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COMPUTING INTERSECTIONS, DUAL AND DIVISORIAL

CLOSURE OF IDEALS IN A CLASS OF RINGS

S. U. REHMAN (1) AND N. SIDDIQUE (2)

Abstract. Let D be an integral domain, X an indeterminate over D and let n be

a positive integer. The set {a0 + a1X
n + a2X

3 + · · · anXn | ai ∈ D} is a subrings

of D[X ] denoted by D + XnD[X ]. This class of subrings is studied in [1] for n = 2.

In this article we find explicit formulas to compute finite intersections, dual and

divisorial closure of monomial ideals of D + XnD[X ].

1. Introduction

Let D be an integral domain with quotient field K. A D-submodule J of K is

called a fractional ideal of D if there exist 0 6= a ∈ D such that aJ ⊆ D. For a

nonzero fractional ideal J of D, the fractional ideal D : J = {x ∈ K | xJ ⊆ D} is

called dual of J denoted by J−1, since it is isomorphic as a D-module to HomD(J, D).

The dual J−1 is not generally a subring of K (or we can say that J−1 is not generally

an overrig of D). A natural question about the dual of an ideal has been studied in

[3, Section 3.1], i.e., when is the dual of an ideal an overring? The fractional ideal

Jv = (J−1)−1 = (D : (D : J)) is called v-closure or divisorial closure of J . If J = Jv

then J is called v-ideal or divisorial ideal. Many applications to multiplicative ideal

theory can be derived from divisoriality. The map J 7→ Jv is a star operation called
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v-operation. A reader in need of a quick review of star operations may consult sec-

tions 32 and 34 of Gilmer’s book [2].

Let X be an indeterminate over K. If D 6= K then the ring D[X] must have

some non-principal ideals. However, if D is a PID, the ideals generated by non-

constant monomials in D[X] are principal, and hence their intersections, dual and

divisorial closure is principal and can be easily computed. Such type of ideals are

not always principal in a subring D + XnD[X] of D[X] for n > 1. Note that for

n > 1, D + XnD[X] is not integrally closed and hence it cannot be a GCD do-

main. Therefore, the finite intersection of principal ideals need not be principal

for n > 1. For instance, (X3) ∩ (X4) = (X4) in D[X], (X3) ∩ (X4) = (X6, X7)

in D + X2D[X] and (X3) ∩ (X4) = (X7, X8, X9) in D + X3D[X]. Moreover, in

D + X2D[X], (X4, X5)−1 = 1
X4 (X

2, X3) and (X4, X5)v = (X4, X5). Similarly, in

D + X3D[X], (X4, X5)−1 = 1
X4 (X

3, X4, X5) and (X4, X5)v = (X3, X4, X5). Note

that the results varies by varying the values of n and it is not an easy job to compute

the intersections, the dual and the divisorial closure for arbitrary large values of n.

It appeals us to find some explicit formulas to compute the intersections, the dual

and the divisorial closure of monomial ideals in D + XnD[X].

We obtain following results for the ring D + XnD[X]. If n ≤ l < m are pos-

itive integers, then
(

X l
)

∩
(

Xm
)

=
(

Xm
)

for m − l ≥ n and
(

X l
)

∩
(

Xm
)

=
(

Xm+n, Xm+(n+1), ..., Xm+(2n−1)
)

for m − l < n (Theorem 2.1). If n ≤ λ1 < λ2 <

· · · < λk−1 < λk are positive integers, then
(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk

)

=
(

Xλk

)

for λk − λk−1 ≥ n and
(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk

)

= Xλk ·
(

Xn, Xn+1, ..., X2n−1
)

for λk − λk−1 < n (Theorem 2.2). If n ≤ λ1 < λ2 < · · · < λk−1 < λk are pos-

itive integers, such that λ2 − λ1 < n, and I =
(

Xλ1, Xλ2 , ..., Xλk

)

be an ideal

in R = D + XnD[X], then I−1 = 1
Xλ1

·
(

Xn, Xn+1, ..., X2n−1
)

and Iv = Xλ1

Xn ·



COMPUTING INTERSECTIONS, DUAL AND DIVISORIAL ... 299

(

Xn, Xn+1, ..., X2n−1
)

=
(

Xλ1 , Xλ1+1, ..., Xλ1+n−1
)

(Theorem 2.3). If D is a GCD

domain and n ≤ λ1 < λ2 are positive integers, then
(

aXλ1
)

∩
(

bXλ2
)

=
(

lXλ2
)

for

λ2 − λ1 ≥ n and
(

aXλ1
)

∩
(

bXλ2
)

= lXλ2 ·
(

Xn, Xn+1, ..., X2n−1
)

for λ2 − λ1 < n,

where a, b ∈ D and l = lcm(a, b)(Theorem 2.4). If D is a GCD domain and

n ≤ λ1 < λ2 < · · · < λk−1 < λk are positive integers, then
(

a1X
λ1

)

∩
(

a2X
λ2

)

∩

· · · ∩
(

akX
λk

)

=
(

lXλk

)

for λk − λk−1 ≥ n and
(

a1X
λ1

)

∩
(

a2X
λ2

)

∩ · · · ∩
(

akX
λk

)

=

lXλk ·
(

Xn, Xn+1, ..., X2n−1
)

for λk − λk−1 < n, where a1, a2, ..., ak ∈ D and l =

lcm(a1, a2, ..., ak) (Theorem 2.5). If D is a GCD domain, n ≤ λ1 < λ2 < · · · < λk−1 <

λk are positive integers, such that λk − λk−1 < n, and I =
(

a1X
λ1 , a2X

λ2 , ..., akX
λk

)

is an ideal in R = D + XnD[X], then I−1 = L

a1a2···akXλ1
·
(

Xn, Xn+1, ..., X2n−1
)

and Iv = a1a2 ···akXλ1

LXn ·
(

Xn, Xn+1, ..., X2n−1
)

= a1a2···ak

L
·
(

Xλ1 , Xλ1+1, ..., Xλ1+n−1
)

,

where a1, a2, ..., ak ∈ D and L = lcm(a2a3 · · ·ak, a1a3a4 · · ·ak, ..., a1a2 · · ·ak−1) (The-

orem 2.6). If D is PID, n ≤ λ1 < λ2 < · · · < λk−1 < λk are positive inte-

gers, such that λk − λk−1 < n, and I =
(

a1X
λ1, a2X

λ2, ..., akX
λk

)

is an ideal in

R = D + XnD[X], then I−1 = 1
gcd(a1,a2,...,ak)Xλ1

·
(

Xn, Xn+1, ..., X2n−1
)

and Iv =

gcd(a1, a2, ..., ak) ·
(

Xn, Xn+1, ..., X2n−1
)

, where a1, a2, ..., ak ∈ D (Corollary 2.1).

Throughout this paper all rings are (commutative unitary) integral domains. Any

unexplained material is standard as in [2] and [4].

2. Main Results

Theorem 2.1. Suppose that n ≤ l < m are positive integers. Then the intersection

of the ideals
(

X l
)

and
(

Xm
)

in the ring D + XnD[X] is given by:

(

X l
)

∩
(

Xm
)

=



















(

Xm
)

, if m − l ≥ n;

(

Xm+n, Xm+(n+1), ..., Xm+(2n−1)
)

, if m − l < n
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Proof. Case 1. If m − l ≥ n: Since Xm−l ∈ D+XnD[X], we can write Xm = X lXm−l.

Therefore
(

Xm
)

⊂
(

X l
)

and hence
(

X l
)

∩
(

Xm
)

=
(

Xm
)

.

Case 2. If m − l < n: Since m− l + n + t > n for every integer t ≥ 0, we can write

Xm+(n+t) = X lXm−l+n+t for every integer t ≥ 0. Also Xm+(n+t) = XmXn+t for every

integer t ≥ 0. Therefore, Xm+n, Xm+(n+1), ..., Xm+(2n−1) ∈
(

X l
)

∩
(

Xm
)

and hence
(

Xm+n, Xm+(n+1), ..., Xm+(2n−1)
)

⊆
(

X l
)

∩
(

Xm
)

.

Let f ∈
(

X l
)

∩
(

Xm
)

. Then f ∈
(

X l
)

and f ∈
(

Xm
)

. Therefore, for m− l = λ < n,

and a, ai, b, bi ∈ D, we have

(2.1)

f =X l(a + a0X
n + a1X

n+1 + · · ·+ aλX
n+λ + aλ+1X

n+(λ+1) + · · ·+

anXn+n + an+1X
n+(n+1) + · · ·+ akX

k).

=Xm(b + b0X
n + b1X

n+1 + · · · + bλX
n+λ + bλ+1X

n+(λ+1) + · · ·+

bnXn+n + bn+1X
n+(n+1) + · · ·+ bqX

q).

This implies that

(2.2)

f =aX l + a0X
l+n + a1X

l+(n+1) + · · ·+ aλX
l+n+λ + aλ+1X

l+n+(λ+1) + · · ·+

an+1X
l+2n+1 + · · · + akX

l+k.

=bXm + b0X
m+n + b1X

m+n+1 + · · · + bλX
m+n+λ + bλ+1X

m+n+(λ+1) + · · ·

+ bnXm+2n + bn+1X
(m+2n+1) + · · · + bqX

m+q.

Since m − l < n ⇒ m < n + l, so a = b = 0. Hence equation 2.2 becomes

(2.3)

f =a0X
l+n + a1X

l+(n+1) + · · ·+ aλX
l+n+λ + aλ+1X

l+n+(λ+1) + · · ·+

an+1X
l+2n+1 + · · ·+ akX

l+k.

=b0X
m+n + b1X

m+n+1 + · · · + bλX
m+n+λ + bλ+1X

m+n+(λ+1) + · · ·+

bnXm+2n + bn+1X
(m+2n+1) + · · · + bqX

m+q.
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Since m + n = l + n + λ, m + (n + 1) = l + λ + n + 1 and so on, therefore a0 = a1 =

· · · = aλ−1 = 0 and aλ = b0, aλ+1 = b1, aλ+2 = b2, and so on. Hence from equation 2.3

we get,

(2.4)
f =b0X

m+n + b1X
m+(n+1) + · · · + bλX

m+n+λ + bλ+1X
m+n+(λ+1) + · · ·+

bnXm+2n + bn+1X
m+2n+1 + · · · + bqX

m+q.

Since X i 6∈ D + XnD[X] if i < n, therefore equation 2.4 can be written as

(2.5)
f =Xm+n(b0 + bnXn + bn+1X

n+1 + · · · + bqX
q−n) + b1X

m+(n+1) + · · ·+

bλX
m+n+λ + bλ+1X

m+n+(λ+1) + · · · + bn−1X
m+(2n−1).

Hence, f ∈
(

Xm+n, Xm+(n+1), ..., Xm+(2n−1)
)

. �

Theorem 2.2. Assume that n ≤ λ1 < λ2 < · · · < λk−1 < λk are positive integers.

Then the intersection of the ideals
(

Xλ1
)

,
(

Xλ2
)

, ...,
(

Xλk

)

in the ring D + XnD[X]

is given by:

(

Xλ1
)

∩
(

Xλ2
)

∩· · ·∩
(

Xλk

)

=



















(

Xλk

)

, if λk − λk−1 ≥ n;

Xλk ·
(

Xn, Xn+1, ..., X2n−1
)

, if λk − λk−1 < n.

Proof. Case 1. If λk − λk−1 ≥ n: Since, λk − λk−1 ≥ n we have λk − λi ≥ n; ∀i =

1, 2, ..., k − 1. So, we can write Xλk = XλiXλk−λi , which gives Xλk ∈
(

Xλi

)

; ∀i =

1, 2, ..., k − 1.

Therefore,
(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk

)

=
(

Xλk

)

.

Case 2. If λk − λk−1 < n: Using Theorem 2.1 we have,

(2.6)

(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk

)

=
(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk−2
)

∩
(

Xλk+n, Xλk+(n+1), ..., Xλk+(2n−1)
)

.
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Since, λ1 < λ2 < · · · < λk−1 < λk are positive integers, we have,

λk − λi + n + t > n, for every t ≥ 0 and ∀i = 1, 2, ..., k − 2.

So, we can write Xλk+n+t = Xλk−λi+n+tXλi , which gives Xλk+n+t ∈
(

Xλi

)

for every

t ≥ 0 and ∀i = 1, 2, ..., k − 2. Therefore,

Xλk+n, Xλk+(n+1), ..., Xλk+(2n−1) ∈
(

Xλi

)

; ∀i = 1, 2, ..., k − 2. This implies
(

Xλk+n, Xλk+(n+1), ..., Xλk+(2n−1)
)

⊆
(

Xλ1
)

∩
(

Xλ2
)

∩· · ·∩
(

Xλk−2
)

. Hence, from equa-

tion 2.6, we get

(2.7)

(

Xλ1
)

∩
(

Xλ2
)

∩ · · · ∩
(

Xλk

)

=
(

Xλk+n, Xλk+(n+1), ..., Xλk+(2n−1)
)

= Xλk ·
(

Xn, Xn+1, ..., X2n−1
)

.

�

Theorem 2.3. Suppose that n ≤ λ1 < λ2 < · · · < λk−1 < λk are positive integers,

such that λ2 − λ1 < n, and I =
(

Xλ1 , Xλ2, ..., Xλk

)

be an ideal in R = D + XnD[X].

Then

(i) I−1 = 1
Xλ1

·
(

Xn, Xn+1, ..., X2n−1
)

.

(ii) Iv = Xλ1

Xn ·
(

Xn, Xn+1, ..., X2n−1
)

=
(

Xλ1, Xλ1+1, ..., Xλ1+n−1
)

.

Proof. (i):

I−1 =
(

Xλ1 , Xλ2, ..., Xλk

)

−1

=
1

Xλ1
R ∩

1

Xλ2
R ∩ · · · ∩

1

Xλk

R

=
1

Xλ1+λ2+···+λk

[
(

Xλ2+λ3+···+λk

)

∩
(

Xλ1+λ3+···+λk

)

∩ · · · ∩
(

Xλ1+λ2+···+λk−1
)

]

=
1

Xλ1+λ2+···+λk

[Xλ2+λ3+···+λk ·
(

Xn, Xn+1, ..., X2n−1
)

]; (by Theorem 2.2 )

=
1

Xλ1
·
(

Xn, Xn+1, ..., X2n−1
)

.
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(ii):

Iv =
(

I−1
)

−1
= Xλ1 ·

(

Xn, Xn+1, ..., X2n−1
)

−1

=
Xλ1

Xn
·
(

Xn, Xn+1, ..., X2n−1
)

; using case (i)

=
(

Xλ1, Xλ1+1, ..., Xλ1+n−1
)

.

�

Example 2.1. Let R = Z + X10
Z[X] and I =

(

X12, X13, X15, X16, X17
)

. Then

I−1 = 1
X12 ·

(

X10, X11, X12, ..., X19
)

and Iv =
(

X12, X13, X14, ..., X21
)

.

Remark 2.1. Assume that n ≤ λ1 < λ2 < · · · < λn are consecutive positive integers.

Then
(

Xλ1 , Xλ2, ..., Xλn

)

is a divisorial ideal in the ring D + XnD[X].

Lemma 2.1. Let d ∈ D − {0}, n ≥ 1 be an integer and R = D + XnD[X]. Then

dR ∩ XkR = dXkR for any k ≥ n.

Proof. Clearly, dR ∩ XkR ⊇ dXkR. Let f ∈ dR ∩ XkR. Then for λ = k − n,

(2.8)
f =d(a + a0X

n + a1X
n+1 + · · ·+ aλX

k + · · · + amXm).

=Xk(b + b0X
n + b1X

n+1 + · · · + bqX
q).

This implies that

(2.9)
f =da + da0X

n + da1X
n+1 + · · ·+ daλX

k + · · ·+ damXm.

=bXk + b0X
k+n + b1X

k+n+1 + · · ·+ bqX
q.

This implies a = a0 = a1 = · · · = aλ−1 = 0 and d | b, b0, b1, ..., bq.
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(2.10) f =Xk(b + b0X
n + b1X

n+1 + · · ·+ bqX
q−k).

Hence f ∈ dXkR. �

Theorem 2.4. Let D be a GCD domain and n ≤ λ1 < λ2 be positive integers. Then

the intersection of the ideals
(

aXλ1
)

and
(

bXλ2
)

in the ring D + XnD[X] is given

by:

(

aXλ1
)

∩
(

bXλ2
)

=



















(

lXλ2
)

, if λ2 − λ1 ≥ n;

lXλ2 ·
(

Xn, Xn+1, ..., X2n−1
)

, if λ2 − λ1 < n.

where a, b ∈ D and l = lcm(a, b).

Proof. By using Lemma 2.1, we get that
(

aXλ1
)

∩
(

bXλ2
)

=
(

a
)

∩
(

b
)

∩
(

Xλ1
)

∩
(

Xλ2
)

.

Now apply Theorem 2.1. �

Theorem 2.5. Let D be a GCD domain and n ≤ λ1 < λ2 < · · · < λk−1 < λk be posi-

tive integers. Then the intersection of the monomial ideals
(

a1X
λ1

)

,
(

a2X
λ2

)

, ...,
(

akX
λk

)

in the ring D + XnD[X] is given by:

(

a1X
λ1

)

∩
(

a2X
λ2

)

∩· · ·∩
(

akX
λk

)

=



















(

lXλk

)

, if λk − λk−1 ≥ n;

lXλk ·
(

Xn, Xn+1, ..., X2n−1
)

, if λk − λk−1 < n.

where a1, a2, ..., ak ∈ D and l = lcm(a1, a2, ..., ak).

Proof. By using Lemma 2.1, we get that

(

a1X
λ1

)

∩
(

a2X
λ2

)

∩· · ·∩
(

akX
λk

)

=
(

a1

)

∩
(

a2

)

∩· · ·∩
(

ak

)

∩
(

Xλ1
)

∩
(

Xλ2
)

∩· · ·∩
(

Xλk

)

.

Now apply Theorem 2.2.

�
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Theorem 2.6. Let D be a GCD domain, n ≤ λ1 < λ2 < · · · < λk−1 < λk be positive

integers, such that λk − λk−1 < n, and I =
(

a1X
λ1 , a2X

λ2 , ..., akX
λk

)

be an ideal in

R = D + XnD[X]. Then

(i) I−1 = L

a1a2···akXλ1
·
(

Xn, Xn+1, ..., X2n−1
)

.

(ii) Iv = a1a2···akXλ1

LXn ·
(

Xn, Xn+1, ..., X2n−1
)

= a1a2 ···ak

L
·
(

Xλ1, Xλ1+1, ..., Xλ1+n−1
)

.

where a1, a2, ..., ak ∈ D and L = lcm(a2a3 · · ·ak, a1a3a4 · · ·ak, ..., a1a2 · · ·ak−1).

Proof. (i):

I−1 =
(

a1X
λ1 , a2X

λ2 , ..., akX
λk

)

−1

=
1

a1Xλ1
R ∩

1

a2Xλ2
R ∩ · · · ∩

1

akXλk

R.

Let A = a1a2a3 · · ·ak, A1 = a2a3a4 · · ·ak, A2 = a1a3a4 · · ·ak, ..., and Ak = a1a2 · · ·ak−1.

Then we have

I−1 =
1

AXλ1+λ2+···+λk

[(

A1X
λ2+λ3+···+λk

)

∩
(

A2X
λ1+λ3+···+λk

)

∩ · · · ∩
(

AkX
λ1+λ2+···+λk−1

)]

=
LXλ2+λ3+···+λk

AXλ1+λ2+···+λk

(

Xn, Xn+1, ..., X2n−1
)

; (by Theorem 2.5)

=
L

AXλ1

(

Xn, Xn+1, ..., X2n−1
)

.

(ii):

Iv =
(

I−1
)

−1
=

AXλ1

L

(

Xn, Xn+1, ..., X2n−1
)

−1

=
AXλ1

LXn
·
(

Xn, Xn+1, ..., X2n−1
)

; (by using Theorem 2.3)

=
A

L

(

Xλ1 , Xλ1+1, ..., Xλ1+n−1
)

.

�
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Corollary 2.1. If D is a PID, n ≤ λ1 < λ2 < · · · < λk−1 < λk are positive

integers, such that λk − λk−1 < n, and I =
(

a1X
λ1 , a2X

λ2 , ..., akX
λk

)

is an ideal of

R = D + XnD[X], then

(i) I−1 = 1
gcd(a1,a2,...,ak)Xλ1

·
(

Xn, Xn+1, ..., X2n−1
)

.

(ii) Iv = gcd(a1, a2, ..., ak) ·
(

Xn, Xn+1, ..., X2n−1
)

.

where a1, a2, ..., ak ∈ D.

Example 2.2. Let R = Z[i]+X5
Z[i][X] and I =

(

4X6, (1+ i)X8, 2(1− i)X9
)

. Then

I−1 = 1
(1+i)X6 ·

(

X5, X6, X7, X8, X9
)

and Iv = (1 + i).
(

X6, X7, X8, X9, X10
)

.
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