QUASI-ZARISKI TOPOLOGY ON THE QUASI-PRIMARY SPECTRUM OF A MODULE

MAHDI SAMIEI⁽¹⁾ AND HOSEIN FAZAELI MOGHIMI⁽²⁾

ABSTRACT. Let R be a commutative ring with a nonzero identity and M be a unitary R-module. A submodule Q of M is called quasi-primary if $Q \neq M$ and, whenever $r \in R$, $x \in M$, and $rx \in Q$, we have $r \in \sqrt{(Q:M)}$ or $x \in \text{rad}Q$. A submodule N of M satisfies the primeful property if and only if M/N is a primeful R-module. We let q.Spec(M) denote the set of all quasi-primary submodules of M satisfying the primeful property. The aim of this paper is to introduce and study a topology on q.Spec(M) which is called quasi-Zariski topology of M. We investigate, in particular, the interplay between the properties of this space and the algebraic properties of the module under consideration. Modules whose quasi-Zariski topology is, respectively T_0 , T_1 or irreducible, are studied, and several characterizations of such modules are given. Finally, we obtain conditions under which q.Spec(M) is a spectral space.

1. Introduction

Throughout this paper, R is a commutative ring with a nonzero identity and M is a unitary R-module. For any ideal I of R containing Ann(M) (the annihilator of M), \overline{I} and \overline{R} will denote I/Ann(M) and R/Ann(M), respectively.

Let M be an R-module and N a submodule of M. The colon ideal of M into

²⁰⁰⁰ Mathematics Subject Classification. 13C13, 13C99, 54B99.

Key words and phrases. Quasi-primary submodule, quasi-primaryful module, quasi-Zariski topology, quasi-primary spectrum.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

N, denoted by (N:M), is the annihilator of M/N as an R-module. P is a prime submodule or a p-prime submodule of M, where p=(P:M), if $P\neq M$ and whenever $rx\in P$ for some $r\in R$ and $x\in M$, we have $r\in p$ or $x\in P$ ([14]). Spec(M), the prime spectrum of M, is the set of all prime submodules of M. Also the set of all maximal submodules of M is denoted by $\mathrm{Max}(M)$. It is easily seen that $\mathrm{Max}(M)\subseteq \mathrm{Spec}(M)$. If $p\in \mathrm{Spec}(R)$, $\mathrm{Spec}_p(M)$ denotes the set of all p-prime submodules of M ([15]). $\mathrm{rad}N$ is the intersection of all prime submodules of M containing N and also $\mathrm{rad}N=M$ when M has no prime submodule containing N. For an ideal I of R, the radical of I is denoted by \sqrt{I} .

Recall that a proper ideal q of R is quasi-primary if $rs \in q$ for $r, s \in R$ implies either $r \in \sqrt{q}$ or $s \in \sqrt{q}$ ([8]). Equivalently, q is a quasi-primary ideal of R if and only if \sqrt{q} is a prime ideal of R [8, Definition 2, p. 176]. For an ideal I of R, the set of all quasi-primary ideals of R containing I is denoted by $V^{\mathbf{q}}(I)$.

An R-module M is said to be primeful if either M = 0 or $M \neq 0$ and satisfies the following equivalent conditions (the equivalence is proved in [11, Theorem 2.1]):

- (i) The natural map $\psi: \operatorname{Spec}(M) \to \operatorname{Spec}(\overline{R})$, given by $\psi(P) = \overline{(P:M)}$, is surjective;
- (ii) For every $p \in V(\text{Ann}(M))$, there exists $P \in \text{Spec}(M)$ such that (P:M) = p;
- (iii) $p_p M_p \neq M_p$ for every $p \in V(\text{Ann}(M))$;
- (iv) $S_p(pM)$, the contraction of p_pM_p in M, is a p-prime submodule of M for every $p \in V(\text{Ann}(M))$;
- (v) $\operatorname{Spec}_p(M) \neq \emptyset$ for every $p \in V(\operatorname{Ann}(M))$.

If N is a submodule of M and M/N is a primeful R-module, we say that N satisfies the primeful property.

A proper submodule Q of M is quasi-primary provided that $rx \in Q$, for $r \in R$ and $x \in M$, implies $r \in \sqrt{(Q:M)}$ or $x \in \text{rad}Q$ (this notion has been introduced by the authors [6], [7]). If $\sqrt{(Q:M)} = p$ is a prime ideal, then Q is also called

a p-quasi-primary submodule of M. If N is a proper submodule of an R-module M satisfying the primeful property, then, by definition, we have $\operatorname{rad} N \neq M$ and also, by [11, Proposition 5.3], we have $(\operatorname{rad} N:M)=\sqrt{(N:M)}$. Thus if Q is a quasi-primary submodule of M satisfying the primeful property, then (Q:M) is a quasi-primary ideal of R. In this case, as we mentioned before, Q is called a p-quasi-primary submodule of M where $p=\sqrt{(Q:M)}$.

The quasi-primary spectrum q.Spec(M) is defined to be the set of all quasi-primary submodules of M satisfying the primeful property ([6], [7]). Also the set of all p-quasi-primary submodules of M satisfying the primeful property is denoted by q.Spec $_p(M)$. The authors studied the class of modules whose quasi-primary spectrums are empty ([5, section 2]). For example q.Spec(\mathbb{Q}) = \emptyset while $Spec(\mathbb{Q}) = \{0\}$, where \mathbb{Q} is the module of rational numbers over the ring of integers \mathbb{Z} . Throughout the rest of this paper, we assume that q.Spec(M) is non-empty.

An R-module M is called quasi-primaryful if either M=(0) or $M\neq (0)$ and for every $q\in V^{\mathbf{q}}(\mathrm{Ann}(M))$, there exists $Q\in \mathrm{q.Spec}(M)$ such that $\sqrt{(Q:M)}=\sqrt{q}$. This notion has been introduced and extensively studied by the authors in [5].

The Zariski topology on the spectrum of prime ideals of a ring is one of the main tools in algebraic geometry. In the literature, there are many different generalizations of the Zariski topology for modules over commutative rings. [13] defined a Zariski topology on $\operatorname{Spec}(M)$ whose closed sets are $V(N) = \{P \in \operatorname{Spec}(M) \mid (P:M) \supseteq (N:M)\}$ for any submodule N of M. As a new generalization of the Zariski topology, we introduce the quasi-Zariski topology on $\operatorname{q.Spec}(M)$ for any R-module M in which closed sets are varieties $\nu(N) = \{Q \in \operatorname{q.Spec}(M) : \sqrt{(Q:M)} \supseteq \sqrt{(N:M)}\}$ of all submodules N of M.

In section (2), when $\operatorname{q.Spec}(M) \neq \emptyset$, we define a map $\psi^{\mathbf{q}} : \operatorname{q.Spec}(M) \to \operatorname{q.Spec}(\overline{R})$ by $\psi^{\mathbf{q}}(Q) = \overline{(Q:M)}$ for every $Q \in \operatorname{q.Spec}(M)$. We show that, when $\operatorname{q.Spec}(M)$ is not empty, the injectivity and the surjectivity of the map $\psi^{\mathbf{q}}$ play a key role in our

investigation and give some topological properties for q.Spec(M). We prove that q.Spec(M) is a T_0 -space iff $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ is injective iff q.Spec(M) has at most one p-quasi-primary submodule satisfying the primeful property for every $p \in \text{Spec}(R)$ (Theorem 2.1 and Proposition 3.2 (5)).

In section (3), and assuming suitable conditions for each result, we investigate when this space is connected (Theorem 3.1), T_0 or T_1 (Proposition 3.2 and Theorem 3.2) and irreducible (Corollary 3.2). Finally, we investigate this topological space q.Spec(M) of a module M from the point of view of spectral spaces, topological spaces each of which is homeomorphic to Spec(S) for some ring S. [10] has characterized spectral spaces as quasi-compact T_0 -spaces W such that W has a quasi-compact open base closed under finite intersection and each irreducible closed subset of W has a generic point. We follow the Hochster's characterization closely in discussing whether q.Spec(M) of a module M is a spectral space.

We discover that when $q.Spec(M) \neq \emptyset$, the injectivity and the surjectivity of the map $\psi^{\mathbf{q}}$ of q.Spec(M) play, respectively, important roles for q.Spec(M) being spectral. We prove that if $\psi^{\mathbf{q}}$ is surjective, then q.Spec(M) is almost spectral in the sense that q.Spec(M) satisfies all the conditions to be a spectral space except for, possibly, that q.Spec(M) is a T_0 -space (Proposition 3.3 (4) and Theorems 3.7, 3.4 (1)). We show that if $\psi^{\mathbf{q}}$ is surjective, then q.Spec(M) is a spectral space iff q.Spec(M) is a T_0 -space iff $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is injective(Theorem 3.9).

2. Surjectivity and injectivity of spectral maps

In this section, we introduce a commutative square of spectral maps that the surjectivity of two of its sides determine the class of quasi-primaryful modules. In fact every non-zero quasi-primaryful modules possess the non-empty quasi-primary spectrum with a surjective natural map.

The saturation of a submodule N of M with respect to a prime ideal p of R is the

contraction of N_p in M and designated by $S_p(N)$. It is known that $S_p(N) = \{m \in M \mid cm \in N \text{ for some } c \in R - p\}$ ([12]).

Lemma 2.1. Let M be an R-module and $Q \in \operatorname{q.Spec}_p(M)$. Then $S_p(pM)$ is a p-prime submodule of M. In particular, the map $\phi^{\mathbf{M}} : \operatorname{q.Spec}(M) \to \operatorname{Spec}(M)$ defined by $\phi^{\mathbf{M}}(Q) = S_p(pM)$, is well-defined.

Proof. By [12, Corollary 3.7], it suffices to show that $p_p M_p \neq M_p$ where $p = \sqrt{(Q:M)}$. It is clear that $\sqrt{(Q:M)}M = (\operatorname{rad}Q:M)M \subseteq \operatorname{rad}Q$ and so $(\operatorname{rad}Q:M)_p M_p \subseteq (\operatorname{rad}Q)_p$. By [6, Theorem 2.15], $(\operatorname{rad}Q)_p = \operatorname{rad}Q_p$ is a prime submodule of M_p and hence $p_p M_p \subseteq \operatorname{rad}Q_p \neq M_p$. It follows that $S_p(pM)$ is a p-prime submodule of M. \square

To prepare our way for this section, it is convenient to introduce the following spectral maps:

$$q.\operatorname{Spec}(M) \xrightarrow{\psi^{\mathbf{q}}} q.\operatorname{Spec}(\overline{R})$$

$$\phi^{\mathbf{M}} \downarrow \qquad \qquad \phi^{\mathbf{R}} \downarrow$$

$$\operatorname{Spec}(M) \xrightarrow{\psi} \operatorname{Spec}(\overline{R})$$

where $\psi^{\mathbf{q}}(Q) = \overline{(Q:M)}$, $\psi(N) = \overline{(N:M)}$, $\phi^{\mathbf{R}}(\overline{q}) = \overline{\sqrt{q}}$ and $\phi^{\mathbf{M}}(Q) = S_p(pM)$ with $p = \sqrt{(Q:M)}$.

It is clear that for a non-zero R-module M, the above diagram is commutative; i.e., $\phi^{\mathbf{R}} o \psi^{\mathbf{q}} = \psi o \phi^{\mathbf{M}}$. Indeed, suppose $Q \in \operatorname{q.Spec}(M)$ and $p = \sqrt{(Q : M)}$. It follows from Lemma 2.1 that $(S_p(pM) : M) = p$, i.e., $\psi o \phi^{\mathbf{M}}(Q) = \overline{p}$. On the other hand, by definition, $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}(Q) = \overline{p}$, as required.

It is easy to see that the surjectivity of $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is naturally equivalent to M being a quasi-primaryful module.

Proposition 2.1. (1) Let p be a prime ideal of a ring R and let M be an Rmodule. If the map $\psi^{\mathbf{q}}$ is injective, then every p-prime submodule of M satisfying the primeful property is of the form $S_p(pM)$.

- (2) If every prime submodule of M satisfies the primeful property then the map $\phi^{\mathbf{M}}$ is surjective.
- Proof. (1). Suppose $\psi^{\mathbf{q}}$ is injective. Let P be a p-prime submodule of M satisfying the primeful property. Then $S_p(pM) \subseteq S_p(P) = P \neq M$. It follows from [12, Proposition 2.4] that $S_p(pM)$ is a p-prime submodule of M. Since P satisfies the primeful property, clearly $S_p(pM)$ also does. Thus, we have $\psi^{\mathbf{q}}(S_p(pM)) = \psi^{\mathbf{q}}(P)$ and hence $S_p(pM) = P$, since $\psi^{\mathbf{q}}$ is injective.
- (2) is trivial. Indeed, if $P \in \operatorname{Spec}_p(M)$, then $P \in \operatorname{q.Spec}(M)$ and hence $\phi^{\mathbf{M}}(P) = S_p(pM)$.

Recall that for any submodule N of M,

$$\nu(N) = \{ Q \in \operatorname{q.Spec}(M) : \sqrt{(Q:M)} \supseteq \sqrt{(N:M)} \}.$$

Theorem 2.1. The following statements are equivalent for any R-module M.

- (1) $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ is injective;
- (2) If $\nu(N) = \nu(K)$, then N = K, for any $N, K \in q.Spec(M)$;
- $(3) \mid \operatorname{q.Spec}_p(M) \mid \leq 1 \text{ for any } p \in \operatorname{Spec}(R);$
- (4) $\phi^{\mathbf{M}}$ is injective.

Moreover, if every prime submodule of M satisfies the primeful property, then the above statements are equivalent to:

- (5) $\phi^{\mathbf{M}}$ is bijective.
- Proof. (1) \Rightarrow (2) Suppose that $\nu(N) = \nu(K)$ for $N, K \in \text{q.Spec}(M)$. By definition, we have then $\sqrt{(N:M)} = \sqrt{(K:M)}$; i.e., $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}(N) = \phi^{\mathbf{R}} o \psi^{\mathbf{q}}(K)$. Now the injectivity of $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ implies that N = K, so we have proved (2).
- (2) \Rightarrow (3). Let $N, K \in \text{q.Spec}_p(M)$. Then $\sqrt{(N:M)} = \sqrt{(K:M)}$ implies that $\nu(N) = \nu(K)$. Thus, N = K by (2).
- (3) \Rightarrow (4). Suppose $Q, Q' \in \text{q.Spec}(M)$ such that $p = \sqrt{(Q:M)}, p' = \sqrt{(Q':M)}$

and $\phi^{\mathbf{M}}(Q) = \phi^{\mathbf{M}}(Q')$. Then $S_p(pM) = S_{p'}(p'M)$ and Lemma 2.1 show that $S_p(pM)$ and $S_{p'}(p'M)$ are p-prime submodules of M. Thus $Q, Q' \in q.\operatorname{Spec}_p(M)$ and hence (3) implies that Q = Q'.

- (4) \Rightarrow (1). Suppose $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}(Q) = \phi^{\mathbf{R}} o \psi^{\mathbf{q}}(Q')$ for some $Q \in \operatorname{q.Spec}_p(M)$ and $Q' \in \operatorname{q.Spec}_{p'}(M)$. Thus p = p' and so $\phi^{\mathbf{M}}(Q) = \phi^{\mathbf{M}}(Q')$. This implies that Q = Q'.
- $(4) \Rightarrow (5)$ is clear where every prime submodule of M satisfies the primeful property.

An R-module M is said to be multiplication if for every submodule N of M, there exists an ideal I of R such that N = IM ([4]). In this case, we can take I = (N : M). An R-module M is called content if for every family $\{I_{\lambda} \mid \lambda \in \Lambda\}$ of ideals of R, $(\bigcap_{\lambda \in \Lambda} I_{\lambda})M = \bigcap_{\lambda \in \Lambda} (I_{\lambda}M)$ ([16]). For example faithful multiplication modules and projective modules are content modules [4, Theorem 1.6] and [1, Theorem 2.1 and Theorem 3.1].

Let M be a finitely generated module over a ring R. Then M is called Laskerian if every submodule of M is the intersection of a finite number of primary submodules ([9]). It is well-known that every finitely generated module over a Noetherian ring is Laskerian. However the converse is not true in general [9, Example 4.2].

Theorem 2.2. Let M be an R-module and the map $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ be injective.

- (1) Let M be a Laskerian module and every primary submodule of M satisfies the primeful property. Then every quasi-primary submodule of M satisfying the primeful property is primary.
- (2) Let M be a flat content R-module. Then Q = (Q : M)M for every $Q \in q.\operatorname{Spec}(M)$.
- (3) If M is free, then $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is bijective.

Proof. Let $Q \in \text{q.Spec}(M)$ and $\bigcap_{i=1}^{t} N_i$ be a primary decomposition for Q. Since $\sqrt{(Q:M)}$ is a prime ideal of R,

$$\sqrt{(N_j:M)} \subseteq \sqrt{(Q:M)} = \bigcap_{i=1}^t \sqrt{(N_i:M)} \subseteq \sqrt{(N_j:M)}$$

for some $1 \leq j \leq t$. Since N_j satisfies the primeful property, we have $N_j \in q.Spec(M)$ and so the injectivity of $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ implies that $Q = N_j$.

- (2). Suppose $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is injective and $Q \in \operatorname{q.Spec}_p(M)$. By Theorem 2.1, it suffices to show that $(Q:M)M \in \operatorname{q.Spec}_p(M)$. It is easy to see directly that $\sqrt{((Q:M)M:M)} = \sqrt{(Q:M)} = p$ and (Q:M)M satisfies the primeful property. It remains to show that (Q:M)M is quasi-primary. Let $rx \in (Q:M)M$ for $r \in R$ and $x \notin \operatorname{rad}((Q:M)M)$. Since M is flat content, $\operatorname{rad}((Q:M)M) = \bigcap_{p \supseteq (Q:M)} (pM) = (\bigcap_{p \supseteq (Q:M)} p)M = \sqrt{(Q:M)}M = pM$ and hence $rx \in pM$ and $x \notin pM$. On the other hand, $\operatorname{rad}Q$ is a proper submodule of M, because Q satisfies the primeful property. Thus $pM \neq M$ is a p-prime submodule of M, by [14, Theorem 3], and so $r \in p$, i.e. (Q:M)M is a p-quasi-primary submodule of M.
- (3). By [5, Theorem 4.3(1)], free modules are quasi-primaryful and hence the proof is easy. \Box

3. Some topological properties of q.Spec(M)

Recall that for any submodule N of an R-module M, $\nu(N)$ is the set of all quasiprimary submodules Q of M satisfying the primeful property, namely $\sqrt{(Q:M)} \supseteq \sqrt{(N:M)}$. We begin this section by showing that if $\eta(M)$ denotes the collection of all subsets $\nu(N)$ of q.Spec(M), then $\eta(M)$ satisfies the axioms for the closed subsets of a topological space on q.Spec(M), called quasi-Zariski topology.

Lemma 3.1. Let M be an R-module. Then for submodules N, N' and $\{N_i \mid i \in I\}$ of M we have

- (1) $\nu(0) = \text{q.Spec}(M)$ and $\nu(M) = \emptyset$.
- (2) $\bigcap_{i \in I} \nu(N_i) = \nu((\sum_{i \in I} (N_i : M))M).$
- (3) $\nu(N) \cup \nu(N') = \nu(N \cap N').$

Proof. (1) and (3) are trivial. (2) follows from the following implications:

$$Q \in \cap_{i \in I} \nu(N_i) \implies \sqrt{(Q:M)} \supseteq \sqrt{(N_i:M)} \ \forall i \in I$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq (N_i:M) \ \forall i \in I$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq \sum_{i \in I} (N_i:M)$$

$$\Rightarrow \sqrt{(Q:M)} M \supseteq (\sum_{i \in I} (N_i:M)) M$$

$$\Rightarrow (\sqrt{Q:M)} M : M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M)$$

$$\Rightarrow ((\operatorname{rad} Q:M) M : M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M)$$

$$\Rightarrow (\operatorname{rad} Q:M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M)$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq \sqrt{((\sum_{i \in I} (N_i:M)) M : M)}$$

$$\Rightarrow Q \in \nu((\sum_{i \in I} (N_i:M)) M).$$

For the reverse inclusion we have

$$Q \in \nu(\sum_{i \in I} (N_i : M)M) \implies \sqrt{(Q : M)} \supseteq \sqrt{((\sum_{i \in I} (N_i : M))M : M)}$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq ((\sum_{i \in I} (N_i : M))M : M)$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq ((N_i : M)M : M) \quad \forall i \in I$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq (N_i : M) \quad \forall i \in I$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq \sqrt{(N_i : M)} \quad \forall i \in I$$

$$\Rightarrow Q \in \cap_{i \in I} \nu(N_i)$$

Let Y be a subset of q.Spec(M) for an R-module M. We will denote the intersection of all elements in Y by $\xi(Y)$ and the closure of Y in q.Spec(M) with respect to the quasi-Zariski topology by cl(Y). In the following Lemma, we gather some basic facts about the varieties.

Lemma 3.2. Let M be an R-module. Let N, N' and $\{N_i \mid i \in I\}$ be submodules of M. Then the following hold.

- (1) If $N \subseteq N'$, then $\nu(N') \subseteq \nu(N)$.
- (2) $\nu(\text{rad}N) \subseteq \nu(N)$ and equality holds if M is multiplication.
- (3) $\nu(N) = \nu(\sqrt{(N:M)}M)$.
- (4) If $\sqrt{(N:M)} = \sqrt{(N':M)}$, then $\nu(N) = \nu(N')$. The converse is also true if both $N, N' \in q.\operatorname{Spec}(M)$.
- $(5) \ \nu(N) = \underset{(N:M) \subseteq p \in \operatorname{Spec}(R)}{\cup} \operatorname{q.Spec}_p(M).$
- (6) Let Y be a subset of q.Spec(M). Then $Y \subseteq \nu(N)$ if and only if $\sqrt{(N:M)} \subseteq \sqrt{(\xi(Y):M)}$.

Proof. (1) is clear.

- (2). $\nu(\text{rad}N) \subseteq \nu(N)$ is clearly true by (1). The equality can be deduced from the fact $\text{rad}N = \sqrt{(N:M)}$, where N is a submodule of a multiplication module M([4, Theorem 2.12].
- (3). Let N be a proper submodule of M. Then

$$Q \in \nu(N) \implies \sqrt{(Q:M)}M \supseteq \sqrt{(N:M)}M$$

$$\Rightarrow \operatorname{rad}Q \supseteq \sqrt{(N:M)}M$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq (\sqrt{(N:M)}M:M)$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq \sqrt{(\sqrt{(N:M)}M:M)}$$

$$\Rightarrow Q \in \nu(\sqrt{(N:M)}M).$$

Thus $\nu(N) \subseteq \nu(\sqrt{(N:M)}M)$. For the reverse inclusion, we have

$$Q \in \nu(\sqrt{(N:M)}M) \implies \sqrt{(Q:M)} \supseteq \sqrt{(\sqrt{(N:M)}M:M)}$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq (\sqrt{(N:M)}M:M)$$

$$\Rightarrow \sqrt{(Q:M)} \supseteq \sqrt{(N:M)}$$

$$\Rightarrow Q \in \nu(N)$$

Finally, (4), (5) and (6) are clearly true by definitions.

Proposition 3.1. Let M be an R-module.

- (1) $(\phi^{\mathbf{R}})^{-1}(V(\overline{I})) = \nu(\overline{I})$ for every ideal I of R containing $\mathrm{Ann}(M)$. In particular, $(\phi^{\mathbf{R}}o\psi^{\mathbf{q}})^{-1}(V(\overline{I})) = (\psi^{\mathbf{q}})^{-1}(\nu(\overline{I}))$.
- (2) $\phi^{\mathbf{R}}(\nu(\overline{I})) = V(\overline{I})$ and $\phi^{\mathbf{R}}(q.\operatorname{Spec}(\overline{R}) \nu(I)) = \operatorname{Spec}(\overline{R}) V(\overline{I})$ i.e. $\phi^{\mathbf{R}}$ is both closed and open.
- (3) $(\phi^{\mathbf{M}})^{-1}(V(N)) = \nu(N)$, for every submodule N of M; i.e. the map $\phi^{\mathbf{M}}$ is continuous.
- (4) The natural maps $\psi^{\mathbf{q}}$ and $\phi^{\mathbf{R}} \circ \psi^{\mathbf{q}}$ are continuous with respect to the quasi-Zariski topology; more precisely for every ideal I of R containing Ann(M),

$$(\phi^{\mathbf{R}}o\psi^{\mathbf{q}})^{-1}(V(\overline{I})) = (\psi^{\mathbf{q}})^{-1}(\nu(\overline{I})) = \nu(IM).$$

- (5) Let M be a quasi-primaryful R-module. If $\varphi = \phi^{\mathbf{R}} o \psi^{\mathbf{q}}$, then $\varphi(\nu(N)) = V(\overline{\sqrt{(N:M)}})$ and $\varphi(\mathbf{q}.\mathrm{Spec}(M) \nu(N)) = \mathrm{Spec}(\overline{R}) V(\overline{\sqrt{(N:M)}})$ i.e. φ is both closed and open.
- (6) $\varphi = \phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ is bijective if and only if it is a homeomorphism.

Proof. (1). Let I be an ideal of R containing Ann(M). Then

$$\begin{split} \overline{q} \in (\phi^{\mathbf{R}})^{-1}(V(\overline{I})) &\iff \phi^{\mathbf{R}}(\overline{q}) \in V(\overline{I}) \\ &\iff \sqrt{\overline{q}} \supseteq \overline{I} \\ &\iff q \in \nu(\overline{I}). \end{split}$$

(2). As we have seen in (1), $\phi^{\mathbf{R}}$ is a continuous map such that $(\phi^{\mathbf{R}})^{-1}(V(\overline{I})) = \nu(\overline{I})$ for every ideal I of R containing $\mathrm{Ann}(M)$. It follows that $\phi^{\mathbf{R}}(\nu(\overline{I})) = \phi^{\mathbf{R}}((\phi^{\mathbf{R}})^{-1}(V(\overline{I}))) = V(\overline{I})$ as $\phi^{\mathbf{R}}$ is surjective. Similarly,

$$\begin{split} \phi^{\mathbf{R}}(\mathbf{q}.\mathrm{Spec}(\overline{R}) - \nu(\overline{I})) &= \phi^{\mathbf{R}}((\phi^{\mathbf{R}})^{-1}(\mathrm{Spec}(\overline{R})) - (\phi^{\mathbf{R}})^{-1}(V(\overline{I}))) \\ &= \phi^{\mathbf{R}}((\phi^{\mathbf{R}})^{-1}(\mathrm{Spec}(\overline{R}) - V(\overline{I})) \\ &= \phi^{\mathbf{R}}o(\phi^{\mathbf{R}})^{-1}(\mathrm{Spec}(\overline{R}) - V(\overline{I}))) \\ &= \mathrm{Spec}(\overline{R}) - V(\overline{I}). \end{split}$$

- (3). Suppose $Q \in (\phi^{\mathbf{M}})^{-1}(V(N))$. Then $\phi^{\mathbf{M}}(Q) \in V(N)$ and so $p = (S_p(pM) : M) \supseteq (N : M)$, in which $p = \sqrt{(Q : M)}$. Hence $\sqrt{(Q : M)} \supseteq \sqrt{(N : M)}$ and so $Q \in \nu(N)$. The argument is reversible and so $\phi^{\mathbf{M}}$ is continuous.
- (4). It follows from [13, Proposition 3.1] that ψ is a continuous map with $\psi^{-1}(V(\overline{I})) = V(IM)$ for every ideal I of R containing $\operatorname{Ann}(M)$. Also, we showed that $\phi^{\mathbf{R}}o\psi^{\mathbf{q}} = \psi o\phi^{\mathbf{M}}$. This implies that $\psi^{\mathbf{q}}$ and $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ are also continuous and $(\phi^{\mathbf{R}}o\psi^{\mathbf{q}})^{-1}(V(\overline{I})) = (\psi^{\mathbf{q}})^{-1}(\nu(\overline{I})) = \nu(IM)$ for every ideal I of R containing $\operatorname{Ann}(M)$, by (1) and (3).
- (5). Take $\varphi = \phi^{\mathbf{R}} o \psi^{\mathbf{q}}$. Since M is quasi-primaryful, φ is surjective. Also by (4), φ is a continuous map such that $\varphi^{-1}(V(\overline{I})) = \nu(IM)$ for every ideal I of R containing $\mathrm{Ann}(M)$. Hence, by Lemma 3.2(3), for every submodule N of M, $\varphi^{-1}(V(\overline{\sqrt{(N:M)}})) = \nu(\sqrt{(N:M)}M) = \nu(N)$. Since the map φ is surjective, we have $\varphi(\nu(N)) = \varphi o \varphi^{-1}(V(\overline{\sqrt{(N:M)}})) = V(\overline{\sqrt{(N:M)}})$. Similarly, we conclude

that

$$\varphi(\operatorname{q.Spec}(M) - \nu(N)) = \varphi(\varphi^{-1}(\operatorname{Spec}(\overline{R})) - (\varphi)^{-1}(V(\overline{\sqrt{(N:M)}})))$$

$$= \varphi((\varphi)^{-1}(\operatorname{Spec}(\overline{R}) - V(\overline{\sqrt{(N:M)}})))$$

$$= \varphi o \varphi^{-1}(\operatorname{Spec}(\overline{R}) - V(\overline{\sqrt{(N:M)}}))$$

$$= \operatorname{Spec}(\overline{R}) - V(\overline{\sqrt{(N:M)}}).$$

(6). This follows from (5).

Lemma 3.3. For any ring R, q.Spec(\overline{R}) is connected if and only if Spec(\overline{R}) is connected.

Proof. Suppose that $\operatorname{q.Spec}(\overline{R})$ is a connected space. By Proposition 3.1, the map $\phi^{\mathbf{R}}$ is surjective and continuous and so $\operatorname{Spec}(\overline{R})$ is also a connected space. Conversely, suppose on the contrary that $\operatorname{q.Spec}(\overline{R})$ is disconnected. Then there exists a non-empty proper subset W of $\operatorname{q.Spec}(\overline{R})$ that is both open and closed. By Proposition 3.1, $\phi^{\mathbf{R}}(W)$ is a non-empty subset of $\operatorname{Spec}(\overline{R})$ that is both open and closed. To complete the proof, it suffices to show that $\phi^{\mathbf{R}}(W)$ is a proper subset of $\operatorname{Spec}(\overline{R})$ that in this case $\operatorname{Spec}(\overline{R})$ is disconnected, a contradiction.

Since W is open, $W = \operatorname{q.Spec}(\overline{R}) - \nu(\overline{I})$ for some ideal I of R containing $\operatorname{Ann}(M)$. Thus $\phi^{\mathbf{R}}(W) = \operatorname{Spec}(\overline{R}) - V(\overline{I})$ by Proposition 3.1. Therefore, if $\phi^{\mathbf{R}}(W) = \operatorname{Spec}(\overline{R})$, then $V(\overline{I}) = \emptyset$, and so $\overline{I} = \overline{R}$, i.e., I = R. It follows that $W = \operatorname{q.Spec}(\overline{R}) - \nu(\overline{R}) = \operatorname{q.Spec}(\overline{R})$ which is impossible. Thus $\phi^{\mathbf{R}}(W)$ is a proper subset of $\operatorname{q.Spec}(\overline{R})$.

Theorem 3.1. Let M be a quasi-primaryful R-module. Then the following statements are equivalent:

- (1) q.Spec(M) together with quasi-Zariski topology is a connected space;
- (2) $q.Spec(\overline{R})$ together with quasi-Zariski topology is a connected space;
- (3) Spec(\overline{R}) together with Zariski topology is a connected space;

- (4) Spec(M) together with Zariski topology is a connected space;
- (5) The ring \overline{R} contains no idempotent other than $\overline{0}$ and $\overline{1}$.

Consequently, if R is a quasi-local ring or Ann(M) is a prime ideal of R, then both q.Spec(M) and $q.Spec(\overline{R})$ are connected.

Proof. (1) \Rightarrow (3) follows since $\varphi = \phi^{\mathbf{R}} \circ \psi^{\mathbf{q}}$ is a surjective and continuous map of the connected space q.Spec(M). To prove (3) \Rightarrow (1), we assume that Spec(\overline{R}) is connected. If q.Spec(M) is disconnected, then q.Spec(M) must contain a non-empty proper subset Y that is both open and closed. Accordingly, $\varphi(Y)$ is a non-empty subset of Spec(\overline{R}) that is both open and closed by Proposition 3.1. To complete the proof, it suffices to show that $\varphi(Y)$ is a proper subset of Spec(\overline{R}) so that Spec(\overline{R}) is disconnected, a contradiction.

Since Y is open, $Y = \operatorname{q.Spec}(M) - \nu(N)$ for some submodule N of M whence $\varphi(Y) = \operatorname{Spec}(\overline{R}) - V(\overline{\sqrt{(N:M)}})$ by Proposition 3.1. Therefore, if $\varphi(Y) = \operatorname{Spec}(\overline{R})$, then $V(\overline{\sqrt{(N:M)}}) = \emptyset$, and so $\overline{\sqrt{(N:M)}} = \overline{R}$, i.e., N = M. It follows that $Y = \operatorname{q.Spec}(M) - \nu(M) = \operatorname{q.Spec}(M)$ which is impossible. Thus $\varphi(Y)$ is a proper subset of $\operatorname{Spec}(\overline{R})$.

By Lemma 3.3, (2) and (3) are equivalent and (3) \Leftrightarrow (4) \Leftrightarrow (5) may be obtained by using [5, Theorem 3.1.] and [13, Corollary 3.8].

A topological space $(X;\tau)$ is said to be a T_0 -space if for each pair of distinct points a,b in X, either there exists an open set containing a and not b, or there exists an open set containing b and not a. It has been shown that a topological space is T_0 if and only if the closures of distinct points are distinct. Also, a topological space $(X;\tau)$ is called a T_1 -space if every singleton set $\{x\}$ is closed in $(X;\tau)$. Clearly every T_1 -space is a T_0 -space.

Proposition 3.2. Let M be an R-module, $Y \subseteq q.\operatorname{Spec}(M)$ and let $Q \in q.\operatorname{Spec}_p(M)$.

Then

- (1) $\nu(\xi(Y)) = cl(Y)$. In particular, $cl(\{Q\}) = \nu(Q)$.
- (2) If $(0) \in Y$, then Y is dense in q.Spec(M).
- (3) The set {Q} is closed in q.Spec(M) if and only if
 (i) p is a maximal element in {√(N:M) | N ∈ q.Spec(M)}, and
 (ii) q.Spec_n(M) = {Q}.
- (4) If $\{Q\}$ is closed in q.Spec(M), then Q is a maximal element of q.Spec(M).
- (5) q.Spec(M) is a T_0 -space if and only if any of the equivalent statements (1)-(4) in Theorem 2.1 hold.
- (6) q.Spec(M) is a T_1 -space if and only if q.Spec(M) is a T_0 -space and for every element $Q \in \text{q.Spec}(M)$, $\sqrt{(Q:M)}$ is a maximal element in $\{\sqrt{(N:M)} \mid N \in \text{q.Spec}(M)\}$.
- (7) q.Spec(M) is a T_1 -space if and only if q.Spec(M) is a T_0 -space and every quasi-primary submodule of M satisfying the primeful property is a maximal element of q.Spec(M).
- (8) Let $(0) \in q.Spec(M)$. Then q.Spec(M) is a T_1 -space if and only if (0) is the only quasi-primary submodule of M satisfying the primeful property.
- Proof. (1). Suppose $L \in Y$. Then $\xi(Y) \subseteq L$. Therefore $\sqrt{(L:M)} \supseteq \sqrt{(\xi(Y):M)}$. Thus $L \in \nu(\xi(Y))$ and so $Y \subseteq \nu(\xi(Y))$. Next, let $\nu(N)$ be any closed subset of q.Spec(M) containing Y. Then $\sqrt{(L:M)} \supseteq \sqrt{(N:M)}$ for every $L \in Y$ so that $\sqrt{(\xi(Y):M)} \supseteq \sqrt{(N:M)}$. Hence, for every $L' \in \nu(\xi(Y))$; $\sqrt{(L':M)} \supseteq \sqrt{(\xi(Y):M)} \supseteq \sqrt{(N:M)}$. Then $\nu(\xi(Y)) \subseteq \nu(N)$. Thus $\nu(\xi(Y))$ is the smallest closed subset of q.Spec(M) containing Y, hence $\nu(\xi(Y)) = cl(Y)$.
- (2) is trivial by (1).
- (3). Suppose that $\{Q\}$ is closed. Then $\{Q\} = \nu(Q)$ by (1). Let $N \in \operatorname{q.Spec}(M)$ such that $\sqrt{(N:M)} \supseteq p = \sqrt{(Q:M)}$. Hence, $N \in \nu(Q) = \{Q\}$, and so $\operatorname{q.Spec}_p(M) = \{Q\}$. Conversely, assume that (i) and (ii) hold. Let $N \in \operatorname{cl}(\{Q\})$. Hence by (1),

 $\sqrt{(N:M)} \supseteq \sqrt{(Q:M)}$. Thus by (i), $\sqrt{(N:M)} = \sqrt{(Q:M)} = p$ and therefore Q = N by (ii). This yields $cl(\{Q\}) = \{Q\}$.

- (4). Suppose $Q' \in \text{q.Spec}(M)$ such that $Q' \supseteq Q$. Then $\sqrt{(Q':M)} \supseteq \sqrt{(Q:M)}$. i.e., $Q' \in \nu(Q) = cl(\{Q\}) = \{Q\}$. Hence, Q' = Q, and so Q is a maximal element of q.Spec(M).
- (5). The result follows from the part (1).
- (6). The result is easy to check from the parts (3), (5).
- (7). The sufficiency is trivial by part (4). Conversely, suppose $Q, N \in \operatorname{q.Spec}(M)$ such that $Q \in \operatorname{cl}(\{N\}) = \nu(N)$. Thus $\sqrt{(Q:M)} \supseteq \sqrt{(N:M)}$. Since Q satisfies the primeful property, $\sqrt{(Q:M)}$ is a proper ideal of R and hence by maximality of N we have $\sqrt{(Q:M)} = \sqrt{(N:M)}$; i.e. $\nu(Q) = \nu(N)$. Now, by Theorem 2.1, we conclude that Q = N. Thus $\operatorname{cl}(\{N\}) = \{N\}$; i.e. every singleton subset of $\operatorname{q.Spec}(M)$ is closed. So, $\operatorname{q.Spec}(M)$ is a T_1 -space.

(8). Use part (7).
$$\Box$$

Example 3.1. Consider the \mathbb{Z} -module $M = \prod_p \mathbb{Z}/p\mathbb{Z}$ where p runs through the set Ω of all prime integers of \mathbb{Z} . We claim that $q.\operatorname{Spec}(M) = \{pM \mid p \in \Omega\}$. Let $p \in \Omega$. By $[11, \operatorname{Example}\ 1(3)\ p.\ 136]$, pM is a p-prime submodule of M and hence by $[11, \operatorname{Proposition}\ 4.5]$ pM satisfies the primeful property. Thus $\{pM \mid p \in \Omega\} \subseteq q.\operatorname{Spec}(M)$. For the reverse inclusion, let $Q \in q.\operatorname{Spec}(M)$. By the argument in the Example $[5, \operatorname{Example}\ 3.1]$, $\sqrt{(Q:M)}$ is a nonzero prime ideal of \mathbb{Z} . Take $\sqrt{(Q:M)} = p\mathbb{Z}$. So $p\mathbb{Z} = \sqrt{(Q:M)} = (\operatorname{rad} Q:M)$ implies that $\operatorname{rad} Q$ is a prime submodule of M. Thus $\operatorname{rad} Q = pM$. Since the ring of integers is Noetherian, there is $n \in \mathbb{N}$ such that $p^n = (\sqrt{(Q:M)})^n \subseteq (Q:M)$. Hence $p^nM \subseteq Q \subseteq pM$. It is easy to see that $p^nM = pM$ and so Q = pM. Now by Proposition 3.2(3), $q.\operatorname{Spec}(M)$ is a T_1 -space.

Theorem 3.2. Let M be a finitely generated R-module. The following statements are equivalent:

- (1) q.Spec(M) is a T_1 -space;
- (2) q.Spec(M) is a T_0 -space and q.Spec(M) = Max(M);
- (3) M is a multiplication module and q.Spec(M) = Max(M).
- *Proof.* (1) \Rightarrow (2). Since M is finitely generated, every submodule of M satisfies the primeful property by [11, Theorem 2.2]. Thus $Max(M) \subseteq q.Spec(M)$. The reverse inclusion is obtained by using Proposition 3.2(7) and the fact that every proper submodule, in particular every quasi-primary submodule, of a finitely generated module is contained in a maximal submodule.
- $(2) \Rightarrow (1)$ is clear by Proposition 3.2(7).
- $(2) \Rightarrow (3)$. By [11, Theorem 2.2], we may assume that $\operatorname{Spec}(M)$ is a subspace of $\operatorname{q.Spec}(M)$ and hence $|\operatorname{Spec}_p(M)| \leq 1$ for every prime ideal p of R, by Proposition 3.2(5). Now, it follows from [15, Theorem 3.5] that M is multiplication.
- (3) \Rightarrow (2). Suppose M is a multiplication module and q.Spec(M) = Max(M). Thus every quasi-primary submodule of M is of the form pM for some maximal ideal p of R, by [4, Theorem 2.5(ii)]. Now, let $\nu(pM) = \nu(p'M)$ for some $pM, p'M \in \text{q.Spec}(M)$. Hence $\sqrt{(pM:M)} = \sqrt{(p'M:M)}$. It implies that (rad(pM):M) = (rad(p'M):M) and so rad(pM) = rad(p'M). Since pM and p'M are prime, we have pM = p'M. Thus q.Spec(M) is a T_0 -space by Proposition 3.2(5).

Corollary 3.1. Let M be an R-module.

- (1) Let R be a domain. If q.Spec(R) is a T_1 -space, then R is a field.
- (2) If M is Noetherian and q.Spec(M) is a T_1 -space, then M is Artinian cyclic.
- *Proof.* (1). Since R is a domain, $(0) \in q.Spec(R)$. But by Theorem 3.2, we have q.Spec(R) = Max(R). Thus, R is a field.
- (2). By Theorem 3.2, M is multiplication and every quasi-primary submodule and hence every prime submodule of M is maximal. By [2, Theorem 4.9], M is Artinian and the result follows from [4, Corollary 2.9].

A topological space X is called irreducible if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect. A subset A of a topological space X is irreducible if for every pair of closed subsets A_i (i = 1, 2) of X with $A \subseteq A_1 \cup A_2$, we have $A \subseteq A_1$ or $A \subseteq A_2$. An irreducible component of a topological space A is a maximal irreducible subset of X. A singleton subset and its closure in q.Spec(M) are both irreducible. Now, we can apply Proposition 3.2(1) to achieve the following result:

Lemma 3.4. $\nu(Q)$ is an irreducible closed subset of q.Spec(M) for every quasiprimary submodule Q of M satisfying the primeful property.

As we mentioned before, it is easily seen that if Q is a quasi-primary submodule of M satisfying the primeful property, then (Q:M) is a quasi-primary ideal of R. The converse is also true when M is a multiplication module. Indeed if (Q:M) is a quasi-primary ideal of R, then $p = \sqrt{(Q:M)} = (\operatorname{rad} Q:M)$ is a prime ideal of R. Thus by [4, Corollary 2.11], $\operatorname{rad} Q$ is a prime submodule and so Q is a quasi-primary submodule of M. Using this fact, some assertions will be proved in the following.

Theorem 3.3. Let M be an R-module and $Y \subseteq q.Spec(M)$. If $\xi(Y)$ is a quasi-primary submodule of M, then Y is an irreducible space. The converse is true, if M is a multiplication module and $\xi(Y)$ satisfies the primeful property.

Proof. Suppose $\xi(Y)$ is a quasi-primary submodule of M. Let $Y \subseteq Y_1 \cup Y_2$ where Y_1 and Y_2 are two closed subsets of q.Spec(M). Then there exist two submodules N and K of M such that $Y_1 = \nu(N)$ and $Y_2 = \nu(K)$. Thus, $Y \subseteq \nu(N) \cup \nu(K) = \nu(N \cap K)$ and so by Lemma 3.2(6), $\sqrt{((N \cap K) : M)} \subseteq \sqrt{(\xi(Y) : M)}$. Since $\sqrt{(\xi(Y) : M)}$ is a prime ideal, either $\sqrt{(N : M)} \subseteq \sqrt{(\xi(Y) : M)}$ or $\sqrt{(K : M)} \subseteq \sqrt{(\xi(Y) : M)}$. Again by using Lemma 3.2(6), either $Y \subseteq \nu(N) = Y_1$ or $Y \subseteq \nu(K) = Y_2$. Thus we conclude that Y is irreducible. Conversely, assume that M is a multiplication module and Y is an irreducible space. By the above argument, it suffices to show that $(\xi(Y) : M)$ is

a quasi-primary ideal of R. Let $ab \in (\xi(Y):M)$ for some $a,b \in R$. Suppose, on the contrary, that $Ra \nsubseteq \sqrt{(\xi(Y):M)}$ and $Rb \nsubseteq \sqrt{(\xi(Y):M)}$. Then $\sqrt{(RaM:M)} \nsubseteq \sqrt{(\xi(Y):M)}$ and $\sqrt{(RbM:M)} \nsubseteq \sqrt{(\xi(Y):M)}$. By Lemma 3.2(6), $Y \nsubseteq \nu(RaM)$ and $Y \nsubseteq \nu(RbM)$. Let $Q \in Y$. Then $\sqrt{(Q:M)} \supseteq \sqrt{(\xi(Y):M)} \supseteq Rab$. This means that either $RaM \subseteq \sqrt{(Q:M)}M$ or $RbM \subseteq \sqrt{(Q:M)}M$. So, by Lemma 3.2(1),(3), either $\nu(Q) \subseteq \nu(RaM)$ or $\nu(Q) \subseteq \nu(RbM)$. Therefore, $Y \subseteq \nu(RaM) \cup \nu(RbM)$ and hence $Y \subseteq \nu(RaM)$ or $Y \subseteq \nu(RbM)$ as Y is irreducible. It is a contradiction. \square

Corollary 3.2. Let M be a multiplication R-module.

- (1) If M is finitely generated and N is a submodule of M. Then V(N) is irreducible if and only if $N \in q.Spec(M)$.
- (2) Let R be a domain, M be a faithful module and $\xi(q.\operatorname{Spec}(M))$ satisfies the primeful property. Then $q.\operatorname{Spec}(M)$ is irreducible.

Proof. (1). It is clear that $\operatorname{rad}(N) = \xi(V(N)) \neq M$. Since M is finitely generated, [11, Theorem 2.2] follows that every proper submodule of M satisfies the primeful property and hence we have $V(N) \subseteq \operatorname{q.Spec}(M)$. Now by Theorem 3.3, V(N) is an irreducible space if and only if $\operatorname{rad} N \in \operatorname{q.Spec}(M)$. On the other hand, by the argument before Theorem 3.3, $\operatorname{rad} N \in \operatorname{q.Spec}(M)$ if and only if $N \in \operatorname{q.Spec}(M)$.

(2). Since (0) is a prime ideal of R, we have $\operatorname{rad}(\mathbf{0}) = \operatorname{rad}(\mathbf{0}M) = \sqrt{(0)}M = \mathbf{0}$ by [4, Theorem 2.12]. Now, $(\xi(\operatorname{q.Spec}(M)):M) \subseteq (\xi(\operatorname{Spec}(M)):M) = (\bigcap_{P \in \operatorname{Spec}(M)} P:M) = (\mathbf{0}:M) = (0)$. Thus $\xi(\operatorname{q.Spec}(M))$ is a quasi-primary submodule of M and hence the result follows from Theorem 3.3.

Let Y be a closed subset of a topological space. An element $y \in Y$ is said to be a generic point of Y if $Y = cl(\{y\})$. Proposition 3.2(1) follows that every element Q of q.Spec(M) is a generic point of the irreducible closed subset $\nu(Q)$ of q.Spec(M). Note that a generic point of a closed subset Y of a topological space is unique if the topological space is a T_0 -space.

Theorem 3.4. Let M be a quasi-primaryful R-module and $Y \subseteq q.Spec(M)$.

- (1) Y is an irreducible closed subset of q.Spec(M) if and only if $Y = \nu(Q)$ for some $Q \in q.Spec(M)$. In particular every irreducible closed subset of q.Spec(M) has a generic point.
- (2) The set of all irreducible components of q.Spec(M) is of the form $T = \{\nu(\sqrt{q}M) \mid q \in V^{\mathbf{q}}(\mathrm{Ann}(M)) \text{ and } \sqrt{q} \text{ is a minimal element of } V(\mathrm{Ann}(M)) \text{ with respect to inclusion}\}.$
- (3) Let R be a Laskerian ring and M be a nonzero R-module. Then q.Spec(M) has finitely many irreducible components.

Proof. By Lemma 3.4, $Y = \nu(Q)$ is an irreducible closed subset of q.Spec(M) for some $Q \in \text{q.Spec}(M)$. Conversely, let Y be an irreducible space. Hence $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}(Y) = Y'$ is an irreducible subset of Spec (\overline{R}) because $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is continuous by Proposition 3.1(4). It follows from [3, P. 129, Proposition 14] that $\xi(Y') = \overline{\sqrt{(\xi(Y):M)}}$ is a prime ideal of \overline{R} . Therefore $\sqrt{(\xi(Y):M)}$ is a prime ideal of R. Since the map $\phi^{\mathbf{R}}o\psi^{\mathbf{q}}$ is surjective, there exists $Q \in \text{q.Spec}(M)$ such that $\sqrt{(Q:M)} = \sqrt{(\xi(Y):M)}$. Since Y is closed, there exists a submodule N of M such that $Y = \nu(N)$. It means that $\sqrt{(\xi(\nu(N)):M)} = \sqrt{(Q:M)}$ and hence $\nu(\xi(Y)) = \nu(\xi(\nu(N))) = \nu(Q)$ by Lemma 3.2(6). Thus $Y = \nu(Q)$ by Proposition 3.2(1).

(2). Suppose Y is an irreducible component of q.Spec(M). By part (1), $Y = \nu(Q)$ for some $Q \in \text{q.Spec}(M)$. Hence, $Y = \nu(Q) = \nu(\sqrt{(Q:M)}M)$ by Lemma 3.2(3). Let q = (Q:M). Now, it suffices to show that \sqrt{q} is a minimal element of V(Ann(M)) with respect to inclusion. To see this let $q' \in V(\text{Ann}(M))$ and $q' \subseteq \sqrt{q}$. Then there exists an element $Q' \in \text{q.Spec}(M)$ such that $\sqrt{(Q':M)} = q'$ because M is quasi-primaryful. So, $Y = \nu(Q) \subseteq \nu(Q')$. Hence, $Y = \nu(Q) = \nu(Q')$ due to the maximality of $\nu(Q)$. It implies that $\sqrt{q} = q'$. Conversely, let $Y \in T$. Then there exists $q \in V^q(\text{Ann}(M))$ such that \sqrt{q} is a minimal element in V(Ann(M)) and

 $Y = \nu(\sqrt{q}M)$. Since M is quasi-primaryful, there exists an element $Q \in \text{q.Spec}(M)$ such that $\sqrt{(Q:M)} = \sqrt{q}$. So, $Y = \nu(\sqrt{q}M) = \nu(\sqrt{(Q:M)}M) = \nu(Q)$, and so Y is irreducible by part (1). Suppose that $Y = \nu(Q) \subseteq \nu(Q')$, where $Q' \in \text{q.Spec}(M)$. Since $Q \in \nu(Q')$ and \sqrt{q} is minimal, it follows that $\sqrt{(Q:M)} = \sqrt{(Q':M)}$. Now, by Lemma 3.2(3), we have

$$Y = \nu(Q) = \nu(\sqrt{(Q:M)}M) = \nu(\sqrt{(Q':M)}M) = \nu(Q').$$

(3). Suppose $q \in V^{\mathbf{q}}(\mathrm{Ann}(M))$ and \sqrt{q} is a minimal element of $V(\mathrm{Ann}(M))$. Let $\mathrm{Ann}(M) = \bigcap_{i=1}^t q_i$ be a minimal primary decomposition of $\mathrm{Ann}(M)$. Then $\sqrt{q_i} \subseteq \sqrt{q}$ for some $1 \leq i \leq t$, since \sqrt{q} is prime. By minimality of \sqrt{q} , we get $\sqrt{q} = \sqrt{q_i}$. Therefore, irreducible components of $\mathrm{q.Spec}(M)$ are of the form $\nu(\sqrt{q_i}M)$, by part (2).

For any submodule N of M, we define $\Lambda_M(N) = \operatorname{q.Spec}(M) - \nu(N)$ as an open set of $\operatorname{q.Spec}(M)$. Also, $\Lambda_M(a) = \Lambda_M(aM)$ for any $a \in R$. Clearly, $\Lambda_M(0) = \emptyset$ and $\Lambda_M(1) = \operatorname{q.Spec}(M)$. The following result shows that the set $B = \{\Lambda_M(a) \mid a \in R\}$ is a base for the quasi-Zariski topology on $\operatorname{q.Spec}(M)$.

Theorem 3.5. Let M be an R-module. The set $B = \{\Lambda_M(a) \mid a \in R\}$ forms a base for the quasi-Zariski topology on q.Spec(M).

Proof. We may assume that $q.Spec(M) \neq \emptyset$. We will show that every open subset of q.Spec(M) is a union of members of B. Let O be an open subset in q.Spec(M).

Thus $O = \text{q.Spec}(M) - \nu(N)$ for some submodule N of M. Therefore

$$\begin{split} O &= \operatorname{q.Spec}(M) - \nu(N) = \operatorname{q.Spec}(M) - \nu(\sqrt{(N:M)}M) \\ &= \operatorname{q.Spec}(M) - \nu(\sum_{a \in \sqrt{(N:M)}} aM) \\ &= \operatorname{q.Spec}(M) - \nu(\sum_{a \in \sqrt{(N:M)}} (aM:M)M) \\ &= \operatorname{q.Spec}(M) - \bigcap_{a \in \sqrt{(N:M)}} \nu(aM) \\ &= \bigcup_{a \in \sqrt{(N:M)}} \Lambda_M(a) \end{split}$$

Theorem 3.6. Let R be a ring and $a, b \in R$.

- (1) $\Lambda_R(a) = \emptyset$ if and only if a is a nilpotent element of R.
- (2) $\Lambda_R(a) = \text{q.Spec}(R)$ if and only if a is a unit element of R.
- (3) For each pair of ideals I and J of R, $\Lambda_R(I) = \Lambda_R(J)$ if and only if $\sqrt{I} = \sqrt{J}$.
- (4) $\Lambda_R(ab) = \Lambda_R(a) \cap \Lambda_R(b)$.
- (5) q.Spec(R) is quasi-compact.
- (6) q.Spec(R) is a T_0 -space.

Proof. (1). Let $a \in R$. Then

$$\emptyset = \Lambda_R(a) = \text{q.Spec}(R) - V^{\mathbf{q}}(Ra)$$

$$\Leftrightarrow V^{\mathbf{q}}(Ra) = \text{q.Spec}(R)$$

$$\Leftrightarrow \sqrt{q} \supseteq Ra \text{ for every } q \in \text{q.Spec}(R)$$

$$\Leftrightarrow a \text{ is in every prime ideal of } R$$

$$\Leftrightarrow a \text{ is a nilpotent element of } R.$$

(2). Let $a \in R$. Then

$$\Lambda_R(a) = \text{q.Spec}(R) \iff a \notin \sqrt{q} \text{ for all } q \in \text{q.Spec}(R)$$

$$\Rightarrow a \notin q \text{ for all } q \in \text{Max}(R)$$

$$\Rightarrow a \text{ is unit.}$$

Conversely, if a is a unit, then clearly a is not in any quasi-primary ideal. That is, $\Lambda_R(a) = \text{q.Spec}(R)$.

- (3) Suppose that $\Lambda_R(I) = \Lambda_R(J)$. Let p be a prime ideal of R containing I. Since p is a quasi-primary ideal of R and $p \supseteq \sqrt{I}$, we have $p \in \nu(I)$. Thus, by assumption, $p \supseteq \sqrt{J} \supseteq J$ and so every prime ideal of R containing I is also a prime ideal of R containing J, and vice versa. Therefore $\sqrt{I} = \sqrt{J}$. The converse is trivially true.
- (4). To prove (4), it suffices to show that $\nu(Rab) = \nu(Ra) \cup \nu(Rb)$. Let $q \in \nu(Rab)$. Then

$$\sqrt{q} \supseteq \sqrt{Rab} = \sqrt{Ra} \cap \sqrt{Rb} \iff (\sqrt{q} \supseteq \sqrt{Ra} \text{ or } \sqrt{q} \supseteq \sqrt{Rb})$$

$$\Leftrightarrow (q \in \nu(Ra) \text{ or } q \in \nu(Rb))$$

$$\Leftrightarrow q \in \nu(Ra) \cup \nu(Rb).$$

(5). Let $q.\operatorname{Spec}(R) = \bigcup_{i \in I} \Lambda_R(J_i)$, where $\{J_i\}_{i \in I}$ is a family of ideals of R. We clearly have $\Lambda_R(R) = q.\operatorname{Spec}(R) = \Lambda_R(\sum_{i \in I} J_i)$. Thus, by part (3), we have $R = \sqrt{\sum_{i \in I} J_i}$ and hence, $1 \in \sum_{i \in I} J_i$. So there are $i_1, i_2, \dots, i_n \in I$ such that $1 \in \sum_{k=1}^n J_{i_k}$, that is $R = \sum_{k=1}^n J_{i_k}$. Consequently $q.\operatorname{Spec}(R) = \Lambda_R(R) = \Lambda_R(\sum_{k=1}^n J_{i_k}) = \bigcup_{k=1}^n \Lambda_R(J_{i_k})$.

(6). Let q_1, q_2 be two distinct points of $q.\operatorname{Spec}(R)$. If $q_1 \not\subseteq q_2$, then obviously $q_2 \in \Lambda_R(q_1)$ and $q_1 \notin \Lambda_R(q_1)$.

Proposition 3.3. Let M be an R-module and $a, b \in R$.

$$(1) \ (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a})) = \Lambda_M(a).$$

- (2) $\psi^{\mathbf{q}}(\Lambda_M(a)) \subseteq \Lambda_{\overline{R}}(\overline{a})$ and the equality holds if $\psi^{\mathbf{q}}$ is surjective.
- (3) $\Lambda_M(ab) = \Lambda_M(a) \cap \Lambda_M(b)$.
- (4) If $\psi^{\mathbf{q}}$ is surjective, then the open set $\Lambda_M(Ra)$ in q.Spec(M) is quasi-compact. In particular, the space q.Spec(M) is quasi-compact.

Proof. (1). Since $\psi^{\mathbf{q}}$ is continuous, by Proposition 3.1(3), we have

$$(\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a})) = (\psi^{\mathbf{q}})^{-1}(\operatorname{q.Spec}(\overline{R}) - \nu(\overline{a}\overline{R}))$$

$$= \operatorname{q.Spec}(M) - (\psi^{\mathbf{q}})^{-1}(\nu(\overline{a}\overline{R}))$$

$$= \operatorname{q.Spec}(M) - \nu(aM)$$

$$= \Lambda_{M}(a).$$

- (2) follows immediately from part (1).
- (3). Let $a, b \in R$. Then

$$\Lambda_{M}(ab) = (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{ab})) \text{ by part } (1)$$

$$= (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a}) \cap \Lambda_{\overline{R}}(\overline{a})) \text{ by Theorem } 3.6(4)$$

$$= (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a})) \cap (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a}))$$

$$= \Lambda_{M}(a) \cap \Lambda_{M}(a).$$

(4). Since $B = \{\Lambda_M(a) \mid a \in R\}$ forms a base for the quasi-Zariski topology on q.Spec(M) by Theorem 3.5, for any open cover of $\Lambda_M(a)$, there is a family $\{a_i \in R \mid i \in I\}$ of elements of R such that $\Lambda_M(a) \subseteq \bigcup_{i \in I} \Lambda_M(a_i)$. By part (2), $\Lambda_{\overline{R}}(\overline{a}) = \psi^{\mathbf{q}}(\Lambda_M(a)) \subseteq \bigcup_{i \in I} \psi^{\mathbf{q}}(\Lambda_M(a_i)) = \bigcup_{i \in I} \Lambda_{\overline{R}}(\overline{a_i})$. It follows that there exists a finite subset I' of I such that $\Lambda_{\overline{R}}(\overline{a}) \subseteq \bigcup_{i \in I'} \Lambda_{\overline{R}}(\overline{a_i})$ as $\Lambda_{\overline{R}}(\overline{a})$ is quasi-compact, since $\phi^{\mathbf{R}}$ is surjective, whence $\Lambda_M(a) = (\psi^{\mathbf{q}})^{-1}(\Lambda_{\overline{R}}(\overline{a})) \subseteq \bigcup_{i \in I'} \Lambda_M(a_i)$ by part (1).

Theorem 3.7. Let M be an R-module. If the map $\psi^{\mathbf{q}}$ is surjective, then the quasi-compact open sets of $q.\operatorname{Spec}(M)$ are closed under finite intersection and form an open base.

Proof. It suffices to show that the intersection $C = C_1 \cap C_2$ of two quasi-compact open sets C_1 and C_2 of q.Spec(M) is a quasi-compact set. Each C_j , j = 1 or 2, is a finite union of members of the open base $B = \{\Lambda_M(a) \mid a \in R\}$, hence so is C due to Proposition 3.3. Put $C = \bigcup_{i=1}^n \Lambda_M(a_i)$ and let Ω be any open cover of C. Then Ω also covers each $\Lambda_M(a_i)$ which is quasi-compact by Proposition 3.3 (4). Hence, each $\Lambda_M(a_i)$ has a finite subcover of Ω and so does C. The other part of the theorem is trivially true due to the existence of the open base B.

Following [10], we say that a topological space W is a spectral space in case W is homeomorphic to $\operatorname{Spec}(S)$, with the Zariski topology, for some ring S. Spectral spaces have been characterized by Hochster [10, p.52, Proposition 4] as the topological spaces W which satisfy the following conditions:

- (1) W is a T_0 -space;
- (2) W is quasi-compact;
- (3) The quasi-compact open subsets of W are closed under finite intersection and form an open base;
- (4) Each irreducible closed subset of W has a generic point.

In the end of this paper, we observe q.Spec(M) from the point of view of spectral topological spaces; we will follow the above mentioned Hochster's characterization closely.

The next theorem is obtained by combining Proposition 3.3 (4), Theorem 3.7, and Theorem 3.4 (1).

Theorem 3.8. Let M be an R-module and the map $\psi^{\mathbf{q}}$ be surjective. Then $q.\operatorname{Spec}(M)$ fulfills the above conditions (2), (3), and (4), namely, $q.\operatorname{Spec}(M)$ satisfies all the conditions to be a spectral space but possibly condition (1).

Theorem 3.9. Let M be an R-module and the map $\psi^{\mathbf{q}}$ be surjective. Then the following statements are equivalent:

- (1) q.Spec(M) is a spectral space;
- (2) q.Spec(M) is a T_0 -space;
- (3) $\phi^{\mathbf{R}} o \psi^{\mathbf{q}}$ is injective;
- (4) If $\nu(N) = \nu(K)$, then N = K, for any $N, K \in q.Spec(M)$;
- (5) $|\operatorname{q.Spec}_p(M)| \le 1$ for every $q \in V^{\mathbf{q}}(\operatorname{Ann}(M))$ with $\sqrt{q} = p$;
- (6) $\phi^{\mathbf{M}}$ is injective.

Proof. (1) \Rightarrow (2) is trivial and (2) \Rightarrow (1) holds by Theorem 3.8. The equivalence of (2) - (6) is due to Proposition 3.2 (5).

Acknowledgement

The authors wish to thank the referee for a careful reading of this article and many useful comments.

References

- [1] M. M. Ali, D. J. Smith, Some remarks on multiplication and projective modules, Comm. Algebra, **32**(10), 3897-3909, 2004.
- [2] M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra, 305, 1128-1148, 2006.
- [3] N. Bourbaki, Algebra Commutative, Chap, 1.2. Hermann, Paris, 1961
- [4] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra, 16(4), 755-779, 1988.
- [5] H. Fazaeli Moghimi, M. Samiei, Quasi-primaryful modules, Asian-European J. Math. 8, 3, 1550051 (14 pages), 2015.

- [6] H. Fazaeli Moghimi, M. Samiei, Quasi-primary submodules satisfying the primeful property I,
 Hacet. J. Math. Stat., 45 (5), 1421-1434, 2016.
- [7] H. Fazaeli Moghimi, M. Samiei, Quasi-primary submodules satisfying the primeful property II,
 Hacet. J. Math. Stat., 44(4), 801-811, 2015.
- [8] L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged), 11, 174-183, 1974.
- [9] W. Heinzer, D. Lanz, The Laskerian property in commutative rings, J. Algebra, 72, 101-114, 1981.
- [10] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 137, 43-60, 1969.
- [11] C. P. Lu, A moule whose prime spectrum has the surjective natural map, Houston J. Math., 33(1), 125-143, 2007.
- [12] C. P. Lu, Saturations of submodules, Comm. Algebra, **31**(6), 2655-2673, 2003.
- [13] C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math., 25(3), 417-425, 1999.
- [14] C. P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33, 61-69, 1984.
- [15] R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25(1), 79-103, 1997.
- [16] J. Ohm, D. E. Rush, Content modules and algebras, Math. Scand, 31, 4968, 1972.
- (1) Department of Mathematics, Velayat University, Iranshahr, Iran(Corresponding Author)

 $E ext{-}mail\ address: m.samiei@velayat.ac.ir}$

(2) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN *E-mail address*: hfazaeli@birjand.ac.ir