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A NEW CHARACTERIZATION OF PSL(3,q)

ALIREZA KHALILI ASBOEI

Abstract. In this paper, we will show that the simple group PSL(3, q) can be

uniquely characterized by order and one conjugacy class length, where q is a prime

power. A main consequence of our result is the validity of Thompson’s conjecture

under a weak condition for the group under consideration.

1. Introduction

In group theory, as is well known, the elements of any group may be partitioned into

conjugacy classes; members of the same conjugacy class share many group properties,

and the study of conjugacy classes of non-abelian groups reveals many important

features of their structures.

Let SL(n, q) denotes the group of n by n matrices of determinant 1 over the finite

field GF(q) of q elements; PSL(n, q) denotes the projective special linear group which

is equal to SL(n, q) modulo its center. In this paper, we prove that PSL(3, q) are

uniquely determined by a conjugacy class length and order of PSL(3, q) when p =

(q2 + q + 1)/(3, q − 1) is a prime number. In fact, the main theorem of our paper is

as follows:
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Main Theorem. Let G be a group and q be a prime power. Then G ∼= PSL(3, q)

if and only if |G| = |PSL(3, q)| and G has a conjugacy class length |PSL(3, q)|/p,

where p = (q2 + q + 1)/(3, q − 1) is a prime number.

For related results, Chen et al. in [16] showed that PSL(2, p) is recognizable by its

order and one conjugacy class length, where p is a prime number. As a consequence

of their result, they showed that Thompson’s conjecture is valid for PSL(2, p).

It is well known that the conjecture of J. G. Thompson which states that if G

is a finite group with Z(G) = 1 and M is a non-abelian simple group satisfying

N(G) = N(M), where N(G) = {n : G has a conjugacy class of size n}, then

G ∼= M . This conjecture is stated in [7, 8] in which the conjecture is verified for a

few finite simple groups. We can give a positive answer to this conjecture by this

characterization for our group under discussion.

In the [15], [1], [2], [3] and [9], it is proved that the groups: simple K3-groups (a

finite simple group is called a simple Kn -group if its order is divisible by exactly n

distinct primes), 2Dn(2), 2Dn+1(2), alternating group of degree p, p + 1, p + 2, where

p is a prime number, symmetric group of degree p, where p is a prime number, and

sporadic simple groups, recognizable by their order and one conjugacy class length,

respectively.

The prime graph of a finite group G that is denoted by Γ(G) is defined as the

simple undirected graph whose vertices are the prime divisors of the order, |G|, of

G and two distinct vertices p, q are adjacent if and only if G contains an element of

order pq.

We denote by π(G) and t(G), the set of prime divisors of |G| and the number of

connected components of Γ(G), respectively. Let π1, π2 , . . . , πt(G) be the connected

components of Γ(G). If the order of G is even, we set 2 ∈ π(G).

Now |G| can be expressed as the product of integers m1, m2, . . . , mt(G), where

π(mi) = πi for each i. We call m1, m2, . . . , mt(G) the order components of G. We
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write OC(G) = {m1, m2, . . . , mt(G)}, the set of order components of G. According to

the classification theorem of finite simple groups and [14, 4, 11], we can list the order

components of finite simple groups with disconnected prime graphs which are listed

in Tables 1-4 in [8].

If n is a positive integer, then denote the r-part of n by nr = ra which means

ra ‖ n, namely, ra | n and ra+1 - n. If q is a prime, then we denote by Sylq(G)

a Sylow q-subgroup of G. The other notations and terminologies in this paper are

standard, and the reader can refer to [10] if necessary.

2. Preliminary Results

Definition 2.1. [17] Let a and n be integers greater than 1. Then a Zsigmondy

prime of an − 1 is a prime l such that l | (an − 1) but l - (ai − 1) for 1 ≤ i < n.

Lemma 2.1. [12] If a and n are positive integers greater than 1, then there ex-

ists a Zsigmondy prime of an − 1, unless (a, n) = (2, 6) or n = 2 and a = 2s − 1 for

some natural number s.

Remark 2.1. If l is a Zsigmondy prime of an − 1, then Fermat’s little theorem

shows that n | (l − 1). Put Zn(a) = {l : l is a Zsigmondy prime of an − 1}. If

r ∈ Zn(a) and r | am − 1, then n | m.

Definition 2.2. A Frobenius group is a transitive permutation group in which the

stabilizer of any two points is trivial. A subgroup H of a Frobenius group G fixing

a point of the set X is called the Frobenius complement. The identity element to-

gether with all elements not in any conjugate of H form a normal subgroup called

the Frobenius kernel K.
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Lemma 2.2. [5, Theorem 2] Let G be a 2-Frobenius group of even order, i.e.,

G is a finite group and has a normal series 1�H �K �G such that K and G/H are

Frobenius groups with kernels H and K/H, respectively. Then:

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);

(b) G/K and K/H are cyclic, |G/K| | (|K/H| − 1), (|G/K|, |K/H|) = 1 and

G/K . Aut(K/H).

Lemma 2.3. [11] If G is a finite group such that t(G) ≥ 2, then G has one of

the following structures:

(a) G is a Frobenius group or a 2-Frobenius group;

(b) G has a normal series 1 � H � K � G such that π(H) ∪ π(G/K) ⊆ π1 and K/H

is a non-abelian simple group. In particular, H is nilpotent, G/K . Aut(K/H) and

the odd order components of G are the odd order components of K/H.

Lemma 2.4 [4] If n ≥ 6 is a natural number, then there are at least s(n) prime

numbers pi such that (n + 1)/2 < pi < n. Here

s(n) = 1, for 6 ≤ n ≤ 13;

s(n) = 2, for 14 ≤ n ≤ 17;

s(n) = 3, for 18 ≤ n ≤ 37;

s(n) = 4, for 38 ≤ n ≤ 41;

s(n) = 5, for 42 ≤ n ≤ 47;

s(n) = 6, for n ≥ 48.
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3. Proof of the Main Theorem

By [13, Corollary 2.11], PSL(3, q) has one conjugacy class of length |GL(3,q)|
(q3−1)

. Since

the necessity of the theorem can be checked easily, we only need to prove the suffi-

ciency.

By hypothesis, there exists an element x of order p in G such that CG(x) =< x >

and CG(x) is a Sylow p-subgroup of G. By the Sylow’s theorem, we have that

CG(y) =< y > for any element y in G of order p . So, {p} is a prime graph component

of G and t(G) ≥ 2. In addition, p is the maximal prime divisor of |G| and an odd

order component of G.

We are going to prove the main theorem in the following steps:

Step 1. G is neither a Frobenius group nor a 2-Frobenius group.

Proof. Let G be a Frobenius group with Frobenius kernel K and Frobenius comple-

ment H. Thus π(K) = {p} or π(H) = {p}.
First, let π(K) = {p}. Since K � G, p | |G|, and p2 - |G|, we have Sylp(G) = K.

Thus |G/CG(K)| = |NG(K)/CG(K)| | (p − 1). It follows that |G| ≤ p(p − 1), which

is a contradiction.

Now let π(H) = {p}. Since H is a Frobenius complement G, we have NG(H) = H.

Therefore, |K| = q3(q2 − 1)(q − 1). We consider the following cases:

(a) Let there exists a prime number r in Z2(q). Then Sylr(K) is a normal subgroup

of G. Hence, the semidirect product Sylr(K)oH is a Frobenius subgroup of G. Then

|H| | |Sylr(K)| − 1, and so p < |Sylr(K)| ≤ |K|r. However, |K|r ≤ (q + 1)r, which is

a contradiction.

(b) Assume there is no prime number in Z2(q). Then q + 1 = 2k, for some natural

number k. Hence, q = 3 or there exists a prime t such that t | (q − 1) and t 6= 2.

If q = 3, then p = 13 and |Syl2(K)| = 16. Similar to (a) we have p | |Syl2(K)| − 1,

which is a contradiction. If there exists a prime t such that t | (q−1) and t 6= 2, then
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similar to (a), p < |Sylt(K)| ≤ |K|t. However, |K|t = ( (q−1)2

(3,q−1)
)t = ( q2−2q+1

(3,q−1)
)t, which is

a contradiction.

Let G be a 2-Frobenius group. Then G is a finite group with a normal series

1�H �K �G such that K and G/H are Frobenius groups with Frobenius kernels H

and K/H, respectively. Since K � G, p | |K| and p - |G/K|, we have Sylp(G) ≤ K,

and NG(Sylp(G)) = NK(Sylp(G)). But K is a Frobenius group with a Frobenius

complement Sylp(G), so NK(Sylp(G)) = Sylp(G). By similar discussion as above to

K, we can get a contradiction.

By Lemma 2.3, and Step 1, G has normal series 1 E H E K E G such that K/H

is a non-abelian simple group and p is an odd order component of K/H.

According to the classification theorem of finite simple groups and the results in

Tables 1–4 in [8], K/H is either an alternating group, sporadic group or simple group

of Lie type. We will show that K/H is isomorphic to PSL(3, q).

Here we consider two cases: q ≡ 1 (mod 3) and q 6≡ 1 (mod 3).

First, let q ≡ 1 (mod 3). Then q ≥ 4, and so p = (q2 + q + 1)/3 is one of the odd

order components of K/H.

Step 2. K/H cannot be an alternating group Altm, where m ≥ 5.

Proof. Suppose that K/H ∼= Altm. Since (q2 + q + 1)/3 = p ∈ π(K/H), p ≤ m.

Because q ≥ 2 is a prime power, we have p ≥ 7 . By Lemma 2.4, there exists a prime

number u ∈ π(Altm) ⊆ π(G) such that (p + 1)/2 < u < p. It is easy to see that

u - q, u - q − 1 and u - p − 1. Thus u ∈ Z2(q). It follows that u = p − 2, where

p = 7 and q = 4. So |G| = |PSL(3, 4)| = 26.32.5.7. Since |Altm| divides |G|, we have

m ∈ {7, 8}. Since |H| | |G|/|K/H| and Syl7(G) acts fixed point freely on H, we can

see that the semidirect product H o Syl7(G) is a Frobenius subgroup of G. Thus

7 | (|H| − 1). Therefore, considering the orders of G and K/H it follows that either

|H| = 8 and m = 7 or |H| = 1. If |H| = 8 and m = 7, then we can assume that

H is a 2-elementary abelian group. Thus Alt7 . GL(3, 2) and so, |Alt7| | |GL(3, 2)|,
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which is a contradiction. If |H| = 1, then G ∼= Alt8, we get a contradiction.

Step 3. K/H is not a sporadic simple group.

Proof. Suppose that K/H is a sporadic simple group. Thus p ∈ {5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 59, 67, 71}. If p ∈ {5, 11}, then since q is a prime power, we get a

contradiction. Assume that (q2 +q+1)/3 = 7, then q = 4 and |PSL(3, 4)| = 26.32.5.7.

We have K/H ∈ {M22, J1, J2, HS}. If K/H = M22 (Mathieu group of degree 22),

then 11 | |K/H|, a contradiction.

If K/H = J1 (Janko group), then 19 | |K/H|, which is impossible.

If K/H = J2 (Janko group), then 52 | |K/H|, which is a contradiction.

Also, if K/H = HS (Higman–Sims group), then 11 | |K/H|, which is impossible.

Similarly, we can rules out the other possibilities of p.

Step 4. K/H = PSL(3, q).

Proof. By Steps 2 and 3, K/H is isomorphic to a simple group of Lie type. Let

t(K/H) = 2. Then OC2(K/H) = p = q2+q+1
3

. Thus we have:

1. Let K/H ∼= Cn(q′), where n = 2u ≥ 2, and q′ = p′α. Then q′n+1
(2,q′−1)

= q2+q+1
3

. If

q′α 6= 2α, then q′n+1
2

= p, so q′n = 2(q2+q−1)
3

and so, (q′, p) = (q′, q) = 1. Furthermore,

since p′ is odd, we have r | q − 1 or p′ | q + 1 (q = rl, where l is a natural number).

Hence, (p′α)n2
= |K/H|p′ ≤ |G|p′ ≤ 1

(3,p′)
(q2 − 1)p′(q − 1)p′(

q2+q−2
3

)p′ < (2(q2+q−1)
3

)2 <

(p′α)2n. Therefore, n < 2, which is a contradiction.

If q′α = 2α, then q′2 + 1 = p. Thus 22α + 1 = q2+q+1
3

and so, 22α = (q−1)(q+2)
3

. Since

3 | q − 1, we have 3 | q + 2. Hence, 3 | 22α, a contradiction.

Similarly, we can rules out the case K/H ∼= Bn(q′), or K/H ∼= 2Dn(q′), where

n = 2u ≥ 4.

2. Let K/H ∼= Ct(3) or Bt(3), where t is prime. Then 3t−1
2

= q2+q+1
3

. So 3t =

2
3
(q2 +q+ 5

2
) and so, either (3, q) = 1 and 3t+1 > q2 +q+ 5

2
or q = t = 3 . If (3, q) = 1,

then 3t2 = |K/H|3 ≤ |G|3 = 1
3
(q2 − 1)3(q − 1)3(

q2+q−2
3

)3 < ( q2+q−2
3

)3 < 33(t+1), so
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t2 < 3(t+1). It follows that t = 3. Hence, q(q + 1) ∈ {12, 38}. Clearly, q(q+1) 6= 38.

Suppose that q(q + 1) = 12, then q = 3. Since q ≡ 1 (mod 3) leads to contradiction.

If q = t = 3, then since q ≡ 1 (mod 3) we get a contradiction.

3. Let K/H ∼= Ct(2), where t is prime. Then 2t − 1 = q2+q+1
3

and so, 2t = q2+q+4
3

. If

q = 4, then q2+q+1
3

= 7 and hence, t = 3. In this case |PSL(3, 4)| = |G| = 26.32.5.7.

So 29 - |G|. But, 29 | |C3(2)| , which is a contradiction. If q 6= 4, then (2, q) = 1 and

hence, 2t2 = |K/H|2 ≤ |G|2 ≤ ( q2−1
3

)2(q − 1)2(
q2+q−2

3
)2 < ( q2+q+4

3
)3 = 23t. It follows

that t2 < 3t, and so t = 2. Therefore, q2+q+1
3

= 3, a contradiction.

4. Let K/H ∼= PSL(t, q′), where (t, q′) 6= (3, 2), (3, 4), and t is an odd prime. Then

p = q′t−1
(t,q′−1)(q′−1)

, and q′
t(t−1)

2

∏t−1
i=1(q

′i−1) | q3(q2−1)(q3−1)/3. On the other hand, p5 =

(q′t−1)5

(t,q′−1)5(q′−1)5
< q′5t and q′t(t−1)−t < q′

t(t−1)
2

∏t−1
i=1(q

′i−1) ≤ q3(q2−1)(q3−1)/3 < p5. It

follows that t(t − 1) − t < 5t, and so t = 3, 5. If t = 5, then q2+q+1
3

= q′4+q′3+q′2+q′+1
(5,q′−1)

.

Then (q′, q) = 1 . We have q′10(q′−1)(q′2−1)(q′3−1)(q′4−1) | q3(q2−1)(q3−1)/3. But

q′10 - q3(q2−1)(q3−1)/3, which is a contradiction. If t = 3, then q′3−1
(3,q′−1)(q′−1)

= q2+q+1
3

and so, q′2+q′+1
(3,q′−1)

= q2+q+1
3

. We consider the following subcases:

(a) Assume (q′, q) 6= 1 such that q | q′.

(a.1) If (3, q′ − 1) = 3, then q′2+q′+1
3

= q2+q+1
3

. Therefore, q′ = q and so K/H ∼=
PSL(3, q).

(a.2) If (3, q′ − 1) = 1, then q′2 + q′ + 1 = q2+q+1
3

. Hence, q(q + 1) = 3q′2 + 3q′ + 2.

It follows that q | 3q′2 + 3q′ + 2. Since q | q′ and q | 2, we have q = 2. Therefore,

q′(q′ + 1) = 4
3
, which is a contradiction.

Similarly, if q′ | q, then we can complete the proof.

(b) Suppose that (q′, q) = 1.

(b.1) If (3, q′ − 1) = 3, then q′2+q′+1
3

= q2+q+1
3

. Thus q′2 + q′ + 1 = q2 + q + 1 and

so, q(q + 1) = q′(q′ + 1). But (q′, q) = 1, a contradiction.

(b.2) If (3, q′ − 1) = 1, then q′2 + q′ + 1 = q2+q+1
3

. Thus q′(q′ + 1) = (q−1)(q+2)
3

. It

follows that 3k(k + 1) = q′(q′ + 1). Considering the different possibilities of q′ leads
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us to get a contradiction.

5. Let K/H ∼= PSL(t + 1, q′), where (q′ − 1) | (t + 1) and t is an odd prime.

Then p = q′t−1
q′−1

and q′
t(t+1)

2 (q′t+1 − 1)
∏t−1

i=1(q
′i − 1) | q3(q2 − 1)(q3 − 1)/3. On the

other hand, p5 = (q′t−1)5

(q′−1)5
< q′5t and q′t(t+1)−t < q′

t(t+1)
2 (q′t+1 − 1)

∏t−1
i=1(q

′i − 1) ≤
q3(q2 − 1)(q3 − 1)/3 < p5 < q′5t. It follows that t + 1 < 6. Hence, t = 3, and so

q′2 + q′ + 1 = q2+q+1
3

. Since (q′ − 1) | (t + 1), q′ ∈ {2, 3, 5}. So K/H ∼= PSL(4, 2),

PSL(4, 3), or PSL(4, 5).

If K/H ∼= PSL(4, 2) ∼= Alt8, then by Step 2, we get a contradiction.

If K/H ∼= PSL(4, 3), then q2+q+1
3

= 13, which is a contradiction.

Similarly, we can rules out the case when K/H ∼= PSL(4, 5).

The other cases are very similar, and we omit them.

If t(K/H) = 3, then p ∈ {OC2(K/H), OC3(K/H)}, and if t(K/H) ∈ {4, 5}, then

p ∈ {OC2(K/H), OC3(K/H), OC4(K/H), OC5(K/H)}.
Then by Tables 1-4 in [8], all of possibilities for K/H are PSL(2, q ′), where 4 | q′,

PSL(2, q′), where 4 | q′ − 1, PSU(6, 2), PSL(3, 2), 2Dt(3), where t = 2u + 1 ≥ 5,

2Dt+1(2), where t = 2n − 1 and n ≥ 2, G2(q
′), where q′ ≡ 0 (mod 3), 2G2(q

′), where

q′(2t+1) > 3, F4(q
′), where q′ is even, 2F4(q

′), where q′(2t+1) ≥ 2, E7(2), E7(3), 2E6(2),

PSL(3, 4), 2B2(q
′), where q′2t+1 and t ≥ 1, or E8(q

′). The cases K/H ∼= PSL(3, 2)

and PSL(3, 4) are our desired, but for the other cases, we can get a contradiction. For

example, we consider once K/H with t(K/H) = 3, and once again with t(K/H) > 3.

For the case t(K/H) = 3, we consider F4(q
′), where q′ is even. Then q′4+1 = q2+q+1

3
,

or q′4−q′2+1 = q2+q+1
3

. So, p6 = (q′4+1)6 < (q′5)6 = q′30 and q′24(q′12−1)(q′8−1)(q′6−
1)(q′2 − 1) | q3(q2 − 1)(q3 − 1)/3. Therefore, q′36 ≤ q3(q2 − 1)(q3 − 1)/3 < p6 < q′30,

which is a contradiction.

For the case t(K/H) > 3, we consider 2B2(q
′), where q′(2t+1) and t ≥ 1. We have

p ∈ {q′ − 1, q′ ±√
2q′ + 1}.
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If q′ − 1 = p, then we can see that 22(3.22t−1 − 1) = q(q + 1). If |q|2 = 22, then

q + 1 = 5 and t = 1, Therefore, 13 - |G| and 13 | |K/H|, a contradiction. Thus

|q + 1|2 = 22 and so, |q − 1|2 = 2. Furthermore, |p− 1|2 = 2. So 22(2t+1) ≤ |K/H|2 ≤
|G|2 ≤ 25. Since t ≥ 1, we get a contradiction.

If q′+
√

2q′+1 = p, then q2+q−2
3

= 2t+1(2t+1). Hence, (q − 1)(q + 2) = 3.2t+1(2t+1).

Since 3 | q − 1, we have q − 1 = 3k for some positive integer k. Thus 3k(k + 1) =

2t+1(2t + 1) and so, k(k + 1) = 2t+1(2t+1
3

).

Now, if 2t+1 | k, then k + 1 ≤ 2t+1
3

and if 2t+1 | k + 1, then k ≤ 2t+1
3

, which are

impossible.

Similarly, we can rules out the case when q′ −√
2q′ + 1 = p.

If q 6≡ 1 (mod 3), then q ≥ 3. The proof is similar to that of q ≡ 1 (mod 3), and we

omit the proof.

The above steps show that K/H ∼= PSL(3, q). Since |G| = | PSL(3, q)|, H = 1 and

K = G ∼= PSL(3, q). This completes the proof of our main theorem.

Corollary 3.1 Let q be prime power. Then Thompson’s conjecture holds for the

simple group PSL(3, q), where (q2 + q + 1)/(3, q − 1) is a prime number.

Proof. Let G be a group with trivial center and N(G) = N( PSL(3, q)). By [6,

Lemma 1.4], we have |G| = | PSL(3, q)|. Hence, the corollary follows from the main

theorem.
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