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QUASI-ZARISKI TOPOLOGY ON THE QUASI-PRIMARY
SPECTRUM OF A MODULE

MAHDI SAMIEI(1) AND HOSEIN FAZAELI MOGHIMI(2)

Abstract. Let R be a commutative ring with a nonzero identity and M be a

unitary R-module. A submodule Q of M is called quasi-primary if Q 6= M and,

whenever r ∈ R, x ∈ M , and rx ∈ Q, we have r ∈
√

(Q : M) or x ∈ radQ. A

submodule N of M satisfies the primeful property if and only if M/N is a primeful

R-module. We let q.Spec(M) denote the set of all quasi-primary submodules of M

satisfying the primeful property. The aim of this paper is to introduce and study a

topology on q.Spec(M) which is called quasi-Zariski topology of M . We investigate,

in particular, the interplay between the properties of this space and the algebraic

properties of the module under consideration. Modules whose quasi-Zariski topol-

ogy is, respectively T0, T1 or irreducible, are studied, and several characterizations

of such modules are given. Finally, we obtain conditions under which q.Spec(M) is

a spectral space.

1. Introduction

Throughout this paper, R is a commutative ring with a nonzero identity and M

is a unitary R-module. For any ideal I of R containing Ann(M) (the annihilator of

M), I and R will denote I/Ann(M) and R/Ann(M), respectively.

Let M be an R-module and N a submodule of M . The colon ideal of M into
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N , denoted by (N : M), is the annihilator of M/N as an R-module. P is a prime

submodule or a p-prime submodule of M , where p = (P : M), if P 6= M and

whenever rx ∈ P for some r ∈ R and x ∈ M , we have r ∈ p or x ∈ P ([14]).

Spec(M), the prime spectrum of M , is the set of all prime submodules of M . Also

the set of all maximal submodules of M is denoted by Max(M). It is easily seen

that Max(M) ⊆ Spec(M). If p ∈ Spec(R), Specp(M) denotes the set of all p-prime

submodules of M ([15]). radN is the intersection of all prime submodules of M

containing N and also radN = M when M has no prime submodule containing N .

For an ideal I of R, the radical of I is denoted by
√
I.

Recall that a proper ideal q of R is quasi-primary if rs ∈ q for r, s ∈ R implies

either r ∈ √q or s ∈ √q ([8]). Equivalently, q is a quasi-primary ideal of R if and

only if
√
q is a prime ideal of R [8, Definition 2, p. 176]. For an ideal I of R, the set

of all quasi-primary ideals of R containing I is denoted by V q(I).

An R-module M is said to be primeful if either M = 0 or M 6= 0 and satisfies the

following equivalent conditions (the equivalence is proved in [11, Theorem 2.1]):

(i) The natural map ψ : Spec(M) → Spec(R), given by ψ(P ) = (P : M), is

surjective;

(ii) For every p ∈ V (Ann(M)), there exists P ∈ Spec(M) such that (P : M) = p;

(iii) ppMp 6= Mp for every p ∈ V (Ann(M));

(iv) Sp(pM), the contraction of ppMp in M , is a p-prime submodule of M for every

p ∈ V (Ann(M));

(v) Specp(M) 6= ∅ for every p ∈ V (Ann(M)).

If N is a submodule of M and M/N is a primeful R-module, we say that N satisfies

the primeful property.

A proper submodule Q of M is quasi-primary provided that rx ∈ Q, for r ∈ R

and x ∈ M , implies r ∈
√

(Q : M) or x ∈ radQ (this notion has been introduced

by the authors [6], [7]). If
√

(Q : M) = p is a prime ideal, then Q is also called
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a p-quasi-primary submodule of M . If N is a proper submodule of an R-module

M satisfying the primeful property, then, by definition, we have radN 6= M and

also, by [11, Proposition 5.3], we have (radN : M) =
√

(N : M). Thus if Q is a

quasi-primary submodule of M satisfying the primeful property, then (Q : M) is a

quasi-primary ideal of R. In this case, as we mentioned before, Q is called a p-quasi-

primary submodule of M where p =
√

(Q : M).

The quasi-primary spectrum q.Spec(M) is defined to be the set of all quasi-primary

submodules of M satisfying the primeful property ([6], [7]). Also the set of all p-quasi-

primary submodules of M satisfying the primeful property is denoted by q.Specp(M).

The authors studied the class of modules whose quasi-primary spectrums are empty

([5, section 2]). For example q.Spec(Q) = ∅ while Spec(Q) = {0}, where Q is the

module of rational numbers over the ring of integers Z. Throughout the rest of this

paper, we assume that q.Spec(M) is non-empty.

An R-module M is called quasi-primaryful if either M = (0) or M 6= (0) and for

every q ∈ V q(Ann(M)), there exists Q ∈ q.Spec(M) such that
√

(Q : M) =
√
q.

This notion has been introduced and extensively studied by the authors in [5].

The Zariski topology on the spectrum of prime ideals of a ring is one of the main

tools in algebraic geometry. In the literature, there are many different generalizations

of the Zariski topology for modules over commutative rings. [13] defined a Zariski

topology on Spec(M) whose closed sets are V (N) = {P ∈ Spec(M) | (P : M) ⊇ (N :

M)} for any submodule N of M . As a new generalization of the Zariski topology,

we introduce the quasi-Zariski topology on q.Spec(M) for any R-module M in which

closed sets are varieties ν(N) = {Q ∈ q.Spec(M) :
√

(Q : M) ⊇
√

(N : M)} of all

submodules N of M .

In section (2), when q.Spec(M) 6= ∅, we define a map ψq : q.Spec(M)→ q.Spec(R)

by ψq(Q) = (Q : M) for every Q ∈ q.Spec(M). We show that, when q.Spec(M) is

not empty, the injectivity and the surjectivity of the map ψq play a key role in our



322 MAHDI SAMIEI AND HOSEIN FAZAELI MOGHIMI

investigation and give some topological properties for q.Spec(M). We prove that

q.Spec(M) is a T0-space iff φRoψq is injective iff q.Spec(M) has at most one p-quasi-

primary submodule satisfying the primeful property for every p ∈ Spec(R)(Theorem

2.1 and Proposition 3.2 (5)).

In section (3), and assuming suitable conditions for each result, we investigate

when this space is connected (Theorem 3.1), T0 or T1 (Proposition 3.2 and Theorem

3.2) and irreducible (Corollary 3.2). Finally, we investigate this topological space

q.Spec(M) of a module M from the point of view of spectral spaces, topological spaces

each of which is homeomorphic to Spec(S) for some ring S. [10] has characterized

spectral spaces as quasi-compact T0-spaces W such that W has a quasi-compact open

base closed under finite intersection and each irreducible closed subset of W has a

generic point. We follow the Hochster’s characterization closely in discussing whether

q.Spec(M) of a module M is a spectral space.

We discover that when q.Spec(M) 6= ∅, the injectivity and the surjectivity of the

map ψq of q.Spec(M) play, respectively, important roles for q.Spec(M) being spectral.

We prove that if ψq is surjective, then q.Spec(M) is almost spectral in the sense that

q.Spec(M) satisfies all the conditions to be a spectral space except for, possibly, that

q.Spec(M) is a T0-space (Proposition 3.3 (4) and Theorems 3.7, 3.4 (1)). We show

that if ψq is surjective, then q.Spec(M) is a spectral space iff q.Spec(M) is a T0-space

iff φRoψq is injective(Theorem 3.9).

2. Surjectivity and injectivity of spectral maps

In this section, we introduce a commutative square of spectral maps that the

surjectivity of two of its sides determine the class of quasi-primaryful modules. In

fact every non-zero quasi-primaryful modules possess the non-empty quasi-primary

spectrum with a surjective natural map.

The saturation of a submodule N of M with respect to a prime ideal p of R is the
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contraction of Np in M and designated by Sp(N). It is known that Sp(N) = {m ∈

M | cm ∈ N for some c ∈ R− p} ([12]).

Lemma 2.1. Let M be an R-module and Q ∈ q.Specp(M). Then Sp(pM) is a p-

prime submodule of M . In particular, the map φM : q.Spec(M) → Spec(M) defined

by φM(Q) = Sp(pM), is well-defined.

Proof. By [12, Corollary 3.7], it suffices to show that ppMp 6= Mp where p =
√

(Q : M).

It is clear that
√

(Q : M)M = (radQ : M)M ⊆ radQ and so (radQ : M)pMp ⊆

(radQ)p. By [6, Theorem 2.15], (radQ)p = radQp is a prime submodule of Mp and

hence ppMp ⊆ radQp 6= Mp. It follows that Sp(pM) is a p-prime submodule of M . �

To prepare our way for this section, it is convenient to introduce the following

spectral maps:

q.Spec(M)
ψq

−−−→ q.Spec(R)

φM

y φR

y
Spec(M)

ψ−−−→ Spec(R)

where ψq(Q) = (Q : M), ψ(N) = (N : M), φR(q) =
√
q and φM(Q) = Sp(pM)

with p =
√

(Q : M).

It is clear that for a non-zero R-module M , the above diagram is commutative;

i.e., φRoψq = ψoφM. Indeed, suppose Q ∈ q.Spec(M) and p =
√

(Q : M). It follows

from Lemma 2.1 that (Sp(pM) : M) = p, i.e., ψoφM(Q) = p. On the other hand, by

definition, φRoψq(Q) = p, as required.

It is easy to see that the surjectivity of φRoψq is naturally equivalent to M being a

quasi-primaryful module.

Proposition 2.1. (1) Let p be a prime ideal of a ring R and let M be an R-

module. If the map ψq is injective, then every p-prime submodule of M sat-

isfying the primeful property is of the form Sp(pM).
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(2) If every prime submodule of M satisfies the primeful property then the map

φM is surjective.

Proof. (1). Suppose ψq is injective. Let P be a p-prime submodule of M satisfying

the primeful property. Then Sp(pM) ⊆ Sp(P ) = P 6= M . It follows from [12,

Proposition 2.4] that Sp(pM) is a p-prime submodule of M . Since P satisfies the

primeful property, clearly Sp(pM) also does. Thus, we have ψq(Sp(pM)) = ψq(P )

and hence Sp(pM) = P , since ψq is injective.

(2) is trivial. Indeed, if P ∈ Specp(M), then P ∈ q.Spec(M) and hence φM(P ) =

Sp(pM). �

Recall that for any submodule N of M ,

ν(N) = {Q ∈ q.Spec(M) :
√

(Q : M) ⊇
√

(N : M)}.

Theorem 2.1. The following statements are equivalent for any R-module M .

(1) φRoψq is injective;

(2) If ν(N) = ν(K), then N = K, for any N,K ∈ q.Spec(M);

(3) | q.Specp(M) |≤ 1 for any p ∈ Spec(R);

(4) φM is injective.

Moreover, if every prime submodule of M satisfies the primeful property, then the

above statements are equivalent to:

(5) φM is bijective.

Proof. (1) ⇒ (2) Suppose that ν(N) = ν(K) for N,K ∈ q.Spec(M). By definition,

we have then
√

(N : M) =
√

(K : M); i.e., φRoψq(N) = φRoψq(K). Now the injec-

tivity of φRoψq implies that N = K, so we have proved (2).

(2) ⇒ (3). Let N,K ∈ q.Specp(M). Then
√

(N : M) =
√

(K : M) implies that

ν(N) = ν(K). Thus, N = K by (2).

(3) ⇒ (4). Suppose Q,Q′ ∈ q.Spec(M) such that p =
√

(Q : M), p′ =
√

(Q′ : M)
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and φM(Q) = φM(Q′). Then Sp(pM) = Sp′(p
′M) and Lemma 2.1 show that Sp(pM)

and Sp′(p
′M) are p-prime submodules of M . Thus Q,Q′ ∈ q.Specp(M) and hence (3)

implies that Q = Q′.

(4) ⇒ (1). Suppose φRoψq(Q) = φRoψq(Q′) for some Q ∈ q.Specp(M) and Q′ ∈

q.Specp′(M). Thus p = p′ and so φM(Q) = φM(Q′). This implies that Q = Q′.

(4) ⇒ (5) is clear where every prime submodule of M satisfies the primeful prop-

erty. �

An R-module M is said to be multiplication if for every submodule N of M , there

exists an ideal I of R such that N = IM ([4]). In this case, we can take I = (N : M).

An R-module M is called content if for every family {Iλ | λ ∈ Λ} of ideals of

R, ( ∩
λ∈Λ

Iλ)M = ∩
λ∈Λ

(IλM) ([16]). For example faithful multiplication modules and

projective modules are content modules [4, Theorem 1.6] and [1, Theorem 2.1 and

Theorem 3.1].

Let M be a finitely generated module over a ring R. Then M is called Laskerian if

every submodule of M is the intersection of a finite number of primary submodules

([9]). It is well-known that every finitely generated module over a Noetherian ring is

Laskerian. However the converse is not true in general [9, Example 4.2].

Theorem 2.2. Let M be an R-module and the map φRoψq be injective.

(1) Let M be a Laskerian module and every primary submodule of M satisfies the

primeful property. Then every quasi-primary submodule of M satisfying the

primeful property is primary.

(2) Let M be a flat content R-module. Then Q = (Q : M)M for every Q ∈

q.Spec(M).

(3) If M is free, then φRoψq is bijective.

Proof. Let Q ∈ q.Spec(M) and
t
∩
i=1
Ni be a primary decomposition for Q. Since√

(Q : M) is a prime ideal of R,



326 MAHDI SAMIEI AND HOSEIN FAZAELI MOGHIMI

√
(Nj : M) ⊆

√
(Q : M) =

t
∩
i=1

√
(Ni : M) ⊆

√
(Nj : M)

for some 1 ≤ j ≤ t. Since Nj satisfies the primeful property, we have Nj ∈ q.Spec(M)

and so the injectivity of φRoψq implies that Q = Nj.

(2). Suppose φRoψq is injective and Q ∈ q.Specp(M). By Theorem 2.1, it suffices to

show that (Q : M)M ∈ q.Specp(M). It is easy to see directly that
√

((Q : M)M : M) =√
(Q : M) = p and (Q : M)M satisfies the primeful property. It remains to show

that (Q : M)M is quasi-primary. Let rx ∈ (Q : M)M for r ∈ R and x /∈ rad((Q :

M)M). Since M is flat content, rad((Q : M)M) = ∩
p⊇(Q:M)

(pM) = ( ∩
p⊇(Q:M)

p)M =√
(Q : M)M = pM and hence rx ∈ pM and x /∈ pM . On the other hand, radQ is a

proper submodule of M , because Q satisfies the primeful property. Thus pM 6= M

is a p-prime submodule of M , by [14, Theorem 3], and so r ∈ p, i.e. (Q : M)M is a

p-quasi-primary submodule of M .

(3). By [5, Theorem 4.3(1)], free modules are quasi-primaryful and hence the proof

is easy. �

3. Some topological properties of q.Spec(M)

Recall that for any submodule N of an R-module M , ν(N) is the set of all quasi-

primary submodules Q of M satisfying the primeful property, namely
√

(Q : M) ⊇√
(N : M). We begin this section by showing that if η(M) denotes the collection of

all subsets ν(N) of q.Spec(M), then η(M) satisfies the axioms for the closed subsets

of a topological space on q.Spec(M), called quasi-Zariski topology.

Lemma 3.1. Let M be an R-module. Then for submodules N,N ′ and {Ni | i ∈ I}

of M we have

(1) ν(0) = q.Spec(M) and ν(M) = ∅.

(2) ∩
i∈I
ν(Ni) = ν((

∑
i∈I

(Ni : M))M).

(3) ν(N) ∪ ν(N ′) = ν(N ∩N ′).
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Proof. (1) and (3) are trivial. (2) follows from the following implications:

Q ∈ ∩i∈Iν(Ni) ⇒
√

(Q : M) ⊇
√

(Ni : M) ∀i ∈ I

⇒
√

(Q : M) ⊇ (Ni : M) ∀i ∈ I

⇒
√

(Q : M) ⊇
∑
i∈I

(Ni : M)

⇒
√

(Q : M)M ⊇ (
∑
i∈I

(Ni : M))M

⇒ (
√

(Q : M)M : M) ⊇ ((
∑
i∈I

(Ni : M))M : M)

⇒ ((radQ : M)M : M) ⊇ ((
∑
i∈I

(Ni : M))M : M)

⇒ (radQ : M) ⊇ ((
∑
i∈I

(Ni : M))M : M)

⇒
√

(Q : M) ⊇
√

((
∑
i∈I

(Ni : M))M : M)

⇒ Q ∈ ν((
∑
i∈I

(Ni : M))M).

For the reverse inclusion we have

Q ∈ ν(
∑
i∈I

(Ni : M)M) ⇒
√

(Q : M) ⊇
√

((
∑
i∈I

(Ni : M))M : M)

⇒
√

(Q : M) ⊇ ((
∑
i∈I

(Ni : M))M : M)

⇒
√

(Q : M) ⊇ ((Ni : M)M : M) ∀i ∈ I

⇒
√

(Q : M) ⊇ (Ni : M) ∀i ∈ I

⇒
√

(Q : M) ⊇
√

(Ni : M) ∀i ∈ I

⇒ Q ∈ ∩i∈Iν(Ni)

�
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Let Y be a subset of q.Spec(M) for an R-moduleM . We will denote the intersection

of all elements in Y by ξ(Y ) and the closure of Y in q.Spec(M) with respect to the

quasi-Zariski topology by cl(Y ). In the following Lemma, we gather some basic facts

about the varieties.

Lemma 3.2. Let M be an R-module. Let N , N ′ and {Ni | i ∈ I} be submodules of

M . Then the following hold.

(1) If N ⊆ N ′, then ν(N ′) ⊆ ν(N).

(2) ν(radN) ⊆ ν(N) and equality holds if M is multiplication.

(3) ν(N) = ν(
√

(N : M)M).

(4) If
√

(N : M) =
√

(N ′ : M), then ν(N) = ν(N ′). The converse is also true if

both N,N ′ ∈ q.Spec(M).

(5) ν(N) = ∪
(N :M)⊆p∈Spec(R)

q.Specp(M).

(6) Let Y be a subset of q.Spec(M). Then Y ⊆ ν(N) if and only if
√

(N : M) ⊆√
(ξ(Y ) : M).

Proof. (1) is clear.

(2). ν(radN) ⊆ ν(N) is clearly true by (1). The equality can be deduced from the

fact radN =
√

(N : M), where N is a submodule of a multiplication module M([4,

Theorem 2.12].

(3). Let N be a proper submodule of M . Then

Q ∈ ν(N) ⇒
√

(Q : M)M ⊇
√

(N : M)M

⇒ radQ ⊇
√

(N : M)M

⇒
√

(Q : M) ⊇ (
√

(N : M)M : M)

⇒
√

(Q : M) ⊇
√

(
√

(N : M)M : M)

⇒ Q ∈ ν(
√

(N : M)M).
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Thus ν(N) ⊆ ν(
√

(N : M)M). For the reverse inclusion, we have

Q ∈ ν(
√

(N : M)M) ⇒
√

(Q : M) ⊇
√

(
√

(N : M)M : M)

⇒
√

(Q : M) ⊇ (
√

(N : M)M : M)

⇒
√

(Q : M) ⊇
√

(N : M)

⇒ Q ∈ ν(N)

Finally, (4), (5) and (6) are clearly true by definitions. �

Proposition 3.1. Let M be an R-module.

(1) (φR)−1(V (I)) = ν(I) for every ideal I of R containing Ann(M). In particular,

(φRoψq)−1(V (I)) = (ψq)−1(ν(I)).

(2) φR(ν(I)) = V (I) and φR(q.Spec(R)− ν(I)) = Spec(R)−V (I) i.e. φR is both

closed and open.

(3) (φM)−1(V (N)) = ν(N), for every submodule N of M ; i.e. the map φM is

continuous.

(4) The natural maps ψq and φRoψq are continuous with respect to the quasi-

Zariski topology; more precisely for every ideal I of R containing Ann(M),

(φRoψq)−1(V (I)) = (ψq)−1(ν(I)) = ν(IM).

(5) Let M be a quasi-primaryful R-module. If ϕ = φRoψq, then ϕ(ν(N)) =

V (
√

(N : M)) and ϕ(q.Spec(M) − ν(N)) = Spec(R) − V (
√

(N : M)) i.e. ϕ

is both closed and open.

(6) ϕ = φRoψq is bijective if and only if it is a homeomorphism.
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Proof. (1). Let I be an ideal of R containing Ann(M). Then

q ∈ (φR)−1(V (I)) ⇔ φR(q) ∈ V (I)

⇔
√
q ⊇ I

⇔ √
q ⊇ I

⇔ q ∈ ν(I).

(2). As we have seen in (1), φR is a continuous map such that (φR)−1(V (I)) = ν(I) for

every ideal I ofR containing Ann(M). It follows that φR(ν(I)) = φR((φR)−1(V (I))) =

V (I) as φR is surjective. Similarly,

φR(q.Spec(R)− ν(I)) = φR((φR)−1(Spec(R))− (φR)−1(V (I)))

= φR((φR)−1(Spec(R)− V (I))

= φRo(φR)−1(Spec(R)− V (I)))

= Spec(R)− V (I).

(3). Suppose Q ∈ (φM)−1(V (N)). Then φM(Q) ∈ V (N) and so p = (Sp(pM) : M) ⊇

(N : M), in which p =
√

(Q : M). Hence
√

(Q : M) ⊇
√

(N : M) and so Q ∈ ν(N).

The argument is reversible and so φM is continuous.

(4). It follows from [13, Proposition 3.1] that ψ is a continuous map with ψ−1(V (I)) =

V (IM) for every ideal I of R containing Ann(M). Also, we showed that φRoψq =

ψoφM. This implies that ψq and φRoψq are also continuous and (φRoψq)−1(V (I)) =

(ψq)−1(ν(I)) = ν(IM) for every ideal I of R containing Ann(M), by (1) and (3).

(5). Take ϕ = φRoψq. Since M is quasi-primaryful, ϕ is surjective. Also by

(4), ϕ is a continuous map such that ϕ−1(V (I)) = ν(IM) for every ideal I of

R containing Ann(M). Hence, by Lemma 3.2(3), for every submodule N of M ,

ϕ−1(V (
√

(N : M))) = ν(
√

(N : M)M) = ν(N). Since the map ϕ is surjective, we

have ϕ(ν(N)) = ϕoϕ−1(V (
√

(N : M))) = V (
√

(N : M)). Similarly, we conclude
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that

ϕ(q.Spec(M)− ν(N)) = ϕ(ϕ−1(Spec(R))− (ϕ)−1(V (
√

(N : M))))

= ϕ((ϕ)−1(Spec(R)− V (
√

(N : M))))

= ϕoϕ−1(Spec(R)− V (
√

(N : M)))

= Spec(R)− V (
√

(N : M)).

(6). This follows from (5). �

Lemma 3.3. For any ring R, q.Spec(R) is connected if and only if Spec(R) is con-

nected.

Proof. Suppose that q.Spec(R) is a connected space. By Proposition 3.1, the map φR

is surjective and continuous and so Spec(R) is also a connected space. Conversely,

suppose on the contrary that q.Spec(R) is disconnected. Then there exists a non-

empty proper subset W of q.Spec(R) that is both open and closed. By Proposition

3.1, φR(W ) is a non-empty subset of Spec(R) that is both open and closed. To

complete the proof, it suffices to show that φR(W ) is a proper subset of Spec(R) that

in this case Spec(R) is disconnected, a contradiction.

Since W is open, W = q.Spec(R)− ν(I) for some ideal I of R containing Ann(M).

Thus φR(W ) = Spec(R)− V (I) by Proposition 3.1. Therefore, if φR(W ) = Spec(R),

then V (I) = ∅, and so I = R, i.e., I = R. It follows that W = q.Spec(R) − ν(R) =

q.Spec(R) which is impossible. Thus φR(W ) is a proper subset of q.Spec(R). �

Theorem 3.1. Let M be a quasi-primaryful R-module. Then the following state-

ments are equivalent:

(1) q.Spec(M) together with quasi-Zariski topology is a connected space;

(2) q.Spec(R) together with quasi-Zariski topology is a connected space;

(3) Spec(R) together with Zariski topology is a connected space;



332 MAHDI SAMIEI AND HOSEIN FAZAELI MOGHIMI

(4) Spec(M) together with Zariski topology is a connected space;

(5) The ring R contains no idempotent other than 0 and 1.

Consequently, if R is a quasi-local ring or Ann(M) is a prime ideal of R, then both

q.Spec(M) and q.Spec(R) are connected.

Proof. (1) ⇒ (3) follows since ϕ = φRoψq is a surjective and continuous map of

the connected space q.Spec(M). To prove (3) ⇒ (1), we assume that Spec(R) is

connected. If q.Spec(M) is disconnected, then q.Spec(M) must contain a non-empty

proper subset Y that is both open and closed. Accordingly, ϕ(Y ) is a non-empty

subset of Spec(R) that is both open and closed by Proposition 3.1. To complete the

proof, it suffices to show that ϕ(Y ) is a proper subset of Spec(R) so that Spec(R) is

disconnected, a contradiction.

Since Y is open, Y = q.Spec(M) − ν(N) for some submodule N of M whence

ϕ(Y ) = Spec(R)− V (
√

(N : M)) by Proposition 3.1. Therefore, if ϕ(Y ) = Spec(R),

then V (
√

(N : M)) = ∅, and so
√

(N : M) = R, i.e., N = M . It follows that

Y = q.Spec(M) − ν(M) = q.Spec(M) which is impossible. Thus ϕ(Y ) is a proper

subset of Spec(R).

By Lemma 3.3, (2) and (3) are equivalent and (3) ⇔ (4) ⇔ (5) may be obtained

by using [5, Theorem 3.1.] and [13, Corollary 3.8]. �

A topological space (X; τ) is said to be a T0-space if for each pair of distinct points

a, b in X, either there exists an open set containing a and not b, or there exists an

open set containing b and not a. It has been shown that a topological space is T0

if and only if the closures of distinct points are distinct. Also, a topological space

(X; τ) is called a T1-space if every singleton set {x} is closed in (X; τ). Clearly every

T1-space is a T0-space.

Proposition 3.2. Let M be an R-module, Y ⊆ q.Spec(M) and let Q ∈ q.Specp(M).

Then
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(1) ν(ξ(Y )) = cl(Y ). In particular, cl({Q}) = ν(Q).

(2) If (0) ∈ Y , then Y is dense in q.Spec(M).

(3) The set {Q} is closed in q.Spec(M) if and only if

(i) p is a maximal element in {
√

(N : M) | N ∈ q.Spec(M)}, and

(ii) q.Specp(M) = {Q}.

(4) If {Q} is closed in q.Spec(M), then Q is a maximal element of q.Spec(M).

(5) q.Spec(M) is a T0-space if and only if any of the equivalent statements (1)-(4)

in Theorem 2.1 hold.

(6) q.Spec(M) is a T1-space if and only if q.Spec(M) is a T0-space and for every

element Q ∈ q.Spec(M),
√

(Q : M) is a maximal element in {
√

(N : M) |

N ∈ q.Spec(M)}.

(7) q.Spec(M) is a T1-space if and only if q.Spec(M) is a T0-space and every

quasi-primary submodule of M satisfying the primeful property is a maximal

element of q.Spec(M).

(8) Let (0) ∈ q.Spec(M). Then q.Spec(M) is a T1-space if and only if (0) is the

only quasi-primary submodule of M satisfying the primeful property.

Proof. (1). Suppose L ∈ Y . Then ξ(Y ) ⊆ L. Therefore
√

(L : M) ⊇
√

(ξ(Y ) : M).

Thus L ∈ ν(ξ(Y )) and so Y ⊆ ν(ξ(Y )). Next, let ν(N) be any closed subset

of q.Spec(M) containing Y . Then
√

(L : M) ⊇
√

(N : M) for every L ∈ Y so

that
√

(ξ(Y ) : M) ⊇
√

(N : M). Hence, for every L′ ∈ ν(ξ(Y ));
√

(L′ : M) ⊇√
(ξ(Y ) : M) ⊇

√
(N : M). Then ν(ξ(Y )) ⊆ ν(N). Thus ν(ξ(Y )) is the smallest

closed subset of q.Spec(M) containing Y , hence ν(ξ(Y )) = cl(Y ).

(2) is trivial by (1).

(3). Suppose that {Q} is closed. Then {Q} = ν(Q) by (1). Let N ∈ q.Spec(M) such

that
√

(N : M) ⊇ p =
√

(Q : M). Hence, N ∈ ν(Q) = {Q}, and so q.Specp(M) =

{Q}. Conversely, assume that (i) and (ii) hold. Let N ∈ cl({Q}). Hence by (1),
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√
(N : M) ⊇

√
(Q : M) . Thus by (i),

√
(N : M) =

√
(Q : M) = p and therefore

Q = N by (ii). This yields cl({Q}) = {Q}.

(4). Suppose Q′ ∈ q.Spec(M) such that Q′ ⊇ Q. Then
√

(Q′ : M) ⊇
√

(Q : M).

i.e., Q′ ∈ ν(Q) = cl({Q}) = {Q}. Hence, Q′ = Q, and so Q is a maximal element of

q.Spec(M).

(5). The result follows from the part (1).

(6). The result is easy to check from the parts (3), (5).

(7). The sufficiency is trivial by part (4). Conversely, suppose Q,N ∈ q.Spec(M)

such that Q ∈ cl({N}) = ν(N). Thus
√

(Q : M) ⊇
√

(N : M). Since Q satisfies

the primeful property,
√

(Q : M) is a proper ideal of R and hence by maximality of

N we have
√

(Q : M) =
√

(N : M); i.e. ν(Q) = ν(N). Now, by Theorem 2.1, we

conclude that Q = N . Thus cl({N}) = {N}; i.e. every singleton subset of q.Spec(M)

is closed. So, q.Spec(M) is a T1-space.

(8). Use part (7). �

Example 3.1. Consider the Z-module M =
∏
p

Z/pZ where p runs through the set Ω

of all prime integers of Z. We claim that q.Spec(M) = {pM | p ∈ Ω}. Let p ∈ Ω. By

[11, Example 1(3) p. 136], pM is a p-prime submodule of M and hence by [11, Propo-

sition 4.5] pM satisfies the primeful property. Thus {pM | p ∈ Ω} ⊆ q.Spec(M). For

the reverse inclusion, let Q ∈ q.Spec(M). By the argument in the Example [5, Ex-

ample 3.1],
√

(Q : M) is a nonzero prime ideal of Z. Take
√

(Q : M) = pZ. So

pZ =
√

(Q : M) = (radQ : M) implies that radQ is a prime submodule of M . Thus

radQ = pM . Since the ring of integers is Noetherian, there is n ∈ N such that

pn = (
√

(Q : M))n ⊆ (Q : M). Hence pnM ⊆ Q ⊆ pM . It is easy to see that

pnM = pM and so Q = pM . Now by Proposition 3.2(3), q.Spec(M) is a T1-space.

Theorem 3.2. Let M be a finitely generated R-module. The following statements

are equivalent:
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(1) q.Spec(M) is a T1-space;

(2) q.Spec(M) is a T0-space and q.Spec(M) = Max(M);

(3) M is a multiplication module and q.Spec(M) = Max(M).

Proof. (1) ⇒ (2). Since M is finitely generated, every submodule of M satisfies the

primeful property by [11, Theorem 2.2]. Thus Max(M) ⊆ q.Spec(M). The reverse

inclusion is obtained by using Proposition 3.2(7) and the fact that every proper sub-

module, in particular every quasi-primary submodule, of a finitely generated module

is contained in a maximal submodule.

(2)⇒ (1) is clear by Proposition 3.2(7).

(2) ⇒ (3). By [11, Theorem 2.2], we may assume that Spec(M) is a subspace of

q.Spec(M) and hence | Specp(M) |≤ 1 for every prime ideal p of R, by Proposition

3.2(5). Now, it follows from [15, Theorem 3.5] that M is multiplication.

(3)⇒ (2). Suppose M is a multiplication module and q.Spec(M) = Max(M). Thus

every quasi-primary submodule of M is of the form pM for some maximal ideal p of R,

by [4, Theorem 2.5(ii)]. Now, let ν(pM) = ν(p′M) for some pM, p′M ∈ q.Spec(M).

Hence
√

(pM : M) =
√

(p′M : M). It implies that (rad(pM) : M) = (rad(p′M) : M)

and so rad(pM) = rad(p′M). Since pM and p′M are prime, we have pM = p′M .

Thus q.Spec(M) is a T0-space by Proposition 3.2(5). �

Corollary 3.1. Let M be an R-module.

(1) Let R be a domain. If q.Spec(R) is a T1-space, then R is a field.

(2) If M is Noetherian and q.Spec(M) is a T1-space, then M is Artinian cyclic.

Proof. (1). Since R is a domain, (0) ∈ q.Spec(R). But by Theorem 3.2, we have

q.Spec(R) = Max(R). Thus, R is a field.

(2). By Theorem 3.2, M is multiplication and every quasi-primary submodule and

hence every prime submodule of M is maximal. By [2, Theorem 4.9], M is Artinian

and the result follows from [4, Corollary 2.9]. �



336 MAHDI SAMIEI AND HOSEIN FAZAELI MOGHIMI

A topological space X is called irreducible if X 6= ∅ and if every pair of non-empty

open sets in X intersect. A subset A of a topological space X is irreducible if for

every pair of closed subsets Ai (i = 1, 2) of X with A ⊆ A1 ∪A2, we have A ⊆ A1 or

A ⊆ A2. An irreducible component of a topological space A is a maximal irreducible

subset of X. A singleton subset and its closure in q.Spec(M) are both irreducible.

Now, we can apply Proposition 3.2(1) to achieve the following result:

Lemma 3.4. ν(Q) is an irreducible closed subset of q.Spec(M) for every quasi-

primary submodule Q of M satisfying the primeful property.

As we mentioned before, it is easily seen that if Q is a quasi-primary submodule

of M satisfying the primeful property, then (Q : M) is a quasi-primary ideal of R.

The converse is also true when M is a multiplication module. Indeed if (Q : M) is

a quasi-primary ideal of R, then p =
√

(Q : M) = (radQ : M) is a prime ideal of R.

Thus by [4, Corollary 2.11], radQ is a prime submodule and so Q is a quasi-primary

submodule of M . Using this fact, some assertions will be proved in the following.

Theorem 3.3. Let M be an R-module and Y ⊆ q.Spec(M). If ξ(Y ) is a quasi-

primary submodule of M , then Y is an irreducible space. The converse is true, if M

is a multiplication module and ξ(Y ) satisfies the primeful property.

Proof. Suppose ξ(Y ) is a quasi-primary submodule of M . Let Y ⊆ Y1 ∪ Y2 where Y1

and Y2 are two closed subsets of q.Spec(M). Then there exist two submodules N and

K of M such that Y1 = ν(N) and Y2 = ν(K). Thus, Y ⊆ ν(N) ∪ ν(K) = ν(N ∩K)

and so by Lemma 3.2(6),
√

((N ∩K) : M) ⊆
√

(ξ(Y ) : M). Since
√

(ξ(Y ) : M) is a

prime ideal, either
√

(N : M) ⊆
√

(ξ(Y ) : M) or
√

(K : M) ⊆
√

(ξ(Y ) : M). Again

by using Lemma 3.2(6), either Y ⊆ ν(N) = Y1 or Y ⊆ ν(K) = Y2. Thus we conclude

that Y is irreducible. Conversely, assume that M is a multiplication module and Y

is an irreducible space. By the above argument, it suffices to show that (ξ(Y ) : M) is
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a quasi-primary ideal of R. Let ab ∈ (ξ(Y ) : M) for some a, b ∈ R. Suppose, on the

contrary, that Ra *
√

(ξ(Y ) : M) and Rb *
√

(ξ(Y ) : M). Then
√

(RaM : M) *√
(ξ(Y ) : M) and

√
(RbM : M) *

√
(ξ(Y ) : M). By Lemma 3.2(6), Y * ν(RaM)

and Y * ν(RbM). Let Q ∈ Y . Then
√

(Q : M) ⊇
√

(ξ(Y ) : M) ⊇ Rab. This means

that either RaM ⊆
√

(Q : M)M or RbM ⊆
√

(Q : M)M . So, by Lemma 3.2(1),(3),

either ν(Q) ⊆ ν(RaM) or ν(Q) ⊆ ν(RbM). Therefore, Y ⊆ ν(RaM) ∪ ν(RbM) and

hence Y ⊆ ν(RaM) or Y ⊆ ν(RbM) as Y is irreducible. It is a contradiction. �

Corollary 3.2. Let M be a multiplication R-module.

(1) If M is finitely generated and N is a submodule of M . Then V (N) is irre-

ducible if and only if N ∈ q.Spec(M).

(2) Let R be a domain, M be a faithful module and ξ(q.Spec(M)) satisfies the

primeful property. Then q.Spec(M) is irreducible.

Proof. (1). It is clear that rad(N) = ξ(V (N)) 6= M . Since M is finitely generated,

[11, Theorem 2.2] follows that every proper submodule of M satisfies the primeful

property and hence we have V (N) ⊆ q.Spec(M). Now by Theorem 3.3, V (N) is

an irreducible space if and only if radN ∈ q.Spec(M). On the other hand, by the

argument before Theorem 3.3, radN ∈ q.Spec(M) if and only if N ∈ q.Spec(M).

(2). Since (0) is a prime ideal of R, we have rad(0) = rad(0M) =
√

(0)M = 0 by

[4, Theorem 2.12]. Now, (ξ(q.Spec(M)) : M) ⊆ (ξ(Spec(M)) : M) = ( ∩
P∈Spec(M)

P :

M) = (0 : M) = (0). Thus ξ(q.Spec(M)) is a quasi-primary submodule of M and

hence the result follows from Theorem 3.3. �

Let Y be a closed subset of a topological space. An element y ∈ Y is said to be a

generic point of Y if Y = cl({y}). Proposition 3.2(1) follows that every element Q

of q.Spec(M) is a generic point of the irreducible closed subset ν(Q) of q.Spec(M).

Note that a generic point of a closed subset Y of a topological space is unique if the

topological space is a T0-space.



338 MAHDI SAMIEI AND HOSEIN FAZAELI MOGHIMI

Theorem 3.4. Let M be a quasi-primaryful R-module and Y ⊆ q.Spec(M).

(1) Y is an irreducible closed subset of q.Spec(M) if and only if Y = ν(Q)

for some Q ∈ q.Spec(M). In particular every irreducible closed subset of

q.Spec(M) has a generic point.

(2) The set of all irreducible components of q.Spec(M) is of the form

T = {ν(
√
qM) | q ∈ V q(Ann(M)) and

√
q is a minimal element of

V (Ann(M)) with respect to inclusion}.

(3) Let R be a Laskerian ring and M be a nonzero R-module. Then q.Spec(M)

has finitely many irreducible components.

Proof. By Lemma 3.4, Y = ν(Q) is an irreducible closed subset of q.Spec(M) for some

Q ∈ q.Spec(M). Conversely, let Y be an irreducible space. Hence φRoψq(Y ) = Y ′ is

an irreducible subset of Spec(R) because φRoψq is continuous by Proposition 3.1(4).

It follows from [3, P. 129, Proposition 14] that ξ(Y ′) =
√

(ξ(Y ) : M) is a prime

ideal of R. Therefore
√

(ξ(Y ) : M) is a prime ideal of R. Since the map φRoψq is

surjective, there exists Q ∈ q.Spec(M) such that
√

(Q : M) =
√

(ξ(Y ) : M). Since

Y is closed, there exists a submodule N of M such that Y = ν(N). It means that√
(ξ(ν(N)) : M) =

√
(Q : M) and hence ν(ξ(Y )) = ν(ξ(ν(N))) = ν(Q) by Lemma

3.2(6). Thus Y = ν(Q) by Proposition 3.2(1).

(2). Suppose Y is an irreducible component of q.Spec(M). By part (1), Y = ν(Q) for

some Q ∈ q.Spec(M). Hence, Y = ν(Q) = ν(
√

(Q : M)M) by Lemma 3.2(3). Let

q = (Q : M). Now, it suffices to show that
√
q is a minimal element of V (Ann(M))

with respect to inclusion. To see this let q′ ∈ V (Ann(M)) and q′ ⊆ √q. Then

there exists an element Q′ ∈ q.Spec(M) such that
√

(Q′ : M) = q′ because M is

quasi-primaryful. So, Y = ν(Q) ⊆ ν(Q′). Hence, Y = ν(Q) = ν(Q′) due to the

maximality of ν(Q). It implies that
√
q = q′. Conversely, let Y ∈ T . Then there

exists q ∈ V q(Ann(M)) such that
√
q is a minimal element in V (Ann(M)) and



QUASI-ZARISKI TOPOLOGY ON THE QUASI-PRIMARY ... 339

Y = ν(
√
qM). Since M is quasi-primaryful, there exists an element Q ∈ q.Spec(M)

such that
√

(Q : M) =
√
q. So, Y = ν(

√
qM) = ν(

√
(Q : M)M) = ν(Q), and so Y

is irreducible by part (1). Suppose that Y = ν(Q) ⊆ ν(Q′), where Q′ ∈ q.Spec(M).

Since Q ∈ ν(Q′) and
√
q is minimal, it follows that

√
(Q : M) =

√
(Q′ : M). Now,

by Lemma 3.2(3), we have

Y = ν(Q) = ν(
√

(Q : M)M) = ν(
√

(Q′ : M)M) = ν(Q′).

(3). Suppose q ∈ V q(Ann(M)) and
√
q is a minimal element of V (Ann(M)). Let

Ann(M) =
t
∩
i=1
qi be a minimal primary decomposition of Ann(M). Then

√
qi ⊆

√
q

for some 1 ≤ i ≤ t, since
√
q is prime. By minimality of

√
q, we get

√
q =

√
qi.

Therefore, irreducible components of q.Spec(M) are of the form ν(
√
qiM), by part

(2). �

For any submodule N of M , we define ΛM(N) = q.Spec(M) − ν(N) as an open

set of q.Spec(M). Also, ΛM(a) = ΛM(aM) for any a ∈ R. Clearly, ΛM(0) = ∅ and

ΛM(1) = q.Spec(M). The following result shows that the set B = {ΛM(a) | a ∈ R}

is a base for the quasi-Zariski topology on q.Spec(M).

Theorem 3.5. Let M be an R-module. The set B = {ΛM(a) | a ∈ R} forms a base

for the quasi-Zariski topology on q.Spec(M).

Proof. We may assume that q.Spec(M) 6= ∅. We will show that every open subset

of q.Spec(M) is a union of members of B. Let O be an open subset in q.Spec(M).
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Thus O = q.Spec(M)− ν(N) for some submodule N of M . Therefore

O = q.Spec(M)− ν(N) = q.Spec(M)− ν(
√

(N : M)M)

= q.Spec(M)− ν(
∑

a∈
√

(N :M)

aM)

= q.Spec(M)− ν(
∑

a∈
√

(N :M)

(aM : M)M)

= q.Spec(M)− ∩
a∈
√

(N :M)

ν(aM)

= ∪
a∈
√

(N :M)

ΛM(a)

�

Theorem 3.6. Let R be a ring and a, b ∈ R.

(1) ΛR(a) = ∅ if and only if a is a nilpotent element of R.

(2) ΛR(a) = q.Spec(R) if and only if a is a unit element of R.

(3) For each pair of ideals I and J of R, ΛR(I) = ΛR(J) if and only if
√
I =
√
J .

(4) ΛR(ab) = ΛR(a) ∩ ΛR(b).

(5) q.Spec(R) is quasi-compact.

(6) q.Spec(R) is a T0-space.

Proof. (1). Let a ∈ R. Then

∅ = ΛR(a) = q.Spec(R)− V q(Ra)

⇔ V q(Ra) = q.Spec(R)

⇔ √
q ⊇ Ra for every q ∈ q.Spec(R)

⇔ a is in every prime ideal of R

⇔ a is a nilpotent element of R.
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(2). Let a ∈ R. Then

ΛR(a) = q.Spec(R) ⇔ a /∈ √q for all q ∈ q.Spec(R)

⇒ a /∈ q for all q ∈ Max(R)

⇒ a is unit.

Conversely, if a is a unit, then clearly a is not in any quasi-primary ideal. That is,

ΛR(a) = q.Spec(R).

(3) Suppose that ΛR(I) = ΛR(J). Let p be a prime ideal of R containing I. Since p

is a quasi-primary ideal of R and p ⊇
√
I, we have p ∈ ν(I). Thus, by assumption,

p ⊇
√
J ⊇ J and so every prime ideal of R containing I is also a prime ideal of R

containing J , and vice versa. Therefore
√
I =
√
J . The converse is trivialy true.

(4). To prove (4), it suffices to show that ν(Rab) = ν(Ra) ∪ ν(Rb). Let q ∈ ν(Rab).

Then

√
q ⊇
√
Rab =

√
Ra ∩

√
Rb ⇔ (

√
q ⊇
√
Ra or

√
q ⊇
√
Rb)

⇔ (q ∈ ν(Ra) or q ∈ ν(Rb))

⇔ q ∈ ν(Ra) ∪ ν(Rb).

(5). Let q.Spec(R) = ∪
i∈I

ΛR(Ji), where {Ji}i∈I is a family of ideals of R. We clearly

have ΛR(R) = q.Spec(R) = ΛR(
∑
i∈I
Ji). Thus, by part (3), we have R =

√∑
i∈I
Ji

and hence, 1 ∈
∑
i∈I
Ji. So there are i1, i2, · · · , in ∈ I such that 1 ∈

n∑
k=1

Jik , that is

R =
n∑
k=1

Jik . Consequently q.Spec(R) = ΛR(R) = ΛR(
n∑
k=1

Jik) =
n
∪
k=1

ΛR(Jik).

(6). Let q1, q2 be two distinct points of q.Spec(R). If q1 * q2, then obviously q2 ∈

ΛR(q1) and q1 /∈ ΛR(q1). �

Proposition 3.3. Let M be an R-module and a, b ∈ R.

(1) (ψq)−1(ΛR(a)) = ΛM(a).
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(2) ψq(ΛM(a)) ⊆ ΛR(a) and the equality holds if ψq is surjective.

(3) ΛM(ab) = ΛM(a) ∩ ΛM(b).

(4) If ψq is surjective, then the open set ΛM(Ra) in q.Spec(M) is quasi-compact.

In particular, the space q.Spec(M) is quasi-compact.

Proof. (1). Since ψq is continuous, by Proposition 3.1(3), we have

(ψq)−1(ΛR(a)) = (ψq)−1(q.Spec(R)− ν(aR))

= q.Spec(M)− (ψq)−1(ν(aR))

= q.Spec(M)− ν(aM)

= ΛM(a).

(2) follows immediately from part (1).

(3). Let a, b ∈ R. Then

ΛM(ab) = (ψq)−1(ΛR(ab)) by part (1)

= (ψq)−1(ΛR(a) ∩ ΛR(a)) by Theorem 3.6(4)

= (ψq)−1(ΛR(a)) ∩ (ψq)−1(ΛR(a))

= ΛM(a) ∩ ΛM(a).

(4). Since B = {ΛM(a) | a ∈ R} forms a base for the quasi-Zariski topology on

q.Spec(M) by Theorem 3.5, for any open cover of ΛM(a), there is a family {ai ∈

R | i ∈ I} of elements of R such that ΛM(a) ⊆ ∪
i∈I

ΛM(ai). By part (2), ΛR(a) =

ψq(ΛM(a)) ⊆ ∪
i∈I
ψq(ΛM(ai)) = ∪

i∈I
ΛR(ai). It follows that there exists a finite subset

I ′ of I such that ΛR(a) ⊆ ∪
i∈I′

ΛR(ai) as ΛR(a) is quasi-compact, since φR is surjective,

whence ΛM(a) = (ψq)−1(ΛR(a)) ⊆ ∪
i∈I′

ΛM(ai) by part (1). �
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Theorem 3.7. Let M be an R-module. If the map ψq is surjective, then the quasi-

compact open sets of q.Spec(M) are closed under finite intersection and form an open

base.

Proof. It suffices to show that the intersection C = C1 ∩ C2 of two quasi-compact

open sets C1 and C2 of q.Spec(M) is a quasi-compact set. Each Cj , j = 1 or 2, is a

finite union of members of the open base B = {ΛM(a) | a ∈ R}, hence so is C due

to Proposition 3.3. Put C =
n
∪
i=1

ΛM(ai) and let Ω be any open cover of C. Then Ω

also covers each ΛM(ai) which is quasi-compact by Proposition 3.3 (4). Hence, each

ΛM(ai) has a finite subcover of Ω and so does C. The other part of the theorem is

trivially true due to the existence of the open base B. �

Following [10], we say that a topological space W is a spectral space in case W

is homeomorphic to Spec(S), with the Zariski topology, for some ring S. Spectral

spaces have been characterized by Hochster [10, p.52, Proposition 4] as the topological

spaces W which satisfy the following conditions:

(1) W is a T0-space;

(2) W is quasi-compact;

(3) The quasi-compact open subsets of W are closed under finite intersection and

form an open base;

(4) Each irreducible closed subset of W has a generic point.

In the end of this paper, we observe q.Spec(M) from the point of view of spectral

topological spaces; we will follow the above mentioned Hochster’s characterization

closely.

The next theorem is obtained by combining Proposition 3.3 (4), Theorem 3.7, and

Theorem 3.4 (1).
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Theorem 3.8. Let M be an R-module and the map ψq be surjective. Then q.Spec(M)

fulfills the above conditions (2), (3), and (4), namely, q.Spec(M) satisfies all the

conditions to be a spectral space but possibly condition (1).

Theorem 3.9. Let M be an R-module and the map ψq be surjective. Then the

following statements are equivalent:

(1) q.Spec(M) is a spectral space;

(2) q.Spec(M) is a T0-space;

(3) φRoψq is injective;

(4) If ν(N) = ν(K), then N = K, for any N,K ∈ q.Spec(M);

(5) | q.Specp(M) |≤ 1 for every q ∈ V q(Ann(M)) with
√
q = p;

(6) φM is injective.

Proof. (1) ⇒ (2) is trivial and (2) ⇒ (1) holds by Theorem 3.8. The equivalence of

(2)− (6) is due to Proposition 3.2 (5). �
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