimates

theorems for finite-dimensional decompositions of Banach spaces can be extended

and modified to Schauder frames and gave a complete characterization on duality for

Schauder frames. Liu [24] associated an operator with a Schauder frame and called

it Hilbert-Schauder frame operator. In 2013, the concept of weak* Schauder frames

for conjugate Banach spaces was introduced and studied by Kaushik et al. [21] and

later on in 2014 Poumai [27] defined and studied various types of Schauder frames.

Also he gave some theoretical application of theses types of Schauder frames. Marin

and Sama [26] studied cones associated with Schauder basis in Banach spaces. shah

et al. [20] have related the notation of retro Banach frame with the geometric notion

of a support cone in Banach spaces. Shah et. al [19] relate Banach frames to another

geometric notion called cone and associated it with Banach frames.

In the present paper, we relate Schauder frames to another geometric notion of

Banach spaces. In fact, we study cones associated with various types of Schauder
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frames and gave an example of a cone CF which is minihedral but not normal. Fur-

ther, some necessary and sufficient conditions are given and some interesting and new

results have been obtained in the context of Schauder frames.

2. Preliminaries

Throughout this paper X will denote an infinite dimensional real Banach space,

X ∗ denote the conjugate space of X . For a sequence {xn} ∈ X and {fn} ∈ X ∗,

[xn] denotes the closure of linear span of {xn} in the norm topology of X and ˜[fn]

the closure of {fn} in the weak∗−topology of X ∗. A sequence space S is called a

BK-space if it is a Banach space and the co-ordinate functionals are continuous on

S, i.e., the relations xn = {αj
(n)}, x = {αj} ∈ S and lim

n−→∞
xn = x imply lim

n−→∞
α

(n)
j =

αj (j = 1, 2, 3, ...). The notion of Schauder frame was introduced and studied by Han

and Larson [15] and they gave the following definition:

Definition 2.1. Let X be a Banach space. A sequence {(xn, fn)} ({xn} ⊂ X , {fn} ⊂

X ∗) is called Schauder frame for X if

x =
∞

∑

n=1

fn(x)xn, for all x ∈ X .

Also, recall that a Schauder frame {(xn, fn)}({xn} ⊂ X , {fn} ⊂ X ∗) is called nor-

malized Schauder frame if ‖xn‖ = 1 and ‖fn‖ = 1.

3. Main Result

Let X be a real Banach space and let F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) be a

Schauder frame for X . Define CF = {x ∈ X : fn(x) ≥ 0, for all n ∈ N}. Then CF is a

cone associated with the Schauder frame F and satisfies the following properties:

(i) CF is a closed set satisfying

CF + CF ⊂ CF and λCF ⊂ CF (λ ≥ 0),
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(ii) CF ∩ (−CF ) = {0}.

Definition 3.1. The cone CF associated with a Schauder frame F is called

(a) generating if

X = {y − z : y, z ∈ CF}

(b) normal if there exists a constant L > 0 such that

0 ≤ x ≤ y ⇒ ‖x‖ ≤ L‖y‖; x, y ∈ X ,

(c) minihedral if for every x, y ∈ CF there exists z0 = sup(x, y) and if z ≥ x, y

then z ≥ z0.

Recall that the cone CF induces a natural partial order relation on X , namely x ≥ y

if and only if x− y ∈ CF .

A subset B of CF is called a base of CF if it is closed and convex and if for every

x ∈ CF \ {0} has a unique representation of the form x = λy, λ > 0, y ∈ B.

A set E contained in CF is called an extremal subset of CF if x, y ∈ CF with

λx+ (1 − λ)y ∈ E and 0 ≤ λ ≤ 1 imply x, y ∈ E .

Define a hyper plane L to be a set of the form L = {x ∈ X : f(x) = 0}.

In the following result, we give a necessary and sufficient condition for a cone CF

associated with a Schauder frame to be a normal cone.

Theorem 3.1. Let X be a real Banach space and let F = {(xn, fn)} ({xn} ⊂

X , {fn} ⊂ X ∗) be a Schauder frame for CF , then, F = {(xn, fn)} is an uncondi-

tional Schauder frame for CF if and only if CF is normal.
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Proof. Suppose first that F = {(xn, fn)} is an unconditional Schauder frame for CF .

Then, for every x ∈ CF , we have

x = lim
n→∞

n
∑

k=1

fk(x)xk,(3.1)

where the series in (3.1) converges unconditionally in CF . Let x, y ∈ X be such that

0 ≤ x ≤ y. Then, for each i ∈ N, we have 0 ≤ fi(x) ≤ fi(y). Therefore, for each

i ∈ N, there exist a real no λi(0 ≤ λi ≤ 1) such that

(3.2) fi(x) = λifi(y), i ∈ N.

Therefore using (3.1), one can find L > 0 such that ‖x‖ ≤ L‖y‖.

Conversely, let x ∈ CF and let ε > 0 be arbitrary. Since F = {(xn, fn)} is a Schauder

frame for CF and CF is normal, there exists a positive integer M such that

‖
∞

∑

k=M

fk(x)xk‖ <
ε

L
.(3.3)

Let
∑

∞

l=1 fkl
(x)xkl

be any subseries of
∑

∞

k=1 fk(x)xk. Choose N such that kl ≥ M,

whenever k ≥ N. Then for any m1, m2 ≥ N, we have 0 ≤
∑m2

l=m1
fkl

(x)xkl
≤

∑

∞

k=N fk(x)xk. Since CF is normal, by condition (3.3), we get

‖
m2
∑

l=m1

fkl
(x)xkl

‖ ≤ L‖
∞

∑

k=N

fk(x)xk‖ < ε.

Therefore,
∑

∞

k=1 fk(x)xk is unconditionally convergent. Hence F = {(xn, fn)} is

unconditional Schauder frame for CF . �

Next, in the following result we have given a sufficient condition for the cone CF

associated with Schauder frame to be minihedral cone.

Theorem 3.2. Let X be a real Banach space and let F = {(xn, fn)} ({xn} ⊂

X , {fn} ⊂ X ∗) be a unconditional Schauder frame for CF , then CF is minihedral.
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Proof. Suppose that CF has unconditional Schauder frame, then for any x, y ∈ CF

we have

x = lim
n→∞

n
∑

k=1

fk(x)xk and y = lim
n→∞

n
∑

k=1

fk(y)xk.

Therefore, the series

lim
n→∞

n
∑

k=1

[fk(x), fk(y)]xk

is unconditionally convergent and so, the series

(3.4) z0 = lim
n→∞

n
∑

k=1

[sup(fk(x), fk(y))]xk

is also unconditionally convergent. Thus, the sum of the series in (3.4) is Sup(x, y) =

z0. Hence CF is minihedral. �

The converse of Theorem 3.2 is not true. In this context we have the following

example.

Example 3.1. Let X be the closed hyperplane in l1 defined by

X = {x = {ηn} ∈ l1 : fn(x) ≥ 0}. Define xn = ξn − ξn−1 (n = 1, 2, 3...), where

ξn = {δij}
∞
j=1. Then, {xn} is a Schauder frame for X with associate sequence of

coefficient functionals {fn} ∈ X ∗. Define

CF = {x = {ηi} ∈ l1 : fn(ηi) ≥ 0 for all i = 1, 2, 3...}.

Let {ηi} ∈ l1 be arbitrary element, write ηi = φi − ψi, where φi ≥ 0 and ψi ≥ 0.

Then y = {φi} ∈ CF and z = {ψi} ∈ CF are such that every x can be expressed as

x = y − z. So, CF is generating. Further, if
∑

∞

n=1 fn(x)xn ∈ X , then we have

∞
∑

n=1

fn(x)xn =

∞
∑

n=1

fn(x)(ξn − ξn−1)

= f1(x)ξ1 +
∞

∑

n=2

(fn − fn−1)(x)ξn,
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where ξn is the unit vector of l1. That is, |f1| +
∑

∞

n=2 |fn − fn−1| <∞. Since ||fn| −

|fn−1|| ≤ |fn−fn−1| (n = 2, 3...). Therefore, it follows that
∑

∞

n=1 |fn|(x)xn converges,

whenever
∑

∞

n=1 fn(x)xn converges. Thus, for each x ∈ X , there exists an element

|x| ∈ X such that x+ = sup(x, 0) and x− = sup(−x, 0). Hence CF is minihedral.

Finally, we will show that CF is not normal. Suppose on the contrary that CF is

normal. For this, let x = {xn} and y = {yn} be two sequences in X defined by

xn =
1

n
[ξ1 + ξ2+, ..., ξ2n−1] −

1

n
[ξ2 + ξ4 + ...+ ξ2n]

and

yn =
1

n
[ξ1 − ξ2n], where (n = 1, 2, ...).

Then, we have 0 ≤ ‖x‖ ≤ ‖y‖, for all x, y ∈ X , but ‖x‖ = 2 and ‖y‖ = 2
n
, a

contradiction. Hence CF is not normal.

In [27], Poumai in 2014 introduced Schauder frame of types P , P ∗, Q and Q∗ and

has given some theoretical applications of these types of Schauder frames. Here we

have defined normalized Schauder frame of type l+ and has given some necessary

and sufficient conditions for the associated cone CF . Next, we give the definition of

normalized Schauder frame of the type l+.

Definition 3.2. A normalized Schauder frame F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂

X ∗) for a Banach space X is called a Schauder frame of type l+ if there exist a

constant A > 0 such that

(3.5) ‖

∞
∑

n=1

fn(x)xn‖ ≥ A

∞
∑

n=1

fn(x)

and there exist f ∈ X ∗ such that f(xn) ≥ 1, for all n.

In the following result, we have given the necessary and sufficient condition for the

cone CF associated with normalized Schauder frame to have a bounded base.
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Theorem 3.3. Let F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) be a normalized Schauder

frame for a Banach space X . Then, F = {(xn, fn)} is a Schauder frame of type l+ if

and only if the associated cone CF has a bounded base.

Proof. Suppose first that F = {(xn, fn)} is a normalized Schauder frame of type l+.

Define B = {x ∈ CF : f(x) = 1}, where f ∈ X ∗ such that f(xn) ≥ 1. Clearly B is

closed and convex set. Let 0 6= x ∈ CF . Take y = x
f(x)

. Then f(y) = 1, so y ∈ B. Now

x = λy, where λ = f(x) > 0. If x = λ1y1 = λ2y2, where λ1, λ2 > 0 and y1, y2 ∈ B then

f(x) = λ1 = λ2. Thus the representation x = λy is unique. Therefore B is a base for

CF . Since {xn} is a normalized Schauder frame, so for every x =
∑

∞

n=1 fn(x)xn ∈ B,

we have

‖x‖ ≤

∞
∑

n=1

fn(x)xn ≤

∞
∑

n=1

fn(x)f(xn) = f(

∞
∑

n=1

fn(x)xn) = 1.

Conversely, suppose that the cone CF associated with normalized Schauder frame has

a bounded base B. Then, 0 /∈ B. Since B is closed and convex, so by Hahn-Banach

theorem there exist a functional f ∈ X ∗ such that

(3.6) inf
x∈B

f(x) = ε > 0

and let {xn} be a sequence in CF such that xn 6= 0, n ∈ N. Then for each n, there

exist λn > 0 and zn ∈ B such that xn = λnxn, n ∈ N. Also, the representation of

each xn is unique. So, xn

λn
∈ B. Therefore, 1

λn
= ‖xn

λn
‖ ≤ sup

z∈B

‖z‖ = A <∞ and so,

(3.7) λn ≥
1

A
, n ∈ N.

Thus, from equations (3.6) and (3.7), we get f(xn) = λnf(xn

λn
) ≥ ε

A
.

Hence F = {(xn, fn)} is a Schauder frame of type l+. �

Next, a sufficient condition for a cone CF to be normal is given.
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Corollary 3.1. If F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) is a normalized Schauder

frame of type l+ for a Banach space X , then the associated cone CF is normal.

Proof. By hypothesis, F = {(xn, fn)} is a normalized Schauder frame of type l+ and

0 ≤ x ≤ y. Then,

‖x‖ = ‖
∞

∑

n=1

fn(x)xn‖

≤ ‖

∞
∑

n=1

fn(x)‖

≤ ‖
∞

∑

n=1

gn(x)‖

≤
1

A
‖

∞
∑

n=1

gn(x)xn‖

= L‖y‖.

This implies that ‖x‖ ≤ L‖y‖, where L = 1
A
. Hence CF is normal. �

Next, a characterization of Schauder frame of type l+ has been given.

Proposition 3.1. Let X be a Banach space, a normalized Schauder frame F =

{(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) of X is of type l+ if and only if there exists a

constant B > 0 such that for every x ∈ CF , the series
∑

∞

n=1 fn(x)xn is absolutely

convergent and

(3.8)

∞
∑

n=1

‖fn(x)xn‖ ≤ B‖x‖, for all x ∈ CF .

Proof. Let F = {(xn, fn)} be a normalized Schauder frame of type l+, then for every

x ∈ CF and n ∈ N, we have ‖
∑

∞

n=1 fn(x)xn‖ ≥ A
∑

∞

n=1 fn(x) and there exist f ∈ X ∗

such that f(xn) ≥ 1. Therefore,

∞
∑

n=1

‖fn(x)xn‖ =
∞

∑

n=1

fn(x) ≤
1

A

∞
∑

n=1

‖fn(x)xn‖.
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Thus, taking n→ ∞, we get

∞
∑

n=1

‖fn(x)xn‖ ≤
1

A
‖x‖.

Hence

∞
∑

n=1

‖fn(x)xn‖ ≤ B‖x‖,

where B = 1
A
. Conversely, if F = {(xn, fn)} is a normalized Schauder frame satisfying

(3.8). Then, for any x ∈ X with x =
∑

∞

n=1 fn(x)xn, we have

1

B

∞
∑

n=1

fn(x) =
1

B

∞
∑

n=1

‖fn(x)xn‖ ≤ ‖
∞

∑

n=1

fn(x)xn‖.

This implies that

‖

∞
∑

n=1

fn(x)xn‖ ≥ A

∞
∑

n=1

fn(x),

where A = 1
B

. Hence F = {(xn, fn)} is a Schauder frame of type l+. �

In the following result, we have given a necessary and sufficient condition for the

cone CF associated with a unit vector basis of l1 to be generating and has a bounded

base.

Theorem 3.4. Let X be a Banach space and let F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂

X ∗) be a normalized Schauder frame for X . Then {xn} is equivalent to the unit vector

basis of l1 if and only if the associated cone CF is generating and has a bounded base.

Proof. First, suppose that F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) is a normalized

Schauder frame for X and {xn} is equivalent to the unit vector basis of l1. Then, by

Theorem 3.3, F = {(xn, fn)} is a normalized Schauder frame of type l+. Let x ∈ X

be arbitrary. Then, since CF is generating, we have x = y − z, for all y, z ∈ CF .
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Therefore by proposition 3.1, we have

∞
∑

n=1

|fn(x)| =

∞
∑

n=1

|fn(y) − fn(z)|

≤
∞

∑

n=1

|fn(y)|+
∞

∑

n=1

|fn(z)|

=

∞
∑

n=1

|fn(y)xn| +

∞
∑

n=1

|fn(z)xn| <∞.

Conversely, suppose that the associated cone CF is generating and has a bounded

base and since F = {(xn, fn)} is a normalized Schauder frame and X is a complete

space. Therefore by Theorem3.3 F = {(xn, fn)} is a Schauder frame of type l+. Thus

{xn} is equivalent to the unit vector basis of l1. �

Next, we will show that if F = {(xn, fn)} is a normalized Schauder frame for the

Banach space X and en = ±1, then F1 = {(enxn, enfn)} is also a normalized Schauder

frame for X .

Theorem 3.5. If F = {(xn, fn)}({xn} ⊂ X , {fn} ⊂ X ∗) be a normalized Schauder

frame for the Banach space X and {en} (n = 1, 2, ...) be any sequence with (en) = ±1.

Then, F1 = {(enxn, enfn)} is also a normalized Schauder frame for X .

Proof. Since F = {(xn, fn)} is a normalized Schauder frame for X , we have

x =

∞
∑

n=1

fn(x)xn.(3.9)

Let {en}, n = 1, 2, ... be any sequence with en = ±1. Then by (3.9), we have

x =

∞
∑

n=1

fn(x)xn =

∞
∑

n=1

en
2fn(x)xn =

∞
∑

n=1

enfn(x)xnen.

�
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By theorem 3.5, F1 = {(enxn, enfn)} is a normalized Schauder frame for X . Define

the cone CF1
associated with the normalized Schauder frame F1 = {(enxn, enfn)} as

follows :

CF1
= {x ∈ X : enfn(x) ≥ 0, for all n ∈ N}.

Recall that a subset B1 of the cone CF1
associated with the Schauder frame F1 =

{(enxn, enfn)} in a Banach space X is called hyper base of the cone CF1
if there exists

f ∈ X ∗(f(x) > 0 for all x ∈ CF1
\ 0) such that B1 = {z ∈ CF1

: f(z) = 1}. Define

Bn1 = B1

⋂

[xn, xn+1, xn+2, ...], where n = 1, 2, 3... From this we have characterize

geometrically some other classes of normalized Schauder frames in Banach spaces.

Next, we have given the definition of normalized Schauder frame of type P ∗, al+ and

w0.

Definition 3.3. A normalized Schauder frame F = {(xn, fn)}({xn} ⊂ X , {fn} ⊂

X ∗) of a Banach space X is called

(a) normalized Schauder frame of type P ∗ if sup
n

‖
∑n

i=1 fi‖ < ∞ and there exists

f ∈ X ∗ such that f(xn) = 1, for all n ∈ N.

(b) normalized Schauder frame of type al+, if there exists a sequence {en}, where

en = ±1, n = 1, 2, ... such that {enxn}, is a normalized Schauder frame of type

l+.

(c) normalized Schauder frame of type w0 if f(xn) −→ 0, for all f ∈ X ∗.

In the following result, we have given the characterization of normalized Schauder

frame of type P ∗, al+ and w0.

Theorem 3.6. Let F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) be a normalized Schauder

frame for the Banach space X . Then

(a) F = {(xn, fn)} is of type P ∗ if and only if there exists a hyper base B of CF

containing xn, (n = 1, 2, ...).
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(b) F = {(xn, fn)} is not of type al+ if and only if for every sequence {en},with

en = ±1 and for every hyper base B1 of the cone CF1
the unique number λn > 0

for which B1 ⊃ {λnenxn} satisfying supn λn = ∞.

(c) F = {(xn, fn)} is of type w0 if and only if for every sequence {en},with en = ±1

and for every hyper base B1 of the cone CF1
the unique number λn > 0 for which

B1 ⊃ {λnenxn} satisfying lim
n→∞

λn = ∞.

Proof. (a) If F = {(xn, fn)} is of type P ∗, then by definition, there exists f ∈ X ∗

such that f(xn) = 1. Define B = {z ∈ CF : f(z) = 1}. Then, B is a hyper base

of CF containing xn. Conversely, if B is a hyper base of CF such that xn ∈ B.

Then, there exists f ∈ X ∗ such that B = {z ∈ CF : f(z) = 1}. Then, f(xn) = 1

and therefore, F = {(xn, fn)} is a Schauder frame of type P ∗.

(b) If F = {(xn, fn)} is a normalized Schauder frame not of type al+, then by def-

inition, we have inf
n
|f(xn)| = 0. Let en = ±1 and let B1 be arbitrary base of

the cone CF1
. Then, there exists f ∈ X ∗ such that B1 = {z ∈ CF1

: f(z) =

1}. Therefore, 1
f(enxn)

enxn ∈ B1 and thus λn = 1
f(enxn)

, n = 1, 2, ... Hence

sup
n

λn = ∞. Conversely, suppose that the condition holds, and we have to

show that F = {(xn, fn)} is a normalized Schauder frame not of type al+,

suppose if F = {(xn, fn)} is a normalized Schauder frame of type al+, then

by definition there exists f ∈ X ∗ such that |f(xn)| ≥ 1;n = 1, 2, ... Define

en = Signf(xn). Then, f(enxn) ≥ 1. Therefore, the set B1 = {z ∈ CF1
: f(z) = 1}

is a hyper base of the cone CF1
and 1

f(enxn)
enxn ∈ B1, n = 1, 2, ... Hence

λn = 1
f(enxn)

enxn ≤ 1; n = 1, 2, ....

(c) Proof is similar to the proof of part (b) with slightly modification.

�

Liu [23] in 2010 introduced the concept of Shrinking and boundedly complete

frames in Banach spaces and had proven some elementary facts. Recall that if F =
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{(xn, fn)} is a normalized Schauder frame for the Banach space X , let Tn : X −→ X

be the operator such that Tn(x) =
∑

∞

n=1 fn(x)xn. The frame F = {(xn, fn)} is

called shrinking if ‖f ∗oTn‖ → 0, for all f ∗ ∈ X ∗.

In the following result, a sufficient condition for the cone CF1
associated with nor-

malized shrinking Schauder frame F1 = {(enxn, enfn)} has been given.

Theorem 3.7. Let F = {(xn, fn)} ({xn} ⊂ X , {fn} ⊂ X ∗) be a normalized shrinking

Schauder frame for the Banach space X . If for every {en},with en = ±1 and every

hyper base B1 of the cone CF1
, we have dist(0,Bn1) → ∞ as n→ ∞.

Proof. If F = {(xn, fn)} is a shrinking normalized Schauder frame for the Banach

space X . Let en = ±1, n = 1, 2, ... and let B1 be an arbitrary hyper base of the cone

CF1
. Then, there exists f ∈ X ∗ such that B1 = {z ∈ CF1

: f(z) = 1}. Thus, for any

z ∈ Bn1, we have z =
∑

∞

n=1 fn(z)xn. Let ε > 0 and m be any natural number. Then,

for all n > m, we have

1

‖
∑

∞

n=1 fn(z)xn‖
= f

( ∑

∞

n=1 fn(z)xn

‖
∑

∞

n=1 fn(z)xn‖

)

< ε.

This implies that ‖z‖ > 1
ε
, for all z ∈ Bn1, whenever n > m. �
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