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DISCUSSION ON α-CONTRACTIONS AND RELATED FIXED

POINT THEOREMS IN HAUSDORFF b-GAUGE SPACES

MUHAMMAD USMAN ALI (1) AND FAHIM UD DIN (2)

Abstract. In this paper, we have used the structure of b-gauge spaces to prove

fixed point theorems for multivalued mappings in the lights of α-contraction. To-

wards the end, the validity of our results have been insured by discussing a possible

application and example.

1. Introduction and Preliminaries

Characterization of gauge spaces can be made by the fact that the distance between

two distinct points of the space may be zero, which has been the center of interest

for many researchers world wide. For details on gauge spaces, we refer[1]. As we

know that the Banach contraction principle is considered as the most fundamental

entity and its inception has opened a new era in metric fixed point theory. The

generalization of this famous result in different dimensions has shown to be promising.

Frigon [2] and Chis and Precup [3] generalized the Banach contraction principle on

gauge spaces. For more intersecting results on gauge spaces, the readers can look

into [4, 5, 6, 7, 8, 9].

Another interesting result is the introduction of the notion of b-metric space by

Czerwik [10]. Let X be a nonempty set. A mapping d : X ×X → [0,∞) is said to

be a b-metric on X, if there exists s ≥ 1 such that for each x, y, z ∈ X, we have (i)
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d(x, y) = 0 if and only if x = y (ii) d(x, y) = d(y, x) (iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The triplet (X, d, s) is said to be a b-metric space. Note that every metric space

is a b-metric but converse is not true. Convergence of a sequence in a b-metric

space is defined in a similar fashion as in a metric space. A sequence {xn} ⊂ X

is a Cauchy sequence in (X, d, s), if for each ε > 0 there exists a natural number

N(ε) such that d(xn, xm) < ε for each m,n ≥ N(ε). A b-metric space (X, d, s) is

complete if each Cauchy sequence in X converges to some point of X. Czerwik

[10] extended Banach contraction principle for self mappings on b metric spaces.

Czerwik [11] further extended the notion of a b-metric space (X, d, s) by defining

Hausdorff metric for the space of all nonempty closed and bounded subsets of the

b-metric space (X, d, s). Let (X, d, s) be a b metric space, for x ∈ X and A ⊂ X,

d(x,A) = inf{d(x, a) : a ∈ A}. Denote CB(X) as the class of all nonempty closed

and bounded subsets of X and CL(X) as the class of all nonempty closed subsets

of X. For A,B ∈ CB(X), the function H : CB(X) × CB(X) → [0,∞) defined by

H(A,B) = max
{

supa∈A d(a, B), supb∈B d(b, A)
}

is said to be a Hausdorff b-metric

induced by a b-metric space (X, d, s). A Hausdorff b metric space enjoys the same

properties as a Hausdorff metric, expect for triangular inequality which in Hausdorff b

metric space takes the form H(A,B) ≤ s[H(A,C)+H(C,B)]. Czerwik [11] extended

Nadler’s fixed point theorem in the setting of Hausdorff b metric spaces. On other

hand, Semat et al. [12] also succeeded to generalized Banach contraction condition

by introducing α-ψ-contraction. Many authors appreciate this condition, which can

be seen in [13, 15, 16, 17, 18, 19, 20, 21, 22, 23].

By using b-metric spaces, in this paper, we will first discuss the notion of bs-gauge

spaces introduced by [14]. Then, we extend this notion to define bs-gauge structure

on the space of nonempty closed subsets of the b metric space and prove some fixed

point theorems for multivalued α−contractions. To substantiate our main results, we
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construct an example. Moreover, we also discuss a possible application of our results

to solve an integral equation.

Definition 1.1. [14] Let X be a nonempty set. A function d : X × X → [0,∞) is

called bs-pseudo metric on X if there exists s ≥ 1 such that for each x, y, z ∈ X, we

have

: (i) d(x, x) = 0 for each x ∈ X;

: (ii) d(x, y) = d(y, x);

: (iii) d(x, z) ≤ s[d(x, y) + d(y, x)].

Remark 1.1. [14] Every b-metric space (X, d, s) is a bs-pseudo metric space, but the

converse is not true.

Example 1.1. [14] Let X = C([0,∞),R). Define a function d : X ×X → [0,∞) by

d(x(t), y(t)) = maxt∈[0,1](x(t) − y(t))2. Then

: (i) Clearly d is not a metric on X;

: (ii) d is not a pseudo metric on X, since x, y, z ∈ C([0,∞),R) defined by

x(t) =











0 if 0 ≤ t ≤ 1

t− 1 if t > 1,

y(t) = 3 for each t ≥ 0 and z(t) = −3 for each t ≥ 0. Then d(y, z) = 36 �

18 = d(y, x) + d(x, z).

: (iii) d is not a b-metric on X, since u, v ∈ C([0,∞),R) defined by

u(t) =











0 if 0 ≤ t ≤ 1

t− 1 if t > 1,

and

v(t) =











0 if 0 ≤ t ≤ 1

2t− 2 if t > 1.
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Then u 6= v, but d(u, v) = 0.

: (iv) d is b2-pseudo metric on X with s = 2.

In order to define gauge spaces in the setting of bs-pseudo metrics, we need to

define the following definitions.

Definition 1.2. [14] Let X be a nonempty set endowed with the bs-pseudo metric d.

The ds-ball of radius ε > 0 centered at x ∈ X is the set

B(x, d, ε) = {y ∈ X : d(x, y) < ε}.

Definition 1.3. [14] A family F = {dν : ν ∈ A} of bs-pseudo metrics is said to be

separating if for each pair (x, y) with x 6= y, there exists dν ∈ F with dν(x, y) 6= 0.

Definition 1.4. [14] Let X be a nonempty set and F = {dν : ν ∈ A} be a family of

bs-pseudo metrics on X. The topology T(F) having subbases in the family

B(F) = {B(x, dν, ε) : x ∈ X, dν ∈ F and ε > 0}

of balls is called topology induced by the family F of bs-pseudo metrics. The pair

(X,T(F)) is called a bs-gauge space. Note that (X,T(F)) is Hausdorff if F is sepa-

rating.

Definition 1.5. [14] Let (X,T(F)) be a bs-gauge space with respect to the family

F = {dν : ν ∈ A} of bs-pseudo metrics on X and {xn} is a sequence in X and x ∈ X.

Then:

: (i): the sequence {xn} converges to x if for each ν ∈ A and ε > 0, there exists

N0 ∈ N such that dν(xn, x) < ε for each n ≥ N0. We denote it as xn →F x;

: (ii) the sequence {xn} is a Cauchy sequence if for each ν ∈ A and ε > 0, there

exists N0 ∈ N such that dν(xn, xm) < ε for each n,m ≥ N0;

: (iii) (X,T(F)) is complete if each Cauchy sequence in (X,T(F)) is convergent

in X;
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: (iv) a subset of X is said to be closed if it contains the limit of each convergent

sequence of its elements.

Remark 1.2. [14] When s = 1, then all the above definitions reduce to the corre-

sponding definitions in a gauge space.

2. Main results

Through out this paper, A is directed set and X is a nonempty set endowed with

a separating complete bs-gauge structure {dν : ν ∈ A}. Further, α : X ×X → [0,∞)

is a mapping. For each dν ∈ F, CLν(X) denote the set of all nonempty closed

subsets of X with respect to dv. For each ν ∈ A and A,B ∈ CLν(X), the function

Hν : CLν(X) × CLν(X) → [0,∞) defined by

Hν(A,B) =











max
{

supx∈A dν(x,B), supy∈B dν(y, A)
}

, if the maximum exists;

∞, otherwise.

is a generalized Hausdorff bs-pseudo metric on CLν(X). We denote CL(X) as the

set of all nonempty closed subsets in the bs-gauge space (X,T(F)).

Theorem 2.1. Let T : X → CL(X) be a mapping such that for each ν ∈ A, we have

Hν(Tx, Ty) ≤ aνdν(x, y) + bνdν(x, Tx) + cνdν(y, Ty) + eνdν(x, Ty)

+Lνdν(y, Tx) ∀ α(x, y) ≥ 1(2.1)

where, aν , bν, cν, eν, Lν ≥ 0, and s2aν + s2bν + s2cν + 2s3eν < 1. Further, assume that

the following conditions hold:

: (i) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

: (ii) if α(x, y) ≥ 1 then for u ∈ Tx and v ∈ Ty, we have α(u, v) ≥ 1;

: (iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for each n ∈ N and

xn → x as n→ ∞, then α(xn, x) ≥ 1 for each n ∈ N;
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: (iv) for each {qν : qν > 1}ν∈A and x ∈ X there exists y ∈ Tx such that

dν(x, y) ≤ qνdν(x, Tx) ∀ ν ∈ A.

Then T has a fixed point.

Proof. By hypothesis (i), there exist x0, x1 ∈ X such that x1 ∈ Tx0 and α(x0, x1) ≥ 1.

Now, it follows from (2.1) that

Hν(Tx0, Tx1) ≤ aνdν(x0, x1) + bνdν(x0, Tx0) + cνdν(x1, Tx1) + eνdν(x0, Tx1)

+Lνdν(x1, Tx0) ∀ ν ∈ A.(2.2)

Since dν(x1, Tx1) ≤ Hν(Tx0, Tx1) and dν(x0, Tx1) ≤ s[dν(x0, x1)+dν(x1, Tx1)], there-

fore from (2.2), we get

(2.3) dν(x1, Tx1) ≤
1

ξν
dν(x0, x1) ∀ ν ∈ A

where, ξν = 1−cν−seν

aν+bν+seν

> 1. Using hypothesis (iv), there exists x2 ∈ Tx1 such that

(2.4) dν(x1, x2) ≤
√

ξνdν(x1, Tx1) ∀ ν ∈ A.

Combining (2.3) and (2.4), we get

(2.5) dν(x1, x2) ≤
1√
ξν
dν(x0, x1) ∀ ν ∈ A.

Hypothesis (ii), implies that α(x1, x2) ≥ 1. Continuing in the same way, we get a

sequence {xm} in X such that α(xm, xm+1) ≥ 1 and

dν(xm, xm+1) ≤
( 1√

ξν

)m

dν(x0, x1) ∀ ν ∈ A.
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For convenience we assume that ην = 1√
ξν

for each ν ∈ A. Now we show that {xm}
is a Cauchy sequence. For each m, p ∈ N and ν ∈ A, we have

dν(xm, xm+p) ≤
m+p−1
∑

i=m

sidν(xi, xi+1)

≤
m+p−1
∑

i=m

si(ην)
idν(x0, x1)

≤
∞

∑

i=m

(sην)
idν(x0, x1) <∞ (since sην < 1).

This implies that {xm} is a Cauchy sequence in X. By completeness of X, we have

x∗ ∈ X such that xm → x∗ as m→ ∞. By using hypothesis (iii), triangular inequality

and (2.1), we have

dν(x
∗, Tx∗) ≤ sdν(x

∗, xm−1) + sdν(xm−1, Tx
∗)

≤ sdν(x
∗, xm−1) + sHν(Txm, Tx

∗)

≤ sdν(x
∗, xm−1) + saνdν(xm, x

∗) + sbνdν(xm, Txm) +

scνdν(x
∗, Tx∗) + seνdν(xm, Tx

∗) + sLνdn(x∗, Txm)

≤ sdν(x
∗, xm−1) + saνdν(xm, x

∗) + sbνdν(xm, xm+1) +

scνdν(x
∗, Tx∗) + seνdν(xm, Tx

∗) + sLνdν(x
∗, xm+1)

≤ sdν(x
∗, xm−1) + saνdν(xm, x

∗) + sbνdν(xm, xm+1) +

scνdν(x
∗, Tx∗) + seν[sdν(xm, x

∗) + sdν(x
∗, Tx∗)]

+sLνdν(x
∗, xm+1) ∀ ν ∈ A.

Letting m→ ∞, we get

dν(x
∗, Tx∗) ≤ (scν + s2eν)dν(x

∗, Tx∗) ∀ ν ∈ A.

Which is only possible if dν(x
∗, Tx∗) = 0. Since the structure {dν : ν ∈ A} on X is

separating, we have x∗ ∈ Tx∗. �
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In case of single valued mapping T : X → X, we have the following result:

Corollary 2.1. Let T : X → X be a mapping such that for each ν ∈ A we have

dν(Tx, Ty) ≤ aνdν(x, y) + bνdν(x, Tx) + cνdν(y, Ty) + eνdν(x, Ty)

+Lνdν(y, Tx) ∀ α(x, y) ≥ 1(2.6)

where, aν , bν, cν, eν, Lν ≥ 0, and saν + sbν + scν + 2s2eν < 1. Further, assume that

the following conditions hold:

: (i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

: (ii) if α(x, y) ≥ 1, then α(Tx, Ty) ≥ 1;

: (iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for each n ∈ N and

xn → x as n→ ∞, then α(xn, x) ≥ 1 for each n ∈ N;

Then T has a fixed point.

We denoted Ψs2 as the family of nondecreasing functions ψ : [0,∞) → [0,∞) such

that:

: (ψ1) ψ(0) = 0;

: (ψ2) ψ(ρt) = ρψ(t) < ρt for each ρ, t > 0 ;

: (ψ3)
∑∞

i=1 s
2iψi(t) <∞, where s ≥ 1.

Note that in the following theorems we have used the structure with s > 1.

Theorem 2.2. Let T : X → CL(X) be a mapping such that for each ν ∈ A we have

Hν(Tx, Ty) ≤ ψν(max{dν(x, y), dν(x, Tx), dν(y, Ty),
1

2s
[dν(x, Ty) + dν(y, Tx)]})

+Lνdν(y, Tx) ∀ α(x, y) ≥ 1(2.7)

where, ψν ∈ Ψs2 and Lν ≥ 0. Further, assume that the following conditions hold:

: (i) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

: (ii) if α(x, y) ≥ 1, for u ∈ Tx and v ∈ Ty, we have α(u, v) ≥ 1;
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: (iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for each n ∈ N and

xn → x as n→ ∞, then α(xn, x) ≥ 1 for each n ∈ N;

: (iv) for each x ∈ X, we have y ∈ Tx such that

dν(x, y) ≤ sdν(x, Tx) ∀ ν ∈ A.

Then T has a fixed point.

Proof. By hypothesis, we have x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. From

(2.7), we get

dν(x1, Tx1) ≤ Hν(Tx0, Tx1)

≤ ψν(max{dν(x0, x1), dν(x0, Tx0), dν(x1, Tx1),

1

2s
[dν(x0, Tx1) + dν(x1, Tx0)]}) + Lνdν(x1, Tx0)

≤ ψν(max{dν(x0, x1), dν(x0, x1), dν(x1, Tx1),

1

2s
[s(dν(x0, x1) + dν(x1, Tx1))]}) + Lν.0

= ψν(dν(x0, x1)) ∀ ν ∈ A.(2.8)

By hypothesis (iv), for x1 ∈ X, we have x2 ∈ Tx1 such that

(2.9) dν(x1, x2) ≤ sdν(x1, Tx1) ≤ sψν(dν(x0, x1)) ∀ ν ∈ A.

Applying ψν, we have

ψν(dν(x1, x2)) ≤ ψν(sψν(dν(x0, x1))) = sψ2
ν(dν(x0, x1)) ∀ ν ∈ A.

By hypothesis (ii), it is clear that α(x1, x2) ≥ 1. Again from (2.7), we reach the

following inequality after some simplification.

(2.10) dν(x2, Tx2) ≤ Hν(Tx1, Tx2) ≤ ψν(dν(x1, x2)) ∀ ν ∈ A.
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By hypothesis (iv), for x2 ∈ X, we have x3 ∈ Tx2 such that

(2.11) dν(x2, x3) ≤ sdν(x2, Tx2) ≤ sψν(dν(x1, x2)) ≤ s2ψ2
ν(dν(x0, x1)) ∀ ν ∈ A.

Clearly, α(x2, x3) ≥ 1. Continuing in the same way, we get a sequence {xm} in X

such that α(xm, xm+1) ≥ 1 and

dν(xm, xm+1) ≤ smψm
ν (dν(x0, x1)) ∀ ν ∈ A.

Now, we show that {xm} is a Cauchy sequence. For m, p ∈ N, we have

dν(xm, xm+p) ≤
m+p−1
∑

i=m

sidν(xi, xi+1)

≤
m+p−1
∑

i=m

s2iψi
ν(dν(x0, x1)) <∞ ∀ ν ∈ A.

This implies that {xm} is a Cauchy sequence in X. By completeness of X, we have

x∗ ∈ X such that xm → x∗ as m → ∞. Using hypothesis (iv), triangular inequality

and (2.7), we have

dν(x
∗, Tx∗) ≤ sdν(x

∗, xm−1) + sdν(xm−1, Tx
∗)

≤ sdν(x
∗, xm−1) + sHν(Txm, Tx

∗)

≤ sdν(x
∗, xm−1) + sψν(max{dν(xm, x

∗), dν(xm, Txm), dν(x
∗, Tx∗),

1

2s
[dν(xm, Tx

∗) + dν(x
∗, Txm)]}) + sLνdν(x

∗, Txm)

< sdν(x
∗, xm−1) + smax{dν(xm, x

∗), dν(xm, xm+1), dν(x
∗, Tx∗),

1

2s
[dν(xm, Tx

∗) + dν(x
∗, xm+1)]} + sLνdν(x

∗, xm+1)

≤ sdν(x
∗, xm−1) + smax{dν(xm, x

∗), dν(xm, xm+1), dν(x
∗, Tx∗),

1

2s
[sdν(xm, x

∗) + sdν(x
∗, Tx∗) + dν(x

∗, xm+1)]}

+sLνdν(x
∗, xm+1) ∀ ν ∈ A.
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Letting m→ ∞ in the above inequality, we get

dν(x
∗, Tx∗) ≤ sdν(x

∗, Tx∗).

This is not possible, if dν(x
∗, Tx∗) > 0. Thus, dν(x

∗, Tx∗) = 0 for each ν ∈ A. Since

the structure {dν : ν ∈ A} on X is separating, we have x∗ ∈ Tx∗. �

By considering T : X → X in the above theorem, we get the following one.

Corollary 2.2. Let T : X → X be a mapping such that for each ν ∈ A we have

dν(Tx, Ty) ≤ ψν(max{dν(x, y), dν(x, Tx), dν(y, Ty),
1

2s
[dν(x, Ty) + dν(y, Tx)]})

+Lνdν(y, Tx) ∀ α(x, y) ≥ 1(2.12)

where ψν ∈ Ψs2 . Further, assume that the following conditions hold:

: (i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

: (ii) if α(x, y) ≥ 1, then α(Tx, Ty) ≥ 1;

: (iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for each n ∈ N and

xn → x as n→ ∞, then α(xn, x) ≥ 1 for each n ∈ N.

Then T has a fixed point.

Now we introduce a fixed point theorem containing Feng-liu type contraction:

Theorem 2.3. Let T : X → CL(X) be a mapping such that for each ν ∈ A we have

dν(y, Ty) ≤ ψν(dν(x, y)) ∀x ∈ X and y ∈ Tx with α(x, y) ≥ 1(2.13)

where, ψν ∈ Ψs2 . Further, assume that the following conditions hold:

: (i) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

: (ii) for x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we have α(y, v) ≥ 1 for each

v ∈ Ty;
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: (iii) for each x ∈ X, we have y ∈ Tx such that

dν(x, y) ≤ sdν(x, Tx) ∀ ν ∈ A.

Then T has a fixed point, provided dν(x, Tx) is lower semi continuous, for each ν ∈ A.

Proof. By hypothesis, we have x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. From

(2.13), we get

dν(x1, Tx1) ≤ ψν(dν(x0, x1)) ∀ ν ∈ A.(2.14)

By hypothesis (iii), for x1 ∈ X, we have x2 ∈ Tx1 such that

(2.15) dν(x1, x2) ≤ sdν(x1, Tx1) ≤ sψν(dν(x0, x1)) ∀ ν ∈ A.

Applying ψν, we have

ψν(dν(x1, x2)) ≤ ψν(sψν(dν(x0, x1))) = sψ2
ν(dν(x0, x1)) ∀ ν ∈ A.

By hypothesis (ii), it is clear that α(x1, x2) ≥ 1. Again from (2.13), we have

(2.16) dν(x2, Tx2) ≤ ψν(dν(x1, x2)) ∀ ν ∈ A.

By hypothesis (iii), for x2 ∈ X, we have x3 ∈ Tx2 such that

(2.17) dν(x2, x3) ≤ sdν(x2, Tx2) ≤ sψν(dν(x1, x2)) ≤ s2ψ2
ν(dν(x0, x1)) ∀ ν ∈ A.

Clearly, α(x2, x3) ≥ 1. Continuing in the same way, we get a sequence {xm} in X

such that α(xm, xm+1) ≥ 1 and

dν(xm, xm+1) ≤ smψm
ν (dν(x0, x1)) ∀ ν ∈ A.

Now, we show that {xm} is a Cauchy sequence. For m, p ∈ N, we have

dν(xm, xm+p) ≤
m+p−1
∑

i=m

sidν(xi, xi+1)

≤
m+p−1
∑

i=m

s2iψi
ν(dν(x0, x1)) <∞ ∀ ν ∈ A.
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This implies that {xm} is a Cauchy sequence in X. By completeness of X, we have

x∗ ∈ X such that xm → x∗ as m→ ∞. Thus, we have limm→∞ dν(xm, Txm) = 0. By

lower semi continuity of dν(x, Tx) and last fact, we conclude that dν(x
∗, Tx∗) = 0 for

each ν ∈ A. Since the structure {dν : ν ∈ A} on X is separating, thus x∗ ∈ Tx∗. �

For singlevalued mapping, the above theorem reduces as given below:

Corollary 2.3. Let T : X → X be a mapping such that for each ν ∈ A we have

dν(Tx, T
2x) ≤ ψν(dν(x, Tx)) ∀x ∈ X with α(x, Tx) ≥ 1

where, ψν ∈ Ψs2 . Further, assume that the following conditions hold:

: (i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

: (ii) for each x ∈ X with α(x, Tx) ≥ 1, we have α(Tx, T 2x) ≥ 1;

Then T has a fixed point, provided dν(x, Tx) is lower semi continuous, for each ν ∈ A.

3. Application and Example

Consider the Volterra integral equation of the form:

(3.1) x(t) =

∫ t

a

K(t, s, x(s))ds, t ∈ I = [0,∞)

where K : I × I × R → R is continuous and nondecreasing function.

Let X = (C[0,∞),R). Define a family of b2-pseudo metrics as

dn(x, y) = max
t∈[0,n]

(x(t) − y(t))2 for each n ∈ N.

Clearly, F = {dn : n ∈ N} defines b2-gauge structure on X, which is complete and

separating. Define α : X ×X → [0,∞) by

α(x, y) =











1 if x(t) ≤ y(t) ∀t ∈ I

0 otherwise.
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Theorem 3.1. Let X = (C[0,∞),R) and let the operator T : X → X is define by

Tx(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ I = [0,∞)

where K : I×I×R → R is a continuous and nondecreasing function, that is, for each

t, s ∈ I, x(s) ≤ y(s) implies K(t, s, x(s)) ≤ K(t, s, y(s)). Assume that the following

conditions hold:

: (i) for each t, s ∈ [0, n] and x, y ∈ X with x(s) ≤ y(s), there exists a continuous

mapping p : I × I → I such that

|K(t, s, x(s)) −K(t, s, y(s))| ≤
√

p(t, s)dn(x, y) for each n ∈ N;

: (ii) supt≥0

∫ t

0

√

p(t, s)ds = a < 1√
2
;

: (iii) there exists x0 ∈ X such that

x0(t) ≤
∫ t

0

K(t, s, x0(s))ds.

Then the integral equation (3.1) has atleast one solution.

Proof. First we show that for each α(x, y) ≥ 1, the inequality in (2.1) hold. For any

α(x, y) ≥ 1 and t ∈ [0, n] for each n ≥ 1, we have

(Tx(t) − Ty(t))2 ≤
(

∫ t

0

|K(t, s, x(s)) −K(t, s, y(s))|ds
)2

≤
(

∫ t

0

√

p(t, s)dn(x, y)ds
)2

=
(

∫ t

0

√

p(t, s)ds
)2

dn(x, y)

= a2dn(x, y).

Thus, we get dn(Tx, Ty) ≤ a2dn(x, y) for each α(x, y) ≥ 1 and n ∈ N with a2 < 1/2.

This implies that (2.1) holds with an = a2, and bn = cn = en = Ln = 0 for each n ∈ N.

As K is nondecreasing, for each x ≤ y, we have Tx ≤ Ty. Hence for α(x, y) ≥ 1,
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implies α(Tx, Ty) ≥ 1. Therefore, by Theorem 2.1, there exists a fixed point of the

operator T , that is, integral equation (3.1) has atleast one solution. �

Now, we give an example to support of our result:

Example 3.1. Let X = C([0, 10],R) is the space of twice differentiable functions,

endowed with the dn(x(t), y(t)) = maxt∈[0,n](x(t)−y(t))2 for each n ∈ {1, 2, 3, · · · , 10}.
Consider the operator T : X → X is defined by Tx(t) = d2x(t)

dt2
and α : X×X → [0,∞)

is defined by

α(x, y) =











1 if x,y are linear or constant functions

0 otherwise

It is easy to see that 2.12 holds with an = 1/2 and bn = cn = en = Ln = 0 for

each n ∈ {1, 2, 3, · · · , 10}. For x0 = t and x1 = Tx0 = 0, we have α(x0, Tx0) = 1.

Further, for each α(x, y) = 1, we have α(Tx, Ty) = 1. Moreover, for each sequence

{xm} in X such that α(xm, xm+1) = 1 for each m ∈ N and xm → x as m→ ∞, then

α(xm, x) = 1 for each m ∈ N. Therefore, all conditions of Theorem 2.1 are satisfied

and T has a fixed point.
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