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SOME STUDIES ON ORDERED KRASNER HYPERRINGS WITH

RESPECT TO DERIVATIONS

SABER OMIDI (1) AND BIJAN DAVVAZ (2)

Abstract. The concept of ordered Krasner hyperrings is a generalization of the

concept of ordered rings. In this paper, we study subhyperrings, d-subhyperrings

and injective subhyperrings of ordered Krasner hyperrings. Also, the notion of con-

vex ordered Krasner hyperrings is introduced and some related results are studied.

Moreover, we prove that for an injective strong derivation d of a convex ordered

Krasner hyperring (R, +, ·,≤) associated to a d-strongly regular relation σ, there

exists an injective strong derivation on (R/σ,⊕,�,�).

1. Introduction and prerequisites

Hyperstructure theory was first introduced in 1934, when Marty [16] defined hyper-

groups. Several books on hyperstructure theory have been published [3, 4, 5, 8, 21].

Algebraic hyperstructures are a suitable generalization of classical algebraic struc-

tures. There are different types of hyperrings. Davvaz and Leoreanu-Fotea studied

hyperrings in more details in [8]. Several kinds of hyperrings are introduced and ana-

lyzed. The volume ends with an outline of applications in chemistry and physics, an-

alyzing several special kinds of hyperstructures: e-hyperstructures and transposition

hypergroups. Krasner hyperrings are generalizations of rings in which the addition

is multivalued, i.e. the sum of two elements is no longer an element but a subset.

2000 Mathematics Subject Classification. 16Y99, 20N20.

Key words and phrases. Ordered Krasner hyperring, subhyperring, derivation.

Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Jan.16, 2017 Accepted: Sept. 11, 2017 .

217



218 SABER OMIDI AND BIJAN DAVVAZ

Krasner (m, n)-hyperrings were introduced and analyzed by Mirvakili and Davvaz

[17]. Krasner (m, n)-hyperrings are a suitable generalization of Krasner hyperrings.

Davvaz [6] defined fuzzy Krasner (m, n)-hyperrings and obtained some results in this

respect.

A preorder on an arbitrary non-empty set X is a binary relation on X which is

reflexive and transitive. An antisymmetric preorder is said to be an order. Gane-

samoorthy and Karpagavalli [11] introduced and analyzed congruence relations in

partially ordered sets. The concept of ordering hypergroups studied by Chvalina [2]

as a special type of hypergroups. The concept of an ordered semihypergroup is a

generalization of the concept of an ordered semigroup. The notion of ordered semi-

hypergroup was first introduced in 2011 by Heidari and Davvaz in [12]. After, Davvaz

et al. [10] studied the concept of pseudoorders in ordered semihypergroups. Recall

from [12] that an ordered semihypergroup (S, ◦,≤) is a semihypergroup (S, ◦) together

with a partial order ≤ that is compatible with the hyperoperation ◦, meaning that

for any x, y, z ∈ S,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.

Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦x there exists b ∈ z ◦ y such that a ≤ b. The

case x ◦ z ≤ y ◦ z is defined similarly.

Posner [19] studied derivations in rings. In 2013, Asokkumar [1] introduced the

notion of derivation in Krasner hyperrings as follows: Let (R, +, ·) be a Krasner

hyperring. A function d : R → R is called a derivation of R if (1) d(a+b) ⊆ d(a)+d(b)

and (2) d(a · b) ∈ d(a) · b + a · d(b) for all a, b ∈ R. Also, Kamali Ardekani and

Davvaz studied the main properties of derivations of multiplicative hyperrings [13]

and Krasner hyperrings [14]. Recently, Wang et al. [22] proved some results in

bounded hyperlattices using derivations. In [20], Rafi et al. introduced the concept

of d-ideals on almost distributive lattices. The concept of an ordered semihyperring

was first given by Davvaz and Omidi [9]. The concept of ordered Krasner hyperring
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was introduced and studied in [18].

Let H be a non-empty set. A mapping ◦ : H ×H → P∗(H), where P∗(H) denotes

the family of all non-empty subsets of H, is called a hyperoperation on H. The

couple (H, ◦) is called a hyperstructure. In the above definition, if A and B are two

non-empty subsets of H and x ∈ H, then we denote

A ◦ B =
⋃

a∈A

b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

A hyperstructure (H, ◦) is called a semihypergroup if for all x, y, z ∈ H, (x ◦ y) ◦ z =

x ◦ (y ◦ z), which means that

⋃

u∈x◦y

u ◦ z =
⋃

v∈y◦z

x ◦ v.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemihypergroup of

H if K ◦K ⊆ K. Let (H, ◦) be a semihypergroup. Then, H is called a hypergroup if

it satisfies the reproduction axiom, for all x ∈ H, H ◦ x = x ◦ H = H. A non-empty

subset K of H is a subhypergroup of H if K ◦ a = a ◦ K = K, for all a ∈ K.

Let (H, ◦) be a semihypergroup and σ be an equivalence relation on H. If A and

B are nonempty subsets of H, then

AσB means that ∀a ∈ A, ∃b ∈ B such that aσb and

∀b′ ∈ B, ∃a′ ∈ A such that a′σb′;

AσB means that ∀a ∈ A, ∀b ∈ B, we have aσb.

The equivalence relation σ is called

(1) regular on the right (on the left) if for all x of H, from aσb, it follows that

(a ◦ x)σ(b ◦ x) ((x ◦ a)σ(x ◦ b) respectively);

(2) strongly regular on the right (on the left) if for all x of H, from aσb, it follows

that (a ◦ x)σ(b ◦ x) ((x ◦ a)σ(x ◦ b) respectively);

(3) σ is called regular (strongly regular) if it is regular (strongly regular) on the

right and on the left.
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In [7], Davvaz gave the fundamental homomorphism theorem of Krasner hyperrings.

Let us introduce some definitions on Krasner hyperrings that will be used in the

next section. A Krasner hyperring [15] is an algebraic hypersructure (R, +, ·) which

satisfies the following axioms:

(1) (R, +) is a canonical hypergroup, i.e., (i) for any x, y, z ∈ R, x + (y + z) =

(x + y) + z, (ii) for any x, y ∈ R, x + y = y + x, (iii) there exists 0 ∈ R such

that 0 + x = x + 0 = x, for any x ∈ R, (iv) for every x ∈ R, there exists a

unique element x′ ∈ R, such that 0 ∈ x + x′ (we shall write −x for x′ and we

call it the opposite of x), (v) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z− y,

for all x, y, z ∈ R, that is (R, +) is reversible;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x·0 =

0 · x = 0, for all x ∈ R;

(3) The multiplication is distributive with respect to the hyperoperation +.

A non-empty subset A of a Krasner hyperring (R, +, ·) is called a subhyperring of

R if (A, +, ·) itself is a Krasner hyperring. Equivalently, a non-empty subset A of

a Krasner hyperring (R, +, ·) is a subhyperring of R if and only if, for all x, y ∈ A,

x + y ⊆ A, −x ∈ A and x · y ∈ A.

Theorem 1.1. [18] Let (R, +, ·,≤) be a preordered Krasner hyperring and σ a strongly

regular relation on R. Then, (R/σ,⊕,�,�) is a preordered Krasner hyperring with

respect to the following hyperoperations on the quotient set R/σ:

[a]σ ⊕ [b]σ = {[c]σ | c ∈ a + b},

[a]σ � [b]σ = [a · b]σ,

where for all [a]σ, [b]σ ∈ R/σ a preorder relation � is defined by:

[a]σ � [b]σ ⇔ ∀a1 ∈ [a]σ∃b1 ∈ [b]σ such that a1 ≤ b1.
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2. Definitions and examples

Definition 2.1. Let (R, +, ·) be a Krasner hyperring. We say that (R, +, ·,≤) is an

ordered Krasner hyperring if the following axioms are fulfilled:

(1) (R,≤) is a partially ordered set.

(2) For every a, b, c ∈ R, a ≤ b implies a + c ≤ b + c, that is for any u ∈ a + c,

there exists v ∈ b + c such that u ≤ v.

(3) For any a, b, c ∈ R, a ≤ b and 0 ≤ c imply a · c ≤ b · c and c · a ≤ c · b.

Remark 1. An ordered Krasner hyperring R is positive if 0 ≤ x for each x ∈ R.

If we remove the restriction 0 ≤ c from (3), then Definition 2.1 is equivalent to

positive ordered Krasner hyperring.

Let (R, +, ·,≤) be an ordered Krasner hyperring. For A ⊆ R, we denote

(A] = {x ∈ R | x ≤ a, for some a ∈ A}.

It is clear that (R] = R.

Definition 2.2. Let (R, +, ·,≤) be an ordered Krasner hyperring. A non-empty

subset A of R is said to be a subhyperring of R if the following conditions hold:

(1) (A, +) is a canonical subhypergroup of (R, +) and A · A ⊆ A;

(2) (A] = A.

In the following, we define the notion of derivations and provide some examples.

Definition 2.3. Let (R, +, ·,≤) be an ordered Krasner hyperring. A function d :

R → R is called a derivation of R if it satisfies the following conditions:

(1) d(a + b) ⊆ d(a) + d(b) for all a, b ∈ R;

(2) d(a · b) ∈ d(a) · b + a · d(b) for all a, b ∈ R;

(3) d is isotone, that is, for any a, b ∈ R, a ≤ b implies d(a) ≤ d(b).
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A function d : R → R is called strong derivation if for all a, b ∈ R, it satisfies (2), (3)

and (1) d(a + b) = d(a) + d(b).

Example 2.1. Let R = {0, a, b, c} be a set with the hyperoperation + and the multi-

plication · defined as follows:

+ 0 a b c

0 0 a b c

a a {0, a} c {b, c}

b b c 0 a

c c {b, c} a {0, a}

· 0 a b c

0 0 0 0 0

a 0 0 0 0

b 0 0 b b

c 0 0 b b

Then, (R, +, ·) is a Krasner hyperring [17]. We have (R, +, ·,≤) is an ordered Kras-

ner hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, a), (b, c)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (b, c)}.

b

b
b

0

b

c
b

a

Define a map d : R → R by d(0) = 0, d(a) = a, d(b) = 0, d(c) = a. Now, d(a + a) =

d({0, a}) = {0, a} = a + a = d(a) + d(a) and d(a · a) = d(0) = 0 = 0 + 0 =

a · a + a · a = d(a) · a + a · d(a). Also, d(a + b) = d(c) = a = a + 0 = d(a) + d(b),

d(a · b) = d(0) = 0 = 0 + 0 = a · b + a · 0 = d(a) · b + a · d(b), d(a + c) = d({b, c}) =

{0, a} = a+a = d(a)+d(c), d(a ·c) = d(0) = 0 = 0+0 = a ·c+a ·a = d(a) ·c+a ·d(c),

d(b + b) = d(0) = 0 = 0 + 0 = d(b) + d(b), d(b · b) = d(b) = 0 = 0 + 0 = 0 · b + b · 0 =

d(b) · b + b · d(b), d(b + c) = d(a) = a = 0 + a = d(b) + d(c), d(b · c) = d(b) = 0 =
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0+0 = 0 ·c+b ·a = d(b) ·c+b ·d(c), d(c+c) = d({0, a}) = {0, a} = a+a = d(c)+d(c)

and d(c · c) = d(b) = 0 = 0 + 0 = a · c + c · a = d(c) · c + c · d(c). We can verify that

x ≤ y implies d(x) ≤ d(y), for all x, y ∈ R. Hence, d is a strong derivation of R.

Example 2.2. Consider the hyperring R = {0, a, b} with the hyperaddition + and

the multiplication · defined as follows:

+ 0 a b

0 0 a b

a a {a, b} R

b b R {a, b}

· 0 a b

0 0 0 0

a 0 b a

b 0 a b

Then, (R, +, ·) is a Krasner hyperring [1]. We have (R, +, ·,≤) is an ordered Krasner

hyperring, where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (0, b)}.

b

0

b

b

�
�

�@
@

@

b

a

Define a map d : R → R by d(0) = 0, d(a) = b, d(b) = a. Now, it is easy to see that

d is a strong derivation of R.

Example 2.3. In Example 2.2, the identity function, d(x) = x for every x ∈ R, is a

strong derivation of R.
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Example 2.4. Let R = {0, a, b, c} be a set with the hyperoperation + and the multi-

plication · defined as follows:

+ 0 a b c

0 0 a b c

a a {0, b} {a, c} b

b b {a, c} {0, b} a

c c b a 0

· 0 a b c

0 0 0 0 0

a 0 a b c

b 0 b b 0

c 0 c 0 c

Then, (R, +, ·) is a Krasner hyperring [1]. We have (R, +, ·,≤) is an ordered Krasner

hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, b), (c, a)}.

The covering relation and the figure of R are given by:

≺= {(0, b), (c, a)}.

b

c
b

0

b

a
b

b

Define a map d : R → R by d(0) = 0, d(a) = b, d(b) = b, d(c) = 0. Now, it is easy to

see that d is a non strong derivation of R.

Definition 2.4. Let d be a derivation of an ordered Krasner hyperring (R, +, ·,≤).

Furthermore, we assume that A is a subhyperring of R. The subhyperring A is a

d-subhyperring of R if d(a) ∈ A, for all a ∈ A.

Note that {0} and R are the d-subhyperrings of R.

Example 2.5. (1) In Example 2.1, {0, a} and {0, b} are d-subhyperrings of R.

(2) In Example 2.4, {0, b} and {0, c} are d-subhyperrings of R.
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Remark 2. Let (R, +, ·,≤) be an ordered Krasner hyperring. If d : R → R is a function

defined by d(x) = 0 for each x ∈ R, then every subhyperring is a d-subhyperring.

Definition 2.5. Let d be a derivation of an ordered Krasner hyperring (R, +, ·,≤).

and let A be a subhyperring of R. Then A is an injective subhyperring with respect

to d if for all a, b ∈ R, the following holds:

d(a) = d(b) and a ∈ A ⇒ b ∈ A.

Example 2.6. In Example 2.4, {0, c} is an injective subhyperring of R.

Example 2.7. In Example 2.4, {0, b} is a d-subhyperring but not injective with re-

spect to d. Indeed:

d(a) = d(b) = b and b ∈ {0, b} but a /∈ {0, b}.

Remark 3. Let (R, +, ·,≤) be an ordered Krasner hyperring. If d is an injective

derivation of R, then every subhyperring is injective with respect to d.

Note that {0} is not necessarily an injective subhyperring. This is shown by the

following example.

Example 2.8. Consider the ordered Krasner hyperring (R, +, ·,≤) defined in Exam-

ple 2.4. Then, {0} is not an injective subhyperring of R. Indeed:

d(0) = d(c) = 0 and 0 ∈ {0} but c /∈ {0}.

In the following, we introduce the notion of convex ordered Krasner hyperrings

associated to strongly regular relations.

Definition 2.6. Let σ be a strongly regular relation on an ordered Krasner hyperring

(R, +, ·,≤). We say that R is a convex ordered Krasner hyperring associated to σ if

the following correlation takes place:

(x, z) ∈ σ and x ≤ y ≤ z ⇒ (x, y) ∈ σ.
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Remark 4. If we consider the identity strongly regular relation on an ordered Krasner

hyperring R, then R is a convex ordered Krasner hyperring.

Example 2.9. Let R = {0, a, b, c, d, e} be a set with the hyperaddition + and the

multiplication · defined as follows:

+ 0 a b c d e

0 0 a b c d e

a a a {0, a, b} d d {c, d, e}

b b {0, a, b} b e {c, d, e} e

c c d e 0 a b

d d d {c, d, e} a a {0, a, b}

e e {c, d, e} e b {0, a, b} b

· 0 a b c d e

0 0 0 0 0 0 0

a 0 a b 0 a b

b 0 a b 0 a b

c 0 0 0 c c c

d 0 a b c d e

e 0 a b c d e

Clearly, (R, +, ·) is a Krasner hyperring [14]. We have (R, +, ·,≤) is an ordered

Krasner hyperring where the order relation ≤ is defined by:

≤ := {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (0, a),

(0, b), (a, b), (c, d), (c, e), (d, e)}.

The covering relation and the figure of R are given by:

≺ = {(0, a), (a, b), (c, d), (d, e)}.

b0

ba

bb

b c

b d

b e
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Let σ be strongly regular relation on R define as follows:

σ = {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (0, a),

(a, 0), (0, b), (b, 0), (a, b), (b, a), (c, d), (d, c),

(c, e), (e, c), (d, e), (e, d)}.

We can easily verify that R is a convex ordered Krasner hyperring associated to σ.

Definition 2.7. Let d be a derivation of an ordered Krasner hyperring (R, +, ·,≤).

A strongly regular relation σ is said to be a d-strongly regular relation if it satisfies

the following property:

(x, y) ∈ σ ⇒ (d(x), d(y)) ∈ σ.

Example 2.10. In Example 2.1,

σ = {(0, 0), (a, a), (b, b), (c, c), (0, a), (a, 0), (b, c), (c, b)}

is a d-strongly regular relation of R.

Remark 5. Let (R, +, ·,≤) be an ordered Krasner hyperring such that x ∈ x + x for

every x ∈ R. If d is the identity function, d(x) = x for all x ∈ R, then every strongly

regular relation is a d-strongly regular relation of R.

3. Main results

Lemma 3.1. Let (R, +, ·,≤) be an ordered Krasner hyperring and A, B ⊆ R. Then

(1) A ⊆ (A].

(2) ((A]] = (A].

(3) (A] ⊆ (B] for any A ⊆ B ⊆ R.

(4) (A] · (B] ⊆ (A · B].

Proof. (1): Let a ∈ A. Since a ≤ a and a ∈ R, we get a ∈ (A]. Hence A ⊆ (A].

(2): From (1), we have (A] ⊆ ((A]]. Let a ∈ ((A]]. Then a ≤ u for some u ∈ (A].
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Since u ∈ (A], it follows that u ≤ a′ for some a′ ∈ A. So, a ≤ a′ for some a′ ∈ A.

This implies that a ∈ (A]. Thus, ((A]] = (A].

(3): It is obvious.

(4): Let x ∈ (A] · (B]. Then, x = a · b, where a ∈ (A] and b ∈ (B]. Since a ∈ (A], it

follows that a ≤ u for some u ∈ A. Similarly, b ≤ v for some v ∈ B. By hypothesis,

we have a · b ≤ u · b ≤ u · v. So, x ≤ u · v for some u · v ∈ A · B. Hence x ∈ (A · B].

Therefore, (A] · (B] ⊆ (A · B]. �

Theorem 3.1. Let (R, +, ·,≤) be an ordered Krasner hyperring. If {Ai | i ∈ I} is a

family of subhyperrings of R, then
⋂

i∈I

Ai is a subhyperring of R.

Proof. Clearly, (
⋂

i∈I

Ai, +) is a subhypergroup of (R, +) and (
⋂

i∈I

Ai) · (
⋂

i∈I

Ai) ⊆
⋂

i∈I

Ai.

By (1) of Lemma 3.1,
⋂

i∈I

Ai ⊆ (
⋂

i∈I

Ai]. Now, let x ∈ (
⋂

i∈I

Ai]. Then, x ≤ u for some

u ∈
⋂

i∈I

Ai. Thus, x ≤ u, where u ∈ Ai, for all i ∈ I. So, x ∈ (Ai] = Ai, for all i ∈ I.

Hence, x ∈
⋂

i∈I

Ai. Therefore, (
⋂

i∈I

Ai] ⊆
⋂

i∈I

Ai. Hence the proof is completed. �

In general, the union of subhyperrings of an ordered Krasner hyperring is not a

subhyperring.

Example 3.1. Let R = {0, a, b, c} be a set with the hyperoperation + and the multi-

plication · defined as follows:

+ 0 a b c

0 0 a b c

a a {0, a} c b

b b c {0, b} a

c c b a {0, c}

· 0 a b c

0 0 0 0 0

a 0 a a a

b 0 b b b

c 0 c c c

Then, (R, +, ·) is a Krasner hyperring [23]. We have (R, +, ·,≤) is an ordered Kras-

ner hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c)}.
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Here, A = {0, a} and B = {0, b} are subhyperrings of R. Since a + b = c /∈ A ∪B, it

follows that A ∪ B is not a subhyperring of R.

Now, we show that under an additional hypothesis the union of subhyperrings is a

subhyperring.

Theorem 3.2. Let (R, +, ·,≤) be an ordered Krasner hyperring. If {Ai | i ∈ I} is

a family of subhyperrings of R such that Ai ⊆ Aj or Aj ⊆ Ai, for all i, j ∈ I, then
⋃

i∈I

Ai is a subhyperring of R.

Proof. Since 0 ∈
⋃

i∈I

Ai, it follows that
⋃

i∈I

Ai 6= ∅. Let a, b ∈
⋃

i∈I

Ai. Then a ∈ As and

b ∈ At for some s, t ∈ I. If, say, As ⊆ At, then both a, b are inside At, so we have

a + b ⊆ At. This implies that a + b ⊆
⋃

i∈I

Ai. Similarly, we have −a, a · b, b · a ∈
⋃

i∈I

Ai.

Now, let a ∈
⋃

i∈I

Ai, x ∈ R and x ≤ a. Then a ∈ Ai for some i ∈ I. Since Ai is a

subhyperring of R, it follows that x ∈ Ai ⊆
⋃

i∈I

Ai. This completes the proof. �

The kernel of a derivation is defined as Ker(d) = {x ∈ R | d(x) = 0}.

Theorem 3.3. Let (R, +, ·,≤) be a positive ordered Krasner hyperring. Then Ker(d)

is a d-subhyperring of R.

Proof. Since 0 ∈ Ker(d), it follows that Ker(d) 6= ∅. Let a, b ∈ Ker(d). Then d(a) =

0 = d(b). Since d is a derivation, it follows that d(a+ b) ⊆ d(a) + d(b) = 0+ 0 = {0}.

So, a + b ⊆ Ker(d). Also, d(−a) = −d(a) = −0 = 0. Hence, −a ∈ Ker(d). On the

other hand, d(a · b) ∈ d(a) · b + a · d(b) = 0 · b + a · 0 = 0 + 0 = {0}. So, we have

a · b ∈ Ker(d). Now, let a ∈ Ker(d), x ∈ R and x ≤ a. Since d is a derivation, it

follows that d(x) ≤ d(a) = 0. Thus d(x) = 0. So, we have x ∈ Ker(d). Therefore,

Ker(d) is a subhyperring of R. Now, it remains to show that d(y) ∈ Ker(d) for all

y ∈ Ker(d). If y ∈ Ker(d), then d(y) = 0 ∈ Ker(d). This completes the proof. �

Theorem 3.4. Let (R, +, ·,≤) be a positive ordered Krasner hyperring. Then Ker(d)

is an injective subhyperring of R.
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Proof. The proof is straightforward. �

Lemma 3.2. Let d be a derivation of an ordered Krasner hyperring (R, +, ·,≤). Then

the following statements are equivalent:

(1) {0} is an injective subhyperring of R with respect to d.

(2) Ker(d) = {0}.

(3) d(x) = 0 implies that x = 0, for all x ∈ R.

Proof. (1) ⇒ (2): Assume that (1) holds. Let a ∈ Ker(d). Then d(a) = 0 = d(0).

Since {0} is an injective subhyperring, we obtain a ∈ {0}. So, we have Ker(d) = {0}.

(2) ⇒ (3): Let x ∈ R and suppose that d(x) = 0, for all x ∈ R. Then x ∈ Ker(d) =

{0}. So, we have x = 0.

(3) ⇒ (1): Assume that (3) holds. Let d(a) = d(b) and a ∈ {0}. Then d(b) =

d(a) = d(0) = 0. By hypothesis, we have b = 0. This means that b ∈ {0}. Therefore,

{0} is an injective subhyperring of R . �

Theorem 3.5. Let (R, +, ·,≤) be a positive ordered Krasner hyperring. Then Ker(d)

is the smallest injective subhyperring of R.

Proof. By Theorem 3.4, Ker(d) is an injective subhyperring of R. Let A be an

injective subhyperring of R with respect to d. We claim that Ker(d) ⊆ A. Consider

x ∈ Ker(d). Then d(x) = 0 = d(0). Since A is an injective subhyperring, it follows

that x ∈ A. Hence, Ker(d) ⊆ A. �

Now, we discuss the link between convex ordered Krasner hyperrings associated to

strongly regular relations and ordered rings.

Theorem 3.6. Let us follow the notations and definitions used in Theorem 1.1. If

(R, +, ·,≤) is a convex ordered Krasner hyperring associated to σ, then (R/σ,⊕,�,�)

is an ordered ring.
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Proof. By Theorem 1.1, (R/σ,⊕,�,�) is a preordered ring. It remains to show only

that � is also an antisymmetric relation. Let [a]σ � [b]σ and [b]σ � [a]σ in R/σ. Take

a ∈ [a]σ; then there exists b1 ∈ [b]σ such that a ≤ b1. For this b1 ∈ [b]σ there exists

a1 ∈ [a]σ such that b1 ≤ a1. This implies that a ≤ b1 ≤ a1. Since R is a convex

ordered Krasner hyperring, we get [a]σ = [b]σ. Hence the proof is completed. �

At the end of the paper, we obtain the following theorem.

Theorem 3.7. Let us follow the notations and definitions used in Theorem 1.1. Let

(R, +, ·,≤) be a convex ordered Krasner hyperring associated to a d-strongly regular

relation σ. If d is a strong derivation of R satisfies the following condition

d(a)σd(b) ⇒ aσb,

then there exists an injective strong derivation on (R/σ,⊕,�,�).

Proof. By Theorem 3.6, (R/σ,⊕,�,�) is an ordered ring. Define ϕ : R/σ → R/σ by

ϕ([x]σ) = [d(x)]σ for all [x]σ ∈ R/σ. Suppose that [a]σ = [b]σ, where [a]σ, [b]σ ∈ R/σ.

Since σ is a d-strongly regular relation, we hava [d(a)]σ = [d(b)]σ. Then, ϕ([a]σ) =

ϕ([b]σ). Therefore, ϕ is a well defined map. If [a]σ and [b]σ are two arbitrary elements

of R/σ such that ϕ([a]σ) = ϕ([b]σ), then [d(a)]σ = [d(b)]σ. So, d(a)σd(b). Hence, we

obtain aσb. This means that [a]σ = [b]σ. Therefore, ϕ is injective. Now, we show

that ϕ is a strong derivation on (R/σ,⊕,�,�). Suppose that [a]σ and [b]σ are two

arbitrary elements of R/σ. Then,

ϕ([a]σ ⊕ [b]σ) = ϕ({[u]σ | u ∈ a + b}

= {[d(u)]σ | u ∈ a + b}.
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Also, we have

ϕ([a]σ) ⊕ ϕ([b]σ) = [d(a)]σ ⊕ [d(b)]σ

= {[v]σ | v ∈ d(a) + d(b)}

= {[v]σ | v ∈ d(a + b)}

= {[d(w)]σ | w ∈ a + b}.

Hence, ϕ([a]σ ⊕ [b]σ) = ϕ([a]σ)⊕ϕ([b]σ), and so the first condition of the definition of

strong derivation is verified. Now, let [a]σ and [b]σ be two arbitrary elements of R/σ.

Then,

ϕ([a]σ � [b]σ) = ϕ([a · b]σ) = [d(a · b)]σ.

Also, we have

(ϕ([a]σ) � [b]σ) ⊕ ([a]σ � ϕ([b]σ)) = ([d(a)]σ � [b]σ) ⊕ ([a]σ � [d(b)]σ)

= [d(a) · b]σ ⊕ [a · d(b)]σ

= {[t]σ | t ∈ d(a) · b + a · d(b)}.

Since d(a · b) ∈ d(a) · b+ a · d(b), we get [d(a · b)]σ ∈ {[t]σ | t ∈ d(a) · b+ a · d(b)}. This

implies that ϕ([a]σ � [b]σ) ∈ (ϕ([a]σ) � [b]σ) ⊕ ([a]σ � ϕ([b]σ)), and hence the second

condition of the definition of strong derivation is verified. Now, let [a]σ, [b]σ ∈ R/σ

and [a]σ � [b]σ. Take any a1 ∈ [a]σ; then there exists b1 ∈ [b]σ such that a1 ≤ b1. By

hypothesis, we have d(a1) ≤ d(b1). Since σ is a d-strongly regular relation, we get

[d(a1)]σ = [d(a)]σ and [d(b1)]σ = [d(b)]σ. Hence for every d(a1) ∈ [d(a)]σ there exists

some d(b1) ∈ [d(b)]σ such that d(a1) ≤ d(b1). This means that [d(a)]σ � [d(b)]σ. Thus,

ϕ([a]σ) � ϕ([b]σ), and so the third condition of the definition of strong derivation is

verified. Therefore, ϕ is a strong derivation and the proof is completed. �
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