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Katugampola fractional differential equations with
integral conditions

Billal Lekdim'?, Bilal Basti**

! Faculty of Exact Sciences and Computer Science, University of Djelfa, PO Box 3117, Djelfa, Algeria.
2 Laboratory of SD, Faculty of Mathematics, University of Science and Technology Houari Boumediene, Bab Ezzouar, Algeria.
3 Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University of Msila, Algeria.

Received: Dec 4, 2022 Accepted: Oct. 12, 2023

Abstract: This paper investigates a coupled system of nonlinear multi-term Katugampola fractional differential equations. Under
sufficient conditions, it establishes the existence and uniqueness results of the solution by using standard fixed point theorems.
Additionally, the paper includes some illustrative examples to strengthen the presented main results.

Keywords: Coupled system; Katugampola fractional derivative; Existence and uniqueness; Integral conditions; Fixed point theorems.

2010 Mathematics Subject Classification. 26A33; 34A08; 34A12; 34A34; 47N20.

1 Introduction
We consider the following coupled system of nonlinear multi-term fractional differential equations:

PI5 00 = i (100, w(1).PZ 0 (1) PIIY (D)),

o 1€10,0], (1)
PIEw () = 2 (o). w0 PR (1) PV () ).

with the integral conditions
("7 9) (07) = (P7yw) (0%) =0, @)

where p,¢ >0, 0 < §;j < o < 1 and f; : [0,¢] x R* — R are continuous functions for every i, j € {1,2}. The operator
PP, and P folfo‘ represents the Katugampola fractional derivative and integral of order o > 0, respectively.

The initial value problems are a vast and significant area of research, as these problems have applications in various
scientific fields. Recently, so-called fractional initial value problems have appeared and become widespread, allowing the
modeling of many real-world phenomena, as well as giving an understanding of some mathematical problems such as the
Abel equation [22],

/IY(S)(I—S)aflds:f(t), 0<oa<l1.

Recently, the resolvability of fractional differential equations with different kinds of initial or boundary conditions has
witnessed a remarkable trend, which has led to the publication of many works in this regard, for example, but not limited
to, see [2,4,5,6,7,8,9,10,11,12,13,14,16,21,23] and references cited therein.

The existence and uniqueness result of the coupled system of fractional differential equations (1) with integral
boundary condition has been investigated in [3], but the functions f; dependent on time #, unknown functions ¢ and

* Corresponding author e-mail: bilalbasti @ gmail.com; b.basti @univ-djelfa.dz
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@(@zl]/ while f, dependent on time #, unknown functions y and @5&1 ¢. The authors in [20], studied the existence and
uniqueness of the solution for system (1) with integral conditions where the functions f] and f, dependent only on time ¢
and unknown functions ¢ and y. A similar result was found in [23], where the function f| dependent only on time ¢ and
unknown function ¢ and f, dependent only on time ¢ and unknown function .

The main contribution of this paper can be summarized in obtaining the existence and uniqueness result of a coupled
system, with some conditions on the functions of second member f; and f5.

The organization of this paper is as follows: In Section 2, we describe some preliminary concepts related to the
proposed study; in Section 3, we give some existence and uniqueness results for the problem (1)—(2). The results are
based on Schauder’s and contraction mapping principle fixed point theorems in a special Banach space. In Section 4, two
examples are presented to explain the application of our main results. Finally, we present some conclusions in Section 5.

2 Preliminaries

Here, as in [19], we will look at the Katugampola’s fractional integral, derivative and some of their properties. Let
reR, pe[l,o] and

X ([0,4],R) = {(p :[0,£] — R Lebesgue measurable and [|@||yr < oo} ,

with the norm

r 1/p
(éwdt) , for 1 < p < oo,

Iy = ess sup {t"|o(1)|}, for p = oo.
o<t</t

Let C([0,¢],R) be the collection of continuous functions from [0, ¢] into R with the norm

9]l = sup [ ()]
0<t<t

Then C (]0,¢],R) is Banach space.
Definition 1([17]). The Katugampola’s fractional integral of order o € Ry of a function g € X} ([0,€],R) is defined as
I—a

P IS g(r) = ﬁ(a)

[ gs)as, reloa, )
0

Jor p > 0. This is a left-sided integral.
Similarly, for the right-sided integrals definition. From Definition 1 we can infer

(1o ) Prete) = P850, @

Definition 2([18]). The generalized fractional derivative of order & € R, corresponding to the Katugampola’s fractional
integral (3) is defined for any t € [0,{] as

d n
"7 a0 = (105 ) CA 0
p(x—n+1 l—pd nooet p—1p  pyn—o-l
o) (t o /Os (P —sP) g (s)ds, )

if the integral exists. Here p > 0 and n = [at] + 1, with [-] denotes the integer part.
Lemma 1([7]). Let a,p > 0and g € C([0,£],R). Then:

1. The equation? 9 g (t) = 0 has a unique solution

n
g0)=Y P @ n=la]+1, ¢ R,
i=1

©2024 YU
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2.1fP9g g(t) €C([0,4],R) and 0 < o < 1, then
PISL P g(t) =g (1) + e, ©)
for some constant ¢ € R..
3. Let0 < B < a < 1besuchthat? 7 g(t) € C([0,4],R) then
l—a+B (p gl-a +
- P Zor "8) (07) sap
pfoti P pﬁ(ﬁré’(” = p‘@(l)3+g(t) - F((OCO+B) ) tp(a P I)' (7N
Moreover; if (pfolfag) (07) =0, we have
P o) <2 P (8)

¢p(a—p)

P
where A’a*ﬁ = m.

3 Main results

Below, we prepare some important lemmas to illustrate our main results.

Lemma 2. Let (9, y), (P29, PZ,2y) € C([0,{],R) x C([0,£],R). Then the problem (1)~(2) is equivalent to the

fractional integral equations:

0 (1) = [ Gay (1,5) /1 (5:9(), W (), PZI 9 (s) , P 752y (s) ) ds,
V(1) = [§ Gay (1:5) 12 (5,9(9), W (), P22 0 (5) ,P 72y (s) ) ds,

pl—aisp—l

gy (P —sP) %71

where Gy, (t,5) =
Proof. Applying Pfooi‘ and P foof to the first and second equations in (1), respectively, we get
PI LT = P A i (100 W (). P A0 P AV ) ).
PPy (1) =PI fo (1.0 (0. W (). "D 0 (1) LI (1) ).
By using the relation (6), we obtain
W) =PI 1 (10 (). V(). PZR (1) PALRY () ) — e,
V() =P 12 (100 W (), P D 0 (1) PR (1) ) - carP@7D),
for some cy,c; € R. Taking into account the condition (2) and the fact that
PP @) = p*IT (a),

we find
O::GJQJM¢)(Uw::*ﬁPm_UXaO = =0

and
0= (Pfo';o‘zw) (07) = —c2p® ' T (o) =, =0.

Combining the results (11), (12) and (13), we obtain (9).

©))

(10)

1D

12)

13)

©2024 YU
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202 B. Lekdim and B. Basti: Coupled system of multi-term Katugampola fractional differential equations

Let us define the following Banach spaces [7],

E={pecco.q.R)/(*7 ") (0%) =0},

with the norm
[olle= sup |@(1)|
o<t/

and
F={vec(o.0.R)/(°5v)(0%) =0},
with the norm
Wl = sup |y ()]
o<t/

Again the product space (£, ||| ) is a Banach space with norm ||(@, ¥)||o = ||@||z + || ¥||F forany (¢, ¥) € Q = E X F.
Now, we define an operator .7 : Q — C([0,¢],R) x C([0,],R) by

T (9.v) (1) = (To (0, ¥) (1), Ty (0, ¥) (1)), (14)
where
To (@) () = [ Gay (5111 (5,005, (5), T 05 P72 5) ) i,

Ty @)1= [ Gar 15)12 (5,005)w(5),P7E 9(5) TP w () ),

and G, (1,5) = P (1P — P) "
Lemma 3. Let the integral operator 7 : Q — C([0,€],R) x C(]0,£],R) given in (14), equipped with the norm
17 (9, W)ll = sup [Ty (9, ¥)[+ sup [Ty (@, )]
0<r<t 0<r<t
Then T () C Q.

Proof. Let (@, y) € Q. From (14), we have
(P77 Zo (0, 9)) () = P27 P 5 i (1,0(1),w (1), P73 0 1) P 70w (1))
=PI fi (10 () W0, P2 (1) PIP (1))
and
(P70 Ty (0.1) () = A= 05521 (1,0 (0, W (1), P D 0 (1) P 72y (1)
o+ y\¥ o+ or 2\Le), ylt), or P ) or ¥V
= 1 (100, W (1), PR 0 (1) LAY (1) ).

Using Definition 2 and relation (4), we get

) N )
(P T l0.0) ()= P73 P L0 (1) = °.) <’lp5) PN (1) = Pl M (1)
and
. o )
(P AT (0.9)) () = P 0 P w (1) = P A ("pa) Py (1) = Pl ().
Thus

5000 09— (500 070
Asaresult 7 (Q) C Q.

©2024 YU
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Getting ready to present our results, we propose the following hypotheses:
Hyp.1. Let f1, /> : [0,4] x R* — R are continuous functions and there are two strictly positive constants k; and k, such
that

4
|ﬁ(t7(P1a(P27(P3a(p4)_ﬁ(tawlaWZaw3aW4)| Sklz ‘(Pj_Wj|7 i=1,2,

j=1
forallz € [0,/] and ¢, y; € R, i =1,2,3,4.
Hyp.2. There exist a positive functions a;,b; € C([0,¢],R), i =1,2,...,5 such that

|f|(t (Pla(p2(P3(P4|<al Zal |(Pl

and

5
|f2(t7(P1a(P27(P3a(p4)| <b (t)+zbi(t)|(pi|’
i=2

forany @; € R, i=1,2,3,4andt € [0,].
To simplify the computation, we adopt the notation:
gp(ai—ﬁ_/i)
AL =AP ,
7~ Te i~ poBL (14 a5 — Byy)

al*()nglax |al()|a bi:(gflg[|bi(t)|ﬂ i=1,2,...,5,

Go= L G max{Guy,Ga)
= = = X
o F(a+1); apry ™Moy
a+b;
dy = — _ 2P0 T 2P _
mll’l{l 7(141” 7b4/112, 1 7(15)L bsl’{, 2}
b — max{dg+l_72,dg+l_73}
2T mll’l{l 7(34&” b4/112, bsl’{, 2}
with
_ Go kiA> + Go ko A
‘max {a3+,~,1i‘f+b3+,-x;;,klxﬁ+k215, o1 T ol '2} <1. (15)
ic{1,2} Ga,-

Now, we present the principal theorems
Theorem 1. Assume (Hyp.1) holds. If
(kl Gal + kz(_;az) (_;

ler?llg} {Ga (kl GO{] Aﬁ + kZGOQA’lg) }

kg = <1, (16)

then the problem (1)~(2) has a unique solution on [0, ¢].
Proof. First, we define the fixed point problem, which is equivalent to the one problem (1)—(2) by

T (0. y) (1) = (@, ¥) (1). (17)
Let (,y), (@, W) € 2, then we have

| o (0.9) (1)~ To (6, W) (1)|
=[G 19) [ (5060 w(5). P 7 05) P AP 5))
~fi (5.8 ) W) P B (5) P AW () ) |

:/(:Gm(t,s)[f"@g‘m() P75 (s)] ds

1
< [ Gu (1) P 751 0() = P 71 | ds

©2024 YU
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204 B. Lekdim and B. Basti: Coupled system of multi-term Katugampola fractional differential equations

Using Holder inequality and the fact that

t (t.5)d p P
su G t,s)ds = ——,
ogrlg)z o I'(o+1)

we get
17 (0.%) (1)~ 7 0.9 0).. < [ Gan (125)ds P 7
p—algp 1
L Py
And in the same way, we obtain
0 pp oo

| Zy (0, w) (t) = Ty (0, 7) ( ||N_w||”@§? V() =PI

Also, we have

17 (9, 9) (1) = 7 (¢, %) (1),

By taking into account the hypothesis (Hyp.1), we obtain

& P00~ 7500 <[00~ 5 0)|+ W) - V(0] + P70 (1) -

v -ralv|.

Using the equality (8), we get

1 _
E\p%‘ifp(t)*”@gfﬂfp(tﬂSI(P(I) e +AL P25t (1)~ P 75t @

D],
®]...

||<>o

<G [P 210 (1) =P 710 (1) |, + G | 752w (r)J@“Z'(r)H
<6(lP7to0-r256 0|+ P 7w (0~ 750

Hoo

+Hw () = w0+ 23 [P 252w (1) = P 272w (1) ...

Consequently

1 _ _
o P28 (t) P28 00 || <o)~ @) +AL P28 0 (1)~ P25 0 (1) ]|,

Iy @O = Ol + 23 [P 752w () = P 720 ()| .

In the same way, we can get

—H" 0w ()= P72 ()], <o) =@l + A0 [P Zpt 0 (1) —
Hw () =Tl + 25 [P 22w (1) -
Multiplying (21) by kl(_;a] and (22) by kzéaz, then take the sum, we obtain

Gon [P 25t 0 (1) = P75t @ (1) | .+ G [P 752w (1)

< (kiGa, +sza2){||<P(t) ()IIJIIW() (1)}
+ (kG ALy + kG, AD) P Dt 0 (1) = P 2510 (1) ]|
+ (kiGoy A5 + kG, AD) [P 22w (1) — P 22w (1) ||,

oo

p ().,

P73 (0)]

(18)

19)

(20)

21

(22)

(23)
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thus

min {6~ (kG +hGa )} [P 75100 P70 )|+ P72 w0 - P 72w 0]

< Gay — (kG Af) + kG AD) | 75t 0 (1) = P75t @ (1),
+G(12 - (kléal A2pl +k260¢2)’§2) Hp.@gfw(t) - p‘@(;?l’_/(t) Hoo
< (kiGa, +kaGay) l(@ (1), w (1) = (@ (1), W (1))l (24)

relation (15) guarantees that r?m {Go, — (k1 Gy Al +k2G oy A5) } > 0, then
ie{l,2

P gitow -7+ P70 - P70

kléoq +k2(_;a2 N _
< - (\Bod? oG]y (@O ¥ ) =00 ¥ Ol 25)
ic

Combining (20) and (25), we get
17 (@, 9) (1) = T (9,%) ()llg <ka (@), w ()= (@(1),¥(1)aq-

where _ _ _
(k1Go, +k2Go,) G

lenglll%} {Ga (kl Ga] A’lll) + kZGaZA’lg) } .

ke =

Since kg < 1 according to (16), then .7 is a contraction operator and has unique fixed point following the Banach’s
contraction principle [15]. Which means that the problem (1)—(2) has a unique solution on [0, ¢].

Theorem 2. Assume that hypotheses (Hyp.1) and (Hyp.2) hold. If we put
Gd, < 1, (26)
then the problem (1)—(2) has at least one solution on [0,{].

Proof. As in the previous proof, we will prove that the operator (17) has a fixed point using Schauder’s theorem [15]. This
is done through three steps:

Step 1: A is a continuous operator. Let (¢,, ), be real sequences such that (¢, y,,) — (@, y) in Q.
Using the same techniques used to prove theorem 1, then by replacing (§, ) by (¢,, ¥,), the relations (21) and (22)
became

—||" ot @n (1) — pgg‘lfp(f)HmSIIan(t)—fp(t)l\erMpl 1P Dyt pn (1) ®]..
v (0) = W ()l + 23, || Zg2 i (2 @gizll/(f)ﬂm 27)

and

CIP 72 0P 75w 0] < llou®) - 90+ 25 P75t 1) P@%¢ung

i (0) =y ()l + A% [P 252y (1) = P T2y (1) |- (28)
By combining (27) and (28), we obtain
||p +‘Pn() p@ ||00+Hp +W”( p‘@gf‘/’(’)nm
(k1+kz)
< (1), Ynll)) — 1),y )
< i (=0 Af —ai? [(@n (1), ¥ (1)) = (@ (1), W (1))l o

ie{1,2}

and from (15), we answer that mln% {1-kAfl —kAb} > 0. As (@n,yn) —> (p,y) in Q, then
16 n—oo

(P25t on P D5t wn) —> (PD5t 9, P Z2w ) forallt € [0,4].
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Now, let 8 > 0 be such that for each 7 € [0,¢], we have
Sup{‘p-@gl% (t)| ) pg(()xfl/’n (t)| )

PIyte ()] [P 752w ()]} < 6.

Then, we have

Gay (15 [ 1 (5,00 (5) ¥ (5). P25 0 (5) . P T2 i (5))
I CUIORTORL IO STOM|
=|Ga, (t,5) (P Dot o (s) = P D5t 9 (5))|
<Gy (t,5) \p@éﬂ O (s) — p@(()ﬁ(P (s) ‘
< Gay (1,5) (P2 0u ()| + [P 252 9 (5)])
<28Gq, (1,5)
and in the same way we find
G (1,5) (|P 22y (5) — P D2 (5) |) < 28Gay (1,5) ds.

Which means that the functions s — 6Gg, (¢,5) , i = 1,2 are integrable for all # € [0, ¢].
Then Lebesgue dominated convergence theorem is applicable to the following

[ G 0.9 [ (50,09 702 00 6) P 7400 )

S CIORTORL A IONLZSTON I
=T (@n, Y1) (1) = T4 (9, y) (1) —0

and
\ | G (1:5) [12 (5:02 5). v 9). P 25110, (9) P T 9))
£ (5005),w(5). "7 0(5) LAY (5) ) | ds|
=Ty (o ) (1) = Zy (9, 9) (1) —> 0.

Therefore

17 (@, v) (1) = 7 (¢, %) (1)l g — 0

n—yoo

Hence the continuity of the operator .7.
Step 2: A(B:) C B:. Let B be bounded, closed and convex subset of 2, define by

B:={(o.¥) e/ (o, ¥)]a <7},
>4
where T > (1/G—a)
Let .7 : By — Q be the operator defined in (14). Then by applying the inequality (8) and hypothses (Hyp.2) for all
t €10,¢], we have

PoEe0| =] (o) v P70 () P (0)| )

<ar (1) +ax ()@ ()| + a3 ()W ()] + as (1) P20 0 ()] +as (1) P 252w (1)
<14+ (1) 33 [ ()l + @0 [P 520 ()] + sy [P 252w (o).

and
Pae 0] =] (te . V). P70 () PV () )| (30)
<bi (6)+b2(0) |9 (1) + b3 () [w (1) + ba (1) [P 25 0 ()| + b3 (0 [P 72w ()]
<B14Ba |9 (1) + B |y (1)l +-BaAD, [P 2570 1)+ D52 [P 752w (1) ..
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Combining the results (29) and (30). Similarly to (20), for all (¢, ¥) € B; we get

17 (9, ¥) (1)llg < Gdi + Gdat
d

= (1/G—dy)

(1/67612) +d2"L'

<.

Then, we conclude that 7 (B;) C B;.
Step 3: A (By) is relatively compact. Let t1,1, € [0,€],1#; <t and (@, y) € B;. Then, we get

| T (0,¥) (12) — T (@, W) (1) | + | Ty (0, W) (12) — Ty (@, W) (1)

15 %)
<(dy+dy7) | max /]|Gai(t2,s)—Gai(t1,s)|ds—|— max/ Ga (12.5)ds| . 31)
ief1.2).Jo 1.2

On the other hand
gl pliai gl — (X[—l (X[—l
/0 |Go, (12,5) — G, (tlas)|dS:F(ai)/0 sP~! ‘(tf—sp) *(tffsp) ‘ds

1 % i i
< e ey L)+ (=] ()

and

1) pl_ai (5] o—1
Gg, (t2,5)|ds = / P (P —sP) M ds
| 16e 9l = Fros [P0 ()

= ; p_ p\%
= Zp (%) (5 =)™ (33)

Applying (32) and (33), then (31) becomes
| To (0.9) (12) = o (0, W) (1) | + | Ty (9, W) (2) = Ty (9, W) (1))

1 : ,- ,_
<(di+dyr) {‘?}{m (65— (18" rf“)}}

1 PP\
+ié?ﬁ)z(}{a,-p%r(a,-) (2 =17) H

Hence, we conclude that for all (@, y) € Be, |7 (@, ) (1) — T (@, ¥) (t1)]lg — 0.

n—t

From step 1-3 and Ascoli-Arzela Theorem [1], we show that 7 : By — B is continuous, compact and so by Schauder’s
fixed point, the operator .7 has at least one fixed point which corresponds to the solution of the problem (1)—(2) on [0, /].

4 Examples

Example 1. Consider the following problem

1/2 1/11

1
P g2 _
Zo-0 () VEeos R HoHv] coshr+p 23, o(0)|+p 2%, yio)| et
h “ot+ ot
p@% _ 1/4 01
0+W(t)_ 1 1 ) IE[ , ], (34)
L+ @[+ W) |[+P 22 9(0)|+[P 2.2, w(t)

(prte) 00 = (*7w) 09 =0

Obviously, the condition (Hyp.1) is satisfied with k; = 1/11 and k, = 1/4. Then;
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208 B. Lekdim and B. Basti: Coupled system of multi-term Katugampola fractional differential equations

p | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kg | 10.76 | 3.917 | 2.050 | 1.458 | 1.148 | 0.963 | 0.838 | 0.745 | 0.674 | 0.628
Theorem 1 is not applicable in from Theorem 1, the problem (34)

this example. has a unique solution.

Example 2. Consider the following problem

1 o
P T 0() = 0 2 10,2,
LH Q@)W+ P 2, 0(0)|+]P 2, wit)
P w(r) = 242 ol 10 2cost 1€[0,2] 35
s d 5 T+e0)] T 2 ’ 24l (35)
LHH Y (@)|+P 25 0(1) |+ [P 2, w(t)

(prbe) 00 = (*7w) 09 =0,

Obviously, the hypotheses (Hyp.1) and (Hyp.2) are satisfied with k; = 10_27 ky=3/5,a; = b1=1,a,=0,b, = 3/5 and
a;=b;=0fori=2,3,4,5. Then, d, =2, d» = 0.6; Thus

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gd, | 4.065 | 2.334 | 1.688 | 1.341 | 1.122 | 0.969 | 0.857 | 0.770 | 0.701 | 0.662
Theorem 2 is not applicable in from Theorem 2, the problem (35)

this example. has at least a solution.

5 Conclusion

Using the Banach contraction principle and Schauder’s fixed point theorem, this paper explores the existence and main
properties of at least one solution and its uniqueness for a class of new coupled systems of nonlinear multi-term fractional
differential equations with integral conditions. Katugampola’s fractional derivative is used as the differential operator,
which is crucial to generalizing Hadamard and Riemann-Liouville’s fractional derivatives into a single form.
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Abstract: Let 27 () represent the cone comprising all positive invertible operators on a complex separable Hilbert space . When
T and S belong to #1(.7), it holds true that for any ¥ > 0, § > 0, and 0 < g < 1, the following two inequalities are equivalent:

qY.

(S37783)7% > 55 and T4 > (TESOTH) TS

In this article, we will explore the connections between these inequalities and provide some applications of this discovery to operator
class theory. Furthermore, we will provide a positive response to the question posed in [16].

Keywords: class p-wA(a, B); Lowner-Heinz theorem; Normal operator; Aluthge transformation.

2010 Mathematics Subject Classification. 47B20; 47A11; 47A63.

1 Introduction

Let #(5¢) denote the C*-algebra encompassing all bounded linear operators acting on a complex, separable Hilbert space
referred to as .7#°. Within this context, we use the symbol I to represent the identity operator. An operator, denoted as 7', is
characterized as positive, denoted as T > 0, if it satisfies the condition (Tx,x) > 0 for every vector x in the Hilbert space
€. Additionally, an operator 7 is regarded as strictly positive, symbolized as T > 0, if it fulfills two criteria: firstly, it must
be positive, and secondly, it must be invertible, meaning that (Tx,x) > 0 for all nonzero vectors x within 7. To clarify
further, when we express 7 > S > 0, it indicates that the operator T — S is positive, or in other words, ((T — S)x,x) >0
for all vectors x within the Hilbert space ¢ .
The following result, which is crucial to understanding non-normal operators, is the first in this section.

Theorem 1(Furuta’s inequality[10]). If T > S > 0, then for each t > 0,
=+
(i)(S5TPS3)e >S4 and
R ? pyl
(ii)T @ > (T28T2)4
hold for p >0 and g > 1 with (141)q > p +1.

It’s worth mentioning that if we substitute = 0 into either condition (i) or (ii) from the previously mentioned theorems,
we obtain the well-known Lowener-Heinz theorem, which asserts that ”7T > S > 0 guarantees 7% > S* for any o € [0,1].”
The subsequent results were established as applications of Theorem 1 in the references [7] and [11]. For positive invertible

operators T and S, the order relation log7T > log§ (referred to as chaotic order) holds if and only if (55 TrS? )PL“ > 8

* Corresponding author e-mail: malik_okasha@yahoo.com;mrash@mutah.edu.jo
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3

<

. . p P
for all p > 0 and r > 0, and this equivalence also extends to 77 > (T%S’T%)P“ for all p > 0 and r > 0. It’s worth
noting that when p = r, this conclusion serves as an extension of the results presented in [2]. The following assertions are
well-established concerning these operator inequalities: Let 7 and S be strictly positive operators. Then, we have

(@T > S=logT >logS.
(BlogT > logS = (S3TPSH)FE > 5% and 78 > (145974 )% forall B > 0 and & > 0.
(c)Foreach B > 0 and & > 0, (S5 TPs3)P%% > 5% oo 78 > (Th 5oy e 11).
Regarding these findings, the requirement for invertibility in conditions (a) and (b) can be substituted with the condition

ker(T) = ker(S) = 0. This condition implies that (a) and (b) remain valid even for specific non-invertible operators 7" and
S, as established in [24]. The authors of [15] delved into the relationships between the following inequalities:

B
(SETPS$)Fe > 5% and TP > (ThsoT%)Fe
when it is not possible to invert operators 7 and S.

An operator T € AB() is referred to as hyponormal when it satisfies the inequality 7*T > TT*. The Aluthge

transformation, denoted as 7 = |T|%U |T|%, was introduced by Aluthge in [1]. It is a key component of the polar
decomposition of T € %(), which can be represented as T = U|T|. Furthermore, the formula 7, = |T|*U|T|’
describes the generalized Aluthge transformation 7, with 0 < s,z. It’s important to note that an operator T € #(5¢) is

defined as p-hyponormal if (7*7T)? > (TT*)P. Additionally, it falls into class wA(s,?) if (|T*|’|T|2S|T*|’)$ > |T*[* and
|T|% > (|T||T*|¥|T|*)5% ([14]). The class A(k), which encompasses p-hyponormal and log-hyponormal operators, was
introduced by Furuta et al. in their study [9], where A(1) corresponds to the class A operator. Furthermore, if

(T*|T|2kT)k$1 > |T|2, we assert that an operator T belongs to class A(k), where k > 0. In this paper, we aim to establish
the relationships between the following inequalities:

S
(s37753)75 > % and T > (T¥s5T)7s 1)

These relationships will be explored in cases where operators 7' and S are not invertible. We will also demonstrate the
normality of the class p-A(e, ) for & > 0,8 > 0, and 0 < p < 1. Furthermore, we will prove that if either 7 or T belongs

to class p-A(a, ) for some o > 0, > 0, with 0 < p < 1, and S is an operator such that 0 ¢ W(S) and ST = T*S, then T
is a self-adjoint operator.

qY

2 Relations between (S% T”Sg)ﬁ%s >85% and T > (T%S‘ST%) 1+8

In this section, we will present the following outcome:

Theorem 2.Let T,S € BT (). Then for each y >0, 8 > 0 and 0 < g < 1, the following assertions hold:
(DIF (S3TTS3)7"S > §9, then T > (TH 55775,

I TT > (TYS5TY) 75 andker(T) C ker(S), then (S3T7S3)

We would like to note that Theorem 2 serves as an extension of Theorem 1 in [15]. The following results are organized to
provide a proof and illustration of Theorem 2.

Lemma 1./13, Léwner-Heinz inequality] Let T,S € $ (). If T > S > 0, then T > SY for every y € [0,1].

a8
8 > 8§49,

Lemma 2./8] Let T,S € B(H). Assume that T is positive (T > 0), and that S is an invertible operator. Under these
conditions, the following holds for any real number A.:

(STS*)* = ST2(T28*ST2)*~'T25",
Proof.For the sake of convenience, we provide a proof of this self-evident result. Let’s start with the polar decomposition
of the invertible operator ST? as ST =U 0, where U is a unitary operator and Q = |ST% |. Then,
_ ST%Q"QMQ*'T%S* ST (QZ)AflT%S*
R Lia—1p3 =
= ST2(T28*ST2)*'T25".
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Proposition 1./21] Let T,S € %% (). Consequently, the following statements are true:

5  dor
(D)If (S% TYOSTO)VO“SO > $%P maintains for fixed ¥ > 0, & > 0and 0 < p < 1, then

=

4

(Sg TVOS%)Y(H]B > Sop1 )
holds for any 6 > &y and 0 < p; < p < 1. Moreover, for each fixed v > —,

(n+v)
Fror(8) = (T#s57%) 5

is a decreasing function for & > max{ &, y}. Hence the inequality

p1(0+8))

T2y > (18seT ) 0 3)
holds for any 8, and & such that & > & > &y and 0 < p; < p.
(ii)If TP > (T%‘)S%T%O)%%o holds for fixed 1, > 0, & > 0 and 0 < p < 1, then
T > (T%S‘SOT%)VYT% )
holds for any ¥ > v and 0 < py < p < 1. Furthermore, for each fixed & > — &,

5 K} (5+50)pl
ga,5(Y) = (STTIST) 7o

is an increasing function for y > max{yy, 0 }. Therefore the inequality

5 r1n+é&y) &
sTres?) e > (sTrns Ty (5)

holds for any y, and > such that » >y > W and 0 < p1 < p.

By applying the Furuta inequality, we derive Theorem 2. Our approach relies on the utilization of the subsequent
expression, which constitutes a pivotal element of the Furuta inequality presented in Theorem 1.

Lemma 3.Let T,S € B(H). If T > S >0, then

(i) (S2TYS¥2) ¥ > S and
(i) T+ > (T%/? S)'Tx/z)i%(
hold for x >0 andy > 1.

Proof{Proof of Theorem 2). (i) Suppose that the following relation

q6
($%/27 S&/z)ﬁ > 4% ©)

holds for fixed ¥ > 0 and & > 0 and 0 < ¢ < 1. Applying Lemma 3 to (6), we have

. 5 . ,
{Sqé% (SSU/ZTVOS'SO/Z)WP’O];]% qu%};lt’}l > §9%(1+1) 7
for any p; > 1 and r; > 0. Putting p; = % in (7), we have
do(1+gr1) So(1+gr)  _a%Utry)
(7 2z ThS 2 )t > gedlltn) ®)

for any r; > 0. Put 6 = 8y (1 +gry) > & in (8). Then we have

5-(1-9)8
(S%TYosg) 0+ 255—(1—4)50. 9)
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Hence we have ;
s 5. K
(S2T1082)0+8 > SH for0 < u < 8 —(1—¢q)dp.

(10)

a0
Next, we demonstrate f(8) = (T%/289T%/2)+3 is decreasing for § > &. By Lowner-Heinz theorem, (10) ensures the

following (11)
o
(S3T0S53)H8 > SHfor 0 < p < & — (1 — ).
Next, we have
f(8) = (TVo/255TYO/2)y%%
5

— {(TYO/ZS‘S TVO/Z) yoy;?l } yoz?w

- {T70/255/2(S5/2TY055/2)#55/2TY0/2}704%+L# (by Lemma 2)

> (TVO/QSSJFHTYO/Q))@;%%#

= [+ p).
Hence f(0) is decreasing for & > &. Consequently,

a0
TN > (T70/255T70/2)70+5 for 6 > &

holds since - -
TN > (TVO/ZSSUTVO/Q)M = f(&) > f(8) = (TYO/QS‘STVO/Z)W.
Again applying Theorem 1 to (12), we have

[ X0]

7 1+4r
Tan(+r) > (TT(Tqrz}’o/QSSTYo/Q)%lT“yO s

v ) patry

for any p, > 1 and r, > 0. Putting p, = % > 1 in (13), we have

1+qr L+qr an(1+rp)
n( 2q z)S5T70< 2q 2)

Ta0(14r) > (T ) T0+6+ar0

for any r, > 0. Put Y = (1 +gr2) > 1o in (14). Then we have

~1
TYr+0(g=1) > (T%S‘ST%)H?fy )

for all ¥y > 15 and & > &. Now, since 0 < WZ*U < 1, making use of Lowner-Heinz theorem to (15), we have

T > (155978

forally> 1,8 > dand 0 < ¢q; <gq.
(ii) Suppose that ker(T") C ker(S) and

T > (TVO/ZSSOTVO/Z)VO%%
holds for fixed % > 0 and & > 0 and 0 < g < 1. Applying Lemma 3 to (16), we have

7 P39% r 1+73
Taw(+r3) > (Tﬂzﬁl (TYO/QS'SOTYO/Q) 10+ T A0 ) 7

for any p3 > 1 and r3 > 0. Putting p3 = yoq;f" > 11in (17), we have

1+qr l+gry) 9% (+r3)
n( 2f1 3)S§0T70( 2(/ 3)

Tan(+r3) > (T ) 10+%0+4r3T0

for any r3 > 0. Put y = (1 +gr3) > 1 in (18). Then we have

r+%(9—1)
7706 > (T TH "0 fory> 1.

(1)

12)

13)

(14)

5)

(16)

A7)

(18)

19)
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_a%_
Next we show that g(y) = (§%/24Y§%/2)0+% is increasing for y > 7. Lowner-Heinz theorem , when applied to (19),
guarantees the following:

7" > (T3s9TH %% for0 <u<y+3(g—1). (20)

Then we have

&
8() = (SH2T7SVR) 7

Y+0p+u 9%

— {(550/27*7’550/2) 7+ }u+50+y
. 8
_ ST BT S T/ 2g%/2 gy
8
< (S5O/ZTY+L¢S50/2) u+q5(;)+7
= g(r+u).
Hence g(7) is increasing for y > . Therefore
9%
(550/27*7/550/2) 7y > 59% for 7> % 1)
holds since
4% _ady_
(SD2TYSH/2) 150 = g(y) > g(1) = (SP/2THSD/2) e > §1%.
Again applying Theorem 1 to (21), we have

T, 5 r. -
{S@ (S%/QTYS%/Q)%S%}XT& > Sq50(1+r4) 22)

for any p4 > 1 and r4 > 0. Putting p4 = % > 11in (22), we have

So(1+qry) Sy(l+qry) _9%0(1+ra)

(ST T TYST T ) rrootads > §e%(l+r) (23)

for any r4 > 0. Put 6 = 8y (1 + gr4) > & in (23). Then we have

5+8)(q—1)
(537753) 776 > 538D fory> 4 and 8 > &. (24)

Applying the Léwner-Heinz theorem to (24), we now obtain since 0 < ﬁgz—l) <1,

S
(s37753)7s > gn

forall y > 1, 8 > 8 and 0 < ¢; < ¢, consequently, the proof is conclusive.
Proposition 2.Let T, S € B1 () and let 1y > 0, 8 > 0 and 0 < q < 1. Suppose that

5
(S%OTVOS%)V(;Z%O > §9% (25)
and
0 % %
T > (T2SHT2)0+% (26)

Consequently, the following statements are true:
(i)For every Y > ¥, 0 > & and 0 < q; < g
(S3T78%) 75 > §09,

Moreover, for each fixed Y > —,
(0+1p1

X X
Foy(8)=(T2S0TF) W+
is a decreasing function for 8 > max{d, y}. Hence the inequality

(0+91)
(rhsorBym > (rhsor®) 27)

holds for any 8, and & such that &, > & > &y and 0 < p; < p.
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(ii)For each Yy > Y, 6 > Qo and 0 < q; < g
q

T4 > (T185T3) 75

=

52

Additionally, for every fixed & > — &,
& 5  (8+d)py
85.8(y) =(S2T782) 7%

is an increasing function for y > max{y, 8 }. Hence the inequality

5 5  PL+%) 5 5
(SJZlThSJZl) H+% Z(SJZIT%SJZI)’” (28)

holds for any 7y, and > such that y, >y > Y and 0 < p1 < p.
Proof:-We will provide the proof for part (ii), noting that the proof for part (i) follows a similar pattern. We begin by
observing that inequality (2) implies inequality (4), as established in Proposition 1. Therefore, we have:
_an_ 4% _
T > (TYTOS‘SOTYTO)70+5O > (TYTOS5T72—°)70+5
This inequality holds for all B > fy based on inequality (4) and the Lowner-Heinz inequality. Consequently, we can
conclude part (ii) by invoking Proposition 1 (ii).
In Proposition 2, when considering ¥ > 0, 6 > 0, and 0 < ¢ < 1, one might naturally anticipate that the inequality 79" >
ar. 45
(T%SST%) T s equivalent to Sg TYTg r+e > qu, even in cases where T and S are not invertible. However, this

assumption is disproven by the following example.

g 48
Example 1. There exists positive bounded linear operators T and S such that 797 > (T%S‘ST%) 0 and (S% TVT%) 1+e ¥

S48 LetT = G) 8) and S = <8 (1)> Then

qY
qy _ VoS l’)y+5_ 10 _ 00\ (10
T (TZS T —(00 00)=100) =20

and
48
(st s (59)- (00 - (5 0) 20
qY q0

for y> 0,6 >0, and 0 < g < 1. Therefore T7" > (T%S‘ST%)YTB and (SgTYTg)YTB 2 S8 for Y>0,0 >0, and
0<g<l1.
Corollary 1.Let T,S € B4 () and let Y > 0, & > 0. Then, the following claims are true:
()If 0 < q < 1, then
% 3 2% B 5 a8
(ST THS2)07% > §9% — (S2T7S§2) 73 > N9 (29)

arv
holds for any y > Y and & > &y, thus TV > (T%S‘ST%)#_‘s holds for any Yy > Y, 6 > & and 0 < q; < q.
(i)If 0 < g < 1 and ker(T) C ker(S), then

%N
T > (T2 507 %)% — 797 > (1597%) 7% (30)

a1

holds for any y > Y and 8 > &, thus (Sg T“VSg)?’*_“S > S§U% holds for any y> 1, 8 > 8 and 0 < q1 < q.

Proof.-We present the proof for part (i), and it’s worth noting that the proof for part (ii) follows a similar line of reasoning.
Based on the provided hypothesis, the Lowner-Heinz theorem, and Proposition 2, we can establish the following
inequality for all > &, ¥ > 1, and 0 < ¢ < 1:
5
(s3775%)75 > g0
This inequality, derived from the hypothesis and known theorems, validates Corollary 1 (i). The application of the Lowner-
Heinz theorem and Theorem 2 further supports this conclusion.
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Remark.We need to keep in mind the assumptions (i) and (ii) of Theorem 2. In the context of Theorem 2, we consider the
scenario where Y= 0 = 1 and 0 < ¢ < 1. The following conditions are relevant:

(a)($275%)% > 59,
()T > (T2ST%)% and ker(T) C ker(S).

. - . Ll ... ...

We have shown that in Theorem 2, condition (a) implies 79 > (TESTE)%, and condition (b) ensures condition (a).
Consequently, one might expect that conditions (a) and (b) are analogous. However, we have a counterexample to
demonstrate otherwise.

1 1

Example 2.(S2TS2)% > $7and T9 > (T2ST2)%, but ker(

(T)
ar= (28) 5= (49). Them_@(;) | (

and
2% 29%2
29.59=1 9gq+1. 59-1 q 5 5
T = TisT3) —
(Sq 1 2q+1 59— 1 2q+2 ( N ) 2 o
22 2
5 5

But (12) € ker(A) and ( ) ¢ ker(S), so that ker(T) ¢ ker(S)

Moreover, we have the following example.

Example 3. We have T4 > (T%ST%)%, but (S% 53

)2
10 00 10
Set T = (OO) and S = (01).Then T1 = OO)

ker(T) ¢ ker(S)

3 Applications

In this section, we will illustrate the application of Theorem 2 to various operator classes.

Definition 1.Consider the following operator classes defined in terms of & > 0, B > 0, 0 < p < 1, the polar decomposition
, and the generalized Aluthge transformation Ty, g = |T|“U|T|B:

pB
(i)T is classified as belonging to the p-A(a, B) class if it satisfies the inequality (|T*|B|T|?*|T*|B) =8 > |T*|?PB[16].
(ii)T is categorized as part of the p-wA(a, B) class if it meets the criteria:

B P
(T PIT P P)as > | TP and |T1% > (T|%|7* PP |7|) o5

o~ 2pB - 2pa

ToplPte > T PP and |T % > |(Top)*|**F as defined in [16].

(iii)T is classified as a member of the p-A class if |T*|P > |T|*?, which is equivalent to T being part of the p-A(1,1) class,
as stated in [16].

(iv)T is considered p-w-hyponormal if and only if it satisfies the inequalities: |T|17 > TP > |(T)*|§ This classification
corresponds to T belonging to the p-wA (% 5 2) class, where T = |T| 5 U|T|% is the Aluthge transformation, as outlined
in [3].

(v)T is termed (o, p)-w-hyponormal if and only if it satisfies the following inequalities: |Ta7a|% > |T 2P > |(Ta7a)*|%.
This characterization corresponds to T belonging to the p-wA(a, &) class, where Ty o = |T|*U|T|* is the generalized
Aluthge transformation, as discussed in [12] and [19].

or equivalently,
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Operators classified as p-wA (@, B) exhibit several significant properties typical of hyponormal operators. These properties
encompass the Fuglede-Putnam type theorem, Weyl type theorem, subscalarity, and Putnam’s inequality, as documented
in [4], [5], [17], [18], and [23]. It’s important to note that the Aluthge transformation has garnered considerable attention
from various authors, including [1], [4], [6], and [25]. These classes are categorized as normaloid operators, denoted by
IT|| = r(T), where r(T') represents the spectral radius of T', as discussed in [17], [3], and [12]. For &, B, and 0 < p < 1,
it has been established that class p-A(¢, ) includes class p-A(a, B) based on the definition in 1 (i) and (ii). Furthermore,
as demonstrated in [16], both class p-wA(e, ) and class p-wA(c, 3) are invertible for any o > 0, 8 > 0,and 0 < p < 1.
Previous research has also provided more precise inclusion relations among class p-wA(c, 8).

Lemma 4./4] If T € B(C) is class p-wA(s,t) and 0 < s <y,0<t < 6,0 < p; < p <1, thenT is class p1-wA(Y, ).

In their study [16], the authors posed the following question:
Question: Does the class p-A(s,t) imply p-wA(s,t) for0 < p < 1?
The subsequent theorem provides an affirmative answer to this question.

Theorem 3.For each o > 0,8 > 0 and 0 < p < 1, the following assertions hold:

(i)class p-A(et, ) and class p-wA(a, B) are equivalent.

(ii)class p-A and class p-wA are equivalent.
(iii)class p-A(%, %) and the class of p-w-hyponormal operators are equivalent, i.e., class p-wA(%, %)
(iv)class p-A(a, @) and class (o, p)-w-hyponormal operators are equivalent, i.e., class p-wA(a, o).

Proof.-We choose not to provide a proof here, as we can easily establish Theorem 3 by applying Theorem 2 to the
definitions of these classes.

Notice that Theorem 3 in reference [15] corresponds to a specific case where ¢ = 1, and therefore, Theorem 3 can be seen
as an extension or generalization of it.

Remark.By (iv) of Theorem 3, we have
Tual? > TP < (IT**|TPT**)5 > |T*?* < T : class p—A(a, @)
& T :(a,p) —w—hyponormal & | Ty |2 > |T|?* > |(Tee)*|2.

Hence _ p _ »
Taal? > TP = TP > |(To.a)*|2,

that is, we may as will define (, p)-w-hyponormal by only | Ty o| % > |T|2P2.

Next, we shall show some properties of class p-A(s,?).

Theorem 4.If T € B(.57) is class p-A(s,t) and 0 < s < 7,0 <t < 5,0 < p; < p <1, thenT is class p;-A(Y, ).
Proof.-We skip the proof because it can be accomplished easily using (i) of Theorem 3 and Theorem 5.

We will show that certain non-normal operators can be proven to be normal. It is established that an operator 7 is normal
if both T and T* belong to the class A. However, the situation becomes less clear when T and T* belong to classes weaker
than class A. Thanks to the research efforts of various authors on this topic, the following results were previously unknown
until now.

Lemma 5./21] Let o, > 0 and 0 < p; < 1, where i = 1,2. If T is a class p1-wA(ouy, B1) operator and T* is a class
p2-wA(0, Br) operator, then T is normal.

Corollary 2.Let a;,3; > 0 and 0 < p; < 1, where i = 1,2. If T is a class pi-A(ay,B1) operator and T* is a class ps-
A(a, By) operator, then T is normal.

Proof Theorem 3 and Lemma 5 lead directly to the proof.

Lemma 6./21] Let p,r >0,0< ¢<1,s>pandt>r. If T is a class g-wA(p,r) operator and Tw is normal, then T is
normal.

Corollary 3.Let p,r >0,0< g <1,s>pandt >r. If T is a class q-A(p,r) operator and YN}J is normal, then T is normal.

Proof Theorem 3 and Lemma 6 are prerequisites for the proof.
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Remark.Please take note that Corollaries 2 and 3, along with Lemmas 5 and 6, offer generalizations of several findings
found in the existing literature. Notable examples include the extension of Theorem 6 in reference [15], as well as other
results in papers such as [19] and [3].

The numerical range of an operator M, represented as W (M), is defined as the set given by:
W(M) = {(Mx,x) - ||x]| = 1}.

In a general context, it’s important to note that neither the condition N~!MN = M* nor the statement 0 ¢ W (M) guarantees
that the operator M is normal. This is exemplified when considering the case of M = NB, where N is positive and invertible,
B is self-adjoint, and N and B do not commute. In this scenario, N “IMN = M* and 0 ¢ W(N), but the operator M is not
normal. This naturally leads to the following question:

Question: Under what conditions does an operator M become normal when both N~!MN = M* and 0 ¢ W (N) hold true?
In 1966, Sheth demonstrated in [22] that if M is a hyponormal operator and N~!MN = M* for certain operators N,

where 0 ¢ W (N), then M is self-adjoint. Rashid later extended Sheth’s result to encompass the class A(k) operators for
k > 0 in [20]. This work further expands upon Sheth’s result, demonstrating that it holds true for the class p-A(e, )
operators, as detailed below.

Corollary 4.Let M € B(). If M or M* belongs to class p-A(a., B) for every a > 0,8 >0and 0 < p < 1 and N is an

operator for which 0 ¢ W(N) and NM = M*N, then M is self-adjoint.

Proof.The conclusion drawn is a result of Theorem 3 and the findings presented in [21, Theorem 2.14].
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Abstract: Our aim is to introduce a generalization of dense set in topological space, namely SD-dense set, when we used the notion
of somewhere dense closure operator. We provide the characterization of this class of sets, and their implications with dense sets and
with somewhere dense sets, and study their union and intersection properties, moreover we discuss their behavior as subspaces in some
special cases, additionally, we investigate their properties in some particular spaces, and then we prove that SD-dense sets, dense sets,
somewhere dense sets and open sets are equivalent in strongly hyperconnected space, after that we illustrate the image of SD-dense sets
by particular maps; as SD-irresolute map and SD-continuous map. Finally, we define a new axiom of separability, namely SD-separable
space using the notion of SD-dense sets, then we state that SD-separable space is stronger than separable space, and in submaximal
space these notions become equivalent, moreover we study the subspaces and the images of SD-separable spaces.
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1 Introduction

Researchers have mentioned various forms of generalized open sets; for instance a-open set, preopen set, semi open set,
b-open set, B-open set and somewhere dense set. The notion of somewhere dense set was due to Pugh [19], then in 2017
[1] Al-shami provided the topological properties of this class of sets, and he studied some operators as; somewhere dense
interior, somewhere dense closure and somewhere dense boundary and he used these notions to defined the axiom of
ST space, and with Noiri [2,3] they investigated some particular maps as; SD-irresolute maps and SD-continuous maps,
then they introduced the concepts of Lindelofness and compactness using somewhere dense sets, and recently, Arwini et
al. [4] stated that somewhere dense sets and open sets are coinciding if and only if a space is strongly hyperconnected,
moreover, Sarbout et al. [20] defined somewhere dense connected space, and they showed that this space is stronger than
hyperconnected space but weaker than strongly hyperconneted space.

In 1906 [15] Frechet defined separable space, which is a space that contains a countable dense subset, since then different
types of separability were defined, as d-separable space, D-separable space, weakly separable space, b-separable space,
dense-separable space, r-separable space, pre-separable space etc. Kurepa [17] in 1936 introduced a generalized form of
separable and metrizable spaces, namely d-separable space, and then in 1981 Arhangelskii [5] studied some properties
of d-separable spaces and proved that any product of d-separable spaces is d-separable. D-Separable spaces were due to
Bella et al. [8], and in 2012 Aurihi et al. [7] investigated the properties of D-separable space and showed their implication
with d-separable spaces. Weakly separable spaces were defined by Beshimov in 1994 [9] when he proved that any weakly
separable Hausdorff compact space is separable, moreover he studied its separable compactifications, see more in [10,11].
In 2013 Selvarani [21] defined b-dense sets and b-separable spaces using b-open sets, then in 2021 Arwini et al. [6, 16]
introduced two different types of separability, the first type is called dense separable space, and they showed that dense
separable space, dense second countable space and separable space are equivalent, while in the second type they used
the notion of regular open sets to defined r-separable space, then they illustrated that r-separable space is weaker than
separable space, but they became equivalent in regular space. Recently, Elbhilil et al. [14] introduced pre-separable spaces
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using pre-dense set notion, and they showed that pre-separable space is placed between b-separable space and separable
space, and in submaximal spaces, the axioms of separability and pre-separability became equivalent.

In this work we use the notion of somewhere dense set to introduce SD-dense set, which is a generalization of dense
set, we provide its behavior with some operations as union and intersection, then we discuss the characterization of this
class of sets in some particular spaces and study their images by some particular maps. After that, we define the axiom of
SD-separable space using the notion of SD-dense sets, then we illustrate the implication between this space and separable
space, and study their subspaces and images.

We divided this article into five sections; as follows: section two concludes the basic concepts concerning somewhere
dense sets, section three presents the definition of SD-dense set, including some of its union and intersection properties
and its behavior as a subspace, then we present its characterization in some spaces, after that we examine their images by
some particular maps, and section four includes the basic studies of SD-separable space, and finally section five gives an
overview of our results in the conclusion.

Throughout this paper, a topological space (Z, t) denotes by Z and D(7) denotes the collection of all dense sets in Z,
and if E and F are subsets of a space Z; E, E°, P(E), E€ and E/F denote the closure of E, the interior of E, the power
set of E, the complement of E and the difference of E and F; respectively. Additionally, R, Z, Q, K, R™, R™ are the
sets of real numbers, integer numbers, rational numbers, irrational numbers, positive real numbers, negative real numbers;
respectively.

2 Preliminaries

In the present section, we provide the basic properties and characterizations of somewhere dense set, and their behavior
in subspaces and in strongly hyperconnected spaces.

Definition 1./1] In a topological space (Z,7), a subset A is called somewhere dense (namely s-dense) if A° # ¢. The
complement of s-dense set is called closed somewhere dense (namely cs-dense) set, and the collection of all s-dense sets
in Z is denoted by S(t). Clearly any non-empty open (dense) set is s-dense.

Theorem 1./1] If A is s-dense subset in a space Z and A C B, then B is s-dense.
Theorem 2.[1] Any subset of a space Z is s-dense or cs-dense.

Definition 2./20] A subset B of a space Z is called SD-clopen if B is s-dense and cs-dense. Clearly any clopen set is
SD-clopen.

Definition 3./20] In a space Z if any open set is closed, then Z is called partition space. Clearly any non-empty subset of
partition space is s-dense.

Definition 4./ /4] A space (Z,7) is called S-space if any subset of Z that contains a non-empty open set is also open.

Definition 5./7, 13, 18] A space Z is called:

i. submaximal if any dense set is open.
ii. hyperconnected if any non-empty open set is dense.
iii. strongly hyperconnected if Z is submaximal and hyperconnected.

Theorem 3./4] In a space Z, the following conditions are equivalent:

1. Z is strongly hyperconnected space.

2. dense sets are equivalent with non-empty open sets.

3 s-dense sets are equivalent with non-empty open sets; where Z is a non-discrete space.

Definition 6./10] If Z is a space, then a subset B is called regular closed (namely r-closed) if B= B°, while the complement
of regular closed set is called regular open (r-open). Clearly any r-closed set is closed.

Theorem 4./20] Any proper non-empty r-closed set is SD-clopen.
Theorem 5./4, 12] Let Z be a space, W be a subspace of Z and B C W then:

1) BY =BNW, where B" is the closure of B with respect to the relative topology on W.
2) where W is r-closed in Z, then B is s-dense in W if and only if B is s-dense in Z.
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Definition 7./1] Let Z be a space and B be a subset of Z, then:

; ) . ; . ; =S =S
i. the intersection of all cs-dense sets in Z containing B is denoted by B™. Clearly B is cs-dense set.
ii. the union of all s-dense sets contained in B is denoted by B°S. Clearly B°S is s-dense set.

Theorem 6./1] Let A and B be two subsets of a space Z, then:

1) ACAS CAand A° CA°S C A.

2) IfACB, thenA° C B® and A°S C B°S.

3) A is cs-dense if and only ifZS = A, while A is s-dense if and only if A°S = A.
Definition 8./ /] In a topological space (Z,7), a subset A of Z is called:

i. a-openifA C FO_.O
iii. pre-openifA C A .
iv. b-openifA CA°UA .
v. B-openifACA°.

Theorem 7.[1] The implications between the class of generalization open sets are given in the following diagram:
open set = ¢t-open set = pre-open set = b-open set = 3-open set = s-dense set

Definition 9./2] A map f : (Z,7) — (X, 0) is called SD-irresolute if the inverse image of any s-dense in X is empty or
s-dense in Z, while f is called SD-continuous if the inverse image of any open set in X is empty or s-dense in Z.

Definition 10./7/2] A space is called separable if it contains a countable dense set.

3 SD-Density

This section consists the definition of a new generalization of dense set using the concept of somewhere dense set,
namely SD-dense set. Union and intersection properties of SD-dense sets and their implication with dense sets are given,
additionally, the behavior of SD-dense sets as subspaces in particular conditions are shown, after that, we investigate the
characterization of SD-dense sets in some spaces. Finally, we study the images of SD-dense sets by some particular
maps; such as SD-continuous map and SD-irresolute map.

3.1 SD-Dense Sets

Here we provide some basic properties of the class of SD-dense sets.

Definition 11.A subset F of a space (Z,7) is called SD-dense if F° =Z. The collection of all SD-dense sets in Z is denoted
by SD(7).

Example 1.In aspace (Z,7) whereZ={1,2,3} and t={Z,¢,{1,2}}, wehave S(7) ={Z,{1},{2},{1,2},{1,3},{2,3}}.
Therefore Z and {1,2} are the only SD-dense sets in Z.

Corollary 1.Any SD-dense set is dense.

Proof.Obvious, since E° CE for any subset E of a space (Z,7), i.e., SD(7) C D(7); where D(7) is the collection of all
dense sets in Z.

SD-dense = dense = pre-open set = b-open set = 3-open set = s-dense

Remark.No general relations between SD-dense set and open set, for instance:

1. In the usual topology, (0, 1) is open (s-dense) set but not SD-dense nor dense, since (0, 1) is s-dense but disjoint from
(0,1). Moreover, the set Q is dense but not SD-dense, since the set K is also s-dense but disjoint from Q.

2.In the space (R, 7), where 7 = P(K) UR we have S(7) = P(K) U{A CR:ANQ,ANK # ¢}. Then the set KUB where
B C Q is SD-dense, so if B # ¢ the set KU B is SD-dense but not open.
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Theorem 8.If E is a subset of a space Z, then these statements are equivalent:

1) E is SD-dense.

2) E intersects all s-dense sets in Z.
3)(E)” = ¢.

4) E€ is not s-dense.

5)E° is dense.

6) E contains an open dense subset F in Z.

Proof.1) = 2) Let F be a SD-dense in Z, and suppose that A is a s-dense set which is disjoint from F, then A€ is cs-dense

that contained F', hence FS # 7, which is a contradiction.

2) = 3) Suppose that (EC)"S is a non-empty set, then there exists a s-dense set A containing in £, hence a s-dense set A
does not intersect £, which is a contradiction.

3) = 4) Suppose that (EC)"S = ¢, then from theorem (6) the set E€ is not s-dense.

4) = 5) Suppose E€ is not s-dense, then E¢° = ¢, i.e., E° does not contains any non-empty open set, therefore (E€)* =E°
is dense.

5) = 6) Direct since E° is open dense set.

6) = 1) Let F be an open dense subset in Z and F C E, and suppose that ES = Z, then there exists a s-dense set A which
does not intersect E, and since F¢ is closed set, then A C A C E¢ C F°, but A is a s-dense, then A contains a non-empty

open set which is disjoint from the dense set F', which is a contradiction, therefore FS = Z, thus E is SD-dense.
Corollary 2.In a space (Z,7) we have TN D(t) C SD(t), moreover SD(t) = {A C Z : B C A for some open dense set B }.

Proof.According to the previous theorem number (5) we obtain TN D(7) C SD(7) , and by using number (6) clearly any
subset that contains an open dense set is SD-dense.

Remark.Let (Z,T) be a space, then Z is the only SD-dense set if and only if Z is the only open dense set in Z.

Example 2.In the usual topology, the set Z of integer numbers is not s-dense set, hence R/Z is SD-dense. Note that R/Z
is open dense set.

3.2 Operation on SD-Dense Sets

Union and intersection operations of the class of SD-dense sets are investigated.

Corollary 3.1) Any set contains SD-dense set is SD-dense.
2) Union of SD-dense sets is SD-dense.

Proof.Obvious using theorem (8).
Theorem 9.Any two SD-dense sets have non-empty intersection.

Proof.Suppose E and F are two SD-dense sets in a space Z, then from corollary (1) we get E is s-dense and F' is SD-dense,
and according to theorem (8) we obtain ENF # ¢.

Remark.The infinite intersection of SD-dense sets can be empty set; for example in the usual topology, {{x} },cr is a
collection of SD-dense sets in R, but Nyer{x}° = ¢.

Lemma 1.If A and B are not s-dense sets in a space Z, then AU B is also not s-dense.

Proof.If at least one of the sets A and B are empty, then the prove is obvious. Now let A and B be non-empty not s-dense
sets, and suppose that AU B is s-dense, so there exists a non-empty open set V such that V C AUB = AUB, since A is
not dense we have A is a non-empty open set, and V NA‘ C (AUB) NA® C B, therefore VNA® is a non-empty open set
contained in B, so B' is a non-empty set, hence B is s-dense, which contradicts the assumption. Therefore A U B is not
s-dense.

Remark.Infinite union of non s-dense sets can be s-dense; for example in the usual topology any singleton is not s-dense
set, but Uycr {x} = R is s-dense.

Theorem 10.The intersection of SD-dense sets is SD-dense.
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Proof.Suppose E and F are two SD-dense sets in a space Z, then from theorem (9) we have ENF # ¢, and by theorem (8)
the sets E€ and F° are not s-dense, and by the previous lemma we obtain E€ U F° = (E N F)¢ is not s-dense, hence ENF
is SD-dense.

Corollary 4.Any finite intersection of SD-dense sets is SD-dense.

Proof.Direct from the mathematical induction.

3.3 SD-Dense Sets as Subspaces

Here we study the characterizations of SD-dense sets as subspaces, and states some conditions that make subspaces SD-
dense.

Theorem 11./n a space Z, if W is a subspace of Z and E C W where E is SD-dense in Z, then E is SD-dense in W.

Proof.Since E is SD-dense Z, then E contains an open dense set F', then F' is open dense set in W, therefore E is SD-dense
inWw.

Example 3.Let (Z,7) is a space, where Z=Randt={9}U{U CZ:0€ U}, then S(Z) =1/{¢}. If W = {0}°, then W
is SD-dense in W, but W is not SD-dense in Z.

Lemma 2.In a space Z, if W is an open (dense) subspace of Z and D C Z where D is an open dense in Z, then DNW is
an open dense in W.

Theorem 12./n a space Z, if W is an open (dense) subspace of Z and E is SD-dense in Z, then ENW is SD-dense in W.

Proof.Suppose E is SD-dense in Z, then E contains an open dense subset F', and by the previous lemma we obtain F "W
is open dense subset in W, which contained in ENW, thus ENW is SD-dense in W.

Example 4.In the previous example if W = {0}¢, then the singleton {0} is SD-dense in Z but does not intersect W,
additionally, the set {0, 1} is also SD-dense in Z, but {0,1} "W = {1} is not SD-dense in W. Note that the subspace W is
closed but not open nor dense in Z.

Theorem 13.If Z is a space, W is an r-closed subspace of Z and E is SD-dense subset in Z, then ENW is SD-densein W.

Proof.Suppose E is SD-dense in Z, then by theorem (4) the set W is s-dense in Z, hence we have ENW is non-empty set.
Now suppose A is s-dense subset in W, and by theorem (5) since W is r-closed we obtain A is s-dense in Z, so we have
ANE # ¢, therefore AN(ENW) =ANE # ¢, thus ENW is SD-dense in W.

3.4 SD-Dense Sets in Some Special Spaces

In the present subsection, we study the characterizations of SD-dense sets in some spaces, as partition space, S-space,
submaximal space, hyperconnected space and strongly hyperconnected space

Theorem 14.A space (Z, ) is partition if and only if the only SD-dense set is Z.

ProofIf a space Z is partition, then we have S(t) = P(Z)/{¢}, therefore Z is the only SD-dense set. Conversely, suppose
Z is not partition space, then there is an open set V which is not closed, so V¢ is not open, hence V¢° = ¢ or V<° # ¢. In
the case where V¢° = ¢ we obtain V is open dense set, hence it is SD-dense, while in the second case, we obtain V UV°
is open dense set, so it is SD-dense. Thus complete the prove.

Corollary 5.In S-space (Z, ), we have SD(t) = 1N D(7).
Proof.Direct since any subset of Z that contains an open dense set is also open dense set, so it is SD-dense.

Example 5.A space (Z,7) that satisfies SD(7) = TN D(7) can be not S-space; for example the usual topological space
(R, ) is not S-space but SD(7) = 1N D(7).

Theorem 15.If F is a subset of a submaximal space Z, then these statements are equivalents:
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1) F is dense in Z.
2)F is SD-dense in Z.

Proof.1) = 2) Let F be a dense set in Z, then F is open dense set, and by using theorem (8) the set F is SD-dense.
2) = 1) Obvious using corollary (1).

Remark.In submaximal space (Z, ), we have SD(7) = D(7) C 7.
SD-dense = dense = open set = pre-open set = b-open set = f3-open set = s-dense

Example 6.A space (Z, T) that satisfies SD(7) = D(7) may not be submaximal space; for example in (R, T) given in remark
(3.1), we have SD(7) = D(7) = {KUA CR:ANQ # ¢ } U{K}, but R is not submaximal, since KU {0} is dense but not
open.

Theorem 16.A space (Z,7) is hyperconnected if and only if t/{¢} C SD(7).

Proof.If V is a non-empty open set, then it is open dense, hence it is SD-dense. Conversely, suppose that V is a non-empty
open set, then V is SD-dense, i.e., V contains an open dense set, therefore it is dense, thus complete the prove.

Non-empty open set = SD-dense = dense open set = pre-open set = b-open set = ¢¢-open set = s-dense
Remark.In hyperconnected space (Z,7), we have: SD(7) ={A CZ:V C A for some non-empty open set V }.

Proof.Direct since any non-empty open set is dense, so it is SD-dense. Moreover, any set that contains a non-empty open
set is SD-dense.

Example 7.Hyperconnected space can contains a dense subset which is not SD-dense, for instance: If (Z, 7) is the trivial
space where Z has more than one element, then Z is hyperconnected space and S(7) = P(Z)/{¢}, so any singleton {a} is
dense in Z but not SD-dense. Clearly, the only SD-dense in Z is Z.

Corollary 6.In hyperconnected S-space (Z,7), non-empty open sets and SD-dense sets are equivalent, i.e., SD(t) =

t/{¢}.

Proof.Direct using the previous remark and definition (4).

Theorem 17.If F is a non-empty subset of a strongly hyperconnected space Z, then these statements are equivalents:

1) F is SD-dense in Z.
2) F is dense in Z.

3) F is s-dense set in Z.
4) F is open set in Z.

Proof.1) = 2) Obvious.

2) = 3) Obvious.

3) = 4) Obvious using theorem (3).

4) = 1) Obvious using the submaximality in theorem (15).

Remark.1. A space that satisfy any dense set is SD-dense may not by strongly hyperconnected space, for example, In a
space Rwith t={U CR:0¢ U} U{R}, we have S(7) = P(R)/{¢,{0}}, s0 SD(7) = {R,{0}°} = D(7). Therefore,
SD-dense set and dense set are coinciding, but the space (R, 7) is not strongly hyperconnected space since the singleton
{1} is open but not dense.

2. A space that satisfy any s-dense set is SD-dense may not by strongly hyperconnected space, for example, In a space
(Z,7), where Z = {1,2,3}, with t = {Z,¢,{1},{1,2}} we have S(7) = {Z,{1},{1,2},{1,3}} = SD(7). Therefore,
SD-dense set and dense set are coinciding, but the space Z is not strongly hyperconnected space, since it is not
submaximal, since {1,3} is dense but not open.

3. A space that satisfy SD(7) = 7/{¢ } may not be strongly hyperconnected space, for example in the space (R, t), where
T={¢9}U{U CR: {0} URT C U}, we obtain SD(t) = t/{¢}, but the singleton {0} is dense but not open, so R is
not submaximal, therefore is not strongly hyperconnected.

Corollary 7.In a strongly hyperconnected space Z if E C Z, these conditions are equivalents:

1) E is a non-empty open set.
2) E is a non-empty Q-open set.
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3) E is a non-empty pre-open set.
5) E is a non-empty b-open set.
6) E is a non-empty -open set.
7)E is a s-dense set.

8) E is a dense set.

9) E is a SD-dense set.

Proof.According to theorems (3,17).

3.5 Images of SD-Dense Sets

Here we show that SD-irresolute map preserves SD-dense sets, while SD-continuous map dose not, moreover, the image
of SD-dense set by SD-continuous map is dense.

Theorem 18.If f : (Z,7) — (X, 0) is surjective SD-irresolute map, then the image of any SD-dense set in Z is SD-dense
inX.

Proof-Suppose A is SD-dense in Z, but f(A) is not SD-dense in X, then there is a s-dense set B in X such that f(A)NB = ¢.
Since f is surjective and SD-irresolute, then AN f~!(B) = ¢, where f~!(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 8. The image of SD-dense set in Z by SD-irresolute map need not be SD-dense set in X, for example: Let 7 =
{UCR:0€U}U{¢}and o ={U CR:0¢ U} U{R} be two topologies on R, then SD(7) = t/{¢} while SD(c) =
{R,{0}‘} = D(0o). Therefore the map f : (R,0) — (R, o) which defined by: f(r) = { é’ : g % is SD-irresolute map but
not surjective, while the singleton {0} is SD-dense in 7 but f({0}) = {1} is not SD-dense in ©.

Theorem 19.If f : (Z,7) — (X, 0) is surjective SD-continuous map, then the image of any SD-dense set in Z is dense in
X.

Proof-Suppose A is SD-dense in Z but f(A) is not dense in X, so there exists an open set B in X such that f(A)NB = ¢.
Since f is surjective and SD-continuous, then AN f~!(B) = ¢, where f~!(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 9.The image of SD-dense in Z by SD-continuous (continuous) map need not be SD-dense in X, for instance: If
T={UCR:0€U}U{¢} while o is the trivial topology on R, hence the identity map 7 : (R,7) — (R, 0) is surjective
SD-continuous (also is continuous) from; while the singleton {0} is SD-dense in 7 but I[{0} = {0} is not SD-dense in o,
since the only SD-dense in o is R.

4 SD-Separability

In this section, we define SD-separable space, which is stronger than separable space and then we study its properties; as
subspaces and images.

4.1 SD-Separable Spaces

Definition 12.A space that contains a countable SD-dense set is called SD-separable space.
Corollary 8.Every SD-separable space is separable space.
Proof.Obvious since any SD-dense is dense.

Example 10.

1) If (Z,7) is the trivial topological space where Z is uncountable set, then Z is separable space but not SD-separable,
because the only SD-dense set is Z.

2) If (R, u) is the usual space, then R is separable but not SD-separable, because if F is a non-empty countable subset of
R then F¢ is also s-dense and F N F¢ = @, so F is not SD-dense, i.e., any SD-dense in R is uncountable.
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3) If (R, 7) is a space where T = P(Q) U{R}, then S(7) = P(QQU{ACR:ANQ# ¢,ANK # ¢}. Hence the set QUB
where B C K is SD-dense, so QU { \/f} is a countable SD-dense in R, therefore (R, 7) is SD-separable space.

Definition 13.4 space (Z,7) is called SD-countable if the collection S(t) is countable.
Corollary 9.Any SD-countable space is countable.
Proof.Obvious since 7/{¢} C S(7).

Example 11.Countable space need not be SD-countable, for instance if (Z,7) is the trivial space on infinite set Z, then ©
is countable space but not SD-countable, since S(7) = P(Z)/{¢}.

Corollary 10.Every SD-countable space is SD-separable space.

Proof.Since the collection S(7) is countable, now we can choose a point from each s-dense set from S(7), the set F of all
such point is clearly countable and SD-dense, therefore Z is SD-separable.

Example 12.SD-separable space need not be SD-countable, for instance the space 7= {9} U{U CR:0€ U} on R, we
obtain S(7) = 7/{¢}, then R is SD-separable space, since {0} is a countable SD-dense in R, but S(7) is uncountable,
therefore 7 is not SD-countable.

Corollary 11.If Z is a SD-separable space where Z is uncountable, then there exists an uncountable set which is not
s-dense.

Proof.Since Z contains a countable SD-dense subset E, then E€ is uncountable and not s-dense.

Remark.The inverse of the previous corollary is not true in general, for example: in the space (R, 7) given in remark (3.4)
number (1), the set of negative real numbers R~ is uncountable and it is not s-dense, while R it is not SD-separable space,
since all SD-dense sets are uncountable.

Corollary 12.A space Z is SD-separable if and only if there exists a set A which is not s-dense, where A, A° are uncountable
and countable sets; respectively.

Corollary 13.Submaximal separable space is SD-separable space.

Proof.Obvious since dense sets and SD-dense sets are equivalent from theorem (15).

4.2 Subspaces and Images of SD-Separable Spaces

Example 13.Subspace of SD-separable space need not SD-separable space in general, for instance: where Z is uncountable
set with topology T ={U CZ:a e U}U{¢}, where a is a fixed point in Z, so S(7) = 7/{¢}. The singleton {a} is SD-
dense, hence Z is SD-separable space but the subspace {a} is not SD-separable space, since it is the discrete space. Note
that the subspace {a}¢ is not open subspace nor r-closed.

Corollary 14.Any open (dense or r-closed) subspace of SD-separable space is SD-separable space.
Proof.Direct using theorem (12) (theorem (13)).

Corollary 15.If a map f : (Z,7) — (X, 0) is surjective and SD-irresolute from SD-separable space Z, then X is SD-
separable.

Proof.Direct using theorem (18).

Example 14.The image of SD-separable space by SD-continuous map need not be SD-separable, for instance if (R, 7) a
space given in example (3) while (R, o) is the trivial topological space, hence the identity map 7 : (R,7) = (R, 0) is
SD-continuous (also is continuous) from SD-separable space (R, 7); since {0} is countable SD-dense in (R, 7), while the
space (R, o) is not SD-separable, since the only SD-dense in (R, o) is R.

Corollary 16.Ifa map f : (Z,7) — (X, 0) is surjective SD-continuous from SD-separable space Z, then X is separable.

Proof.Suppose E is a countable SD-dense subset in Z, according to theorem (19) we obtain f(E) is a countable dense in
X, therefore X is separable space.
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5 Conclusion

Using the concept of somewhere dense closure operator, we define a generalization of dense set; namely SD-dense set,
then we introduce a new type of separability; namely SD-separable space. Here we outline the results that summarized
the properties of SD-dense sets and SD-separable space:

A. SD-Dense Set = Dense Set.

B. A subset F of a space Z is SD-dense if and only if F intersect all s-dense sets; equivalently if (F C)"S = @; equivalently
if F¢ is not s-dense; equivalently if F is open dense set; equivalently if F' contains an open dense set.

C. The union of two non s-dense sets is also non s-dense.

D. The intersection of two SD-dense sets is SD-dense.

E. If W is open (dense or regular closed) subspace of a space Z, and F' is SD-dense subset in Z, then F "W is SD-dense
inW.

F. A space is partition if and only if it has no proper SD-dense set.

G. SD-Dense Set % Open Dense Set.

Submaximal Space

H. SD-Dense Set «<———— Dense Set.

Hyperconnected Space
:

I. Non-empty Open Set SD-Dense Set.

Hyperconnected S-Space

J. SD-Dense Set

K. In strongly hyperconnected space, all these statements are equivalent: SD-dense set, dense set, s-dense set, 3-open set,
b-open set, preopen set and open set.
L. SD-Separable Space = Separable Space.

M. SD-Separable Space Submaximal Space

N. SD-separable space satisfy the open (dense or regular closed) hereditary property.

0. SD-irresolute map preserves SD-separable space (SD-dense set).

P. SD-continuous map does not preserve SD-separable space (SD-dense set), but the image of SD-separable space (SD-
dense set) is separable space (dense set).

Non-empty Open Set

Separable Space.

Note that some properties of SD-dense sets are different from dense sets, as in A, B (the third part), C and D.

Declarations

Authors’ contributions:
(1)(Corresponding Author) Mathematics Department, Faculty of Science, Tripoli University, Tripoli-Libya. E-mail
address: K.arwini @uot.edu.ly
(2) Mathematics Department, Higher Institute of Science and Technology, Tripoli-Libya. E-mail address:
Munaelhmali2023 @yahoo.com

Acknowledgments:
Firstly, I would like to dedicate this humble work to the second author (Muna Alhmali), her knowledge, contribution, and
help in a highly professional manner was great, may Allah accept it in her good deeds and have mercy on her. Also I
would like to express my sincere thanks to the editor and reviewers for their valuable comments to improve this work.

References

[1] T.M.Al-shami,Somewhere Dense Sets and ST1-Spaces, Punjab University, Journal of Mathematics, 49(2)(2017), 101-111.

[2] T.M.Al-shami, T.Noiri, More Notions and Mappings via Somewhere Dense Sets, Afrika Matematika, 30(2021), 1011-1024.

[3] T.M.Al-shami,T.Noiri, Compactness and Lindelofness Using Somewhere Dense and cs-dense Sets, Novi Sad Journal of
Mathematics,52(2)(2022), 165-176.

[4] K.A.Arwini, H.A.Mira, Further Remarks on Somewhere Dense Sets, Sebha University Journal of Pure and Applied Sciences,
21(2)(2022), 46-48.

[5] V.Arhangelgskii, On d-Separable Spaces, P.S.Alexandrov (Ed.), Proceedings of the Seminar in General Topology,
Mosk.Univ.P.H.,(1981), 3-8.

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



230 Khadiga A. Arwini : SD-Separability in Topological Spaces

[6] K.A.Arwini, A.E.Kornas, D-Countability Axioms, An International Scientific Journal, World Scientific News Journal, 143(2020),
28-38.
[7] L.F.Aurichi, R.R.Dias,L.R.Junqueira, On d- and D-Separability,Topology and its Applications,156(2012), 3445-3452.
[8] A.Bella, M.Matveev, S.Spadaro, Variations Selective Separability II:Discrete Sets and The Influence of Convergence and
Maximality, Topology and its Applications, 159(2012), 253-271.
[9] R.B.Beshimov, A Weakly Separable Space and Separability, Doklady Uzbek.Akad.Nauk, 3(1994), 10-12.
[10] R.B.Beshimov, Weakly Separable Spaces and Their Separable Compactifications, Doklady Uzbek.Akad.Nauk, 1(1997), 15-18.
[11] R.B.Beshimov, A Note On Weakly Separable Spaces, Mathematica Moravica, 6(2002), 9-19.
[12] N.Bourbaki, Introduction to Topology and Modern Analysis, General Topology,Addison-Wesley, Mass, (1966).
[13] J.Dontchev, On Submaximal Spaces, Tamkang Journal of mathematics, 26(3)(1995), 243-250.
[14] N.A Elbhilil, K.A.Arwini, Axioms of Countability Via Preopen Sets, An International Scientific Journal, World Scientific News
Journal, 152(2021), 111-125.
[15] M.Frechet, Sur Quelques Point Du Calcul Fonctinnel, Rend. Circ. Mat. , 22(1906), 1-74.
[16] A.E.Kornas, K.A.Arwini, R-Countability Axioms, An International Scientific Journal, World Scientific News Journal, 149(2020),
92-109.
[17] D.Kurepa, Le Probleme De Souslin Et Les Espaces Abstraits, Comptes Rendus Hebdomadaires Des Seances De L’Academie Des
Sciences, 203(1936), 1049-1052.
[18] T.Noiri, A Note On Hyperconnected Sets, Mat. Vesnik, 3(16)(1979), 53-60.
[19] C.C.Pugh, Real Mathematical Analysist, Springer Science and Business Media, (2003).
[20] A.M.Sarbout, K.A.Arwini, On SD-Connected Spaces, International Journal of Innovation Scientific Research and Review,
4(5)(2022), 2768-2773.
[21] S.P.Selvarani, Generalization of Urysohn’s Lemma and Tietze Extension Theorem In b-Finitely Additive Space, International
Journal of Computer Application, 3(2)(2013), 1-19.

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 231-239 (2024 ) Sly-odf dsols 231

YARMOUK UNIVERSITY

Jordan Journal of Mathematics and Statistics.
Yarmouk University

DOL:https://doi.org/10.47013/17.2.4

Optimal Conjugate Gradient with Spline Scheme for
Solving Bagley-Torvik Fractional Differential Problems

Faraidun K. Hamasalh', Gulnar W. Sadiq2 and Emad S. Salam?

I Department of Mathematics, College of Education, University Sulaimani, Sulaimani, Kurdistan Region, Iraq.
Faraidun.hamasalh @univsul.edu.iq

2 Department of Mathematics, College of Basic Education, University Sulaimani, Sulaimani, Kurdistan Region, Iraq.
gulnar.sadiq@univsul.edu.iq

3 MSc Student at University Sulaimani, Sulaimani, Kurdistan Region, Iraq. emad.sanan@gmail.com

Received: Jan. 11, 2023 Accepted :Sept. 24, 2023

Abstract: In this work, a non-polynomial spline function is constructed to solve the Bagley-Torvik Fractional Differential Problems
involving derivatives in the Caputo sense. This method transforms the fractional differential equation into a system of linear equations
using a spline scheme. The conjugate gradient method is employed for the iterative solution of the linear system. To validate the accuracy
of the method, numerical examples with known analytical solutions are tested. The numerical experiments demonstrate satisfactory
agreement with the exact solution.

Keywords: Fractional calculus; Bagley-Torvik Fractional Differential equation; Caputo fractional derivatives; Non-polynomial Spline;
Conjugate gradient method.
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1 Introduction

Fractional differential equations have received significant attention nowadays in several fields of science and
engineering due to its applications such as : electrical engineering[1],economic[2],Modelling of Viscoelastic
Systems[3],diffusion processes[4],medicine[5]. It is difficult to find an exact analytical solution of all fractional
differential equations therefore several methods and techniques have been invented to solve fractional differential
equation for instance: fractional finite difference method[6], Adomain decomposition method[7],spectral
method[8],Bessel collocation method[9].

Spline technique has been investigated by many researchers for solving fractional differential equations due to its
accurate and efficiency for example: W. K. ZAHRA and et al proposed cubic spline solution of fractional Bagley-Torvik
equation[10], semiorthogonal B-spline collection is applied for solving the fractional differential equations[11],
NonPolynomial Spline discussed by Faraidun K. Hamasalh and et al to solve FDE[12], Faraidun K. Hamasalh and
Karzan A. Hamza, used Quintic B-spline polynomial for Solving Bagely-Torvik Fractional Differential Problems[13],
fourth order homogeneous parabolic partial differential equations solved using non-polynomial cubic spline
technique[14].

Conjugate gradient method is an appropriate and efficient method for solving a system of equations. The linear
conjugate gradient method was proposed in the 1950s by Hestenes and Stiefel to solve a linear system of equations with
positive definite matrices as an alternative to Gauss elimination[15], Fletcher and Reeves were discussed the nonlinear
conjugate gradient method in 1964[16]. Presently, conjugate gradient (CG) techniques are considered as a popular and
efficient approach to solve engineering optimization problems. As recent examples, shape optimization with nonlinear
conjugate gradient method proposed in[17], application in signal processing of decent hybrid nonlinear conjugate
gradient method discussed by Zohre Aminifard and etal[18] Abubakar and et al investigated a modified a three-term
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conjugate gradient projection with application in signal recovery[19].

The rest of this paper is organized as follows: in section 2, we briefly review the main definitions of fractional
calculus, some definitions and properties of the matrix. Mathematical formulation of the nonpolynomial spline function
discussed in section 3. In section 4 numerical results are illustrated to present applicability of the method. Finally, the
conclusion is presented in section 5.

2 Some basic definitions

Definition 1./20] The Riemann-Liouville fractional derivative of order A > 0 is defined by
D f(t) = oy dem Ja (t =T A1 f(0)dT, m—1<A<meN

Definition 2. [ 21] The Caputo  fractional  derivative  of order A > 0 is  defined by
DM f(t) = rouy Ja 1 =" A e f(T)dT, m—1<A<meN

Definition 3./20] The  Riemann-Liowville fractional integral of order A > 0 is defined by
P f()=Fr ot =0 ' f()de, m—1<A<meN

Definition 4./20] The Caputo derivative of order A of a polynomial function x? is defined by D*x? = T dIIH xd=*

Definition 5./22] The Spectral radius (M) where M is an n x n matrix is given by (M) = max(|A|) where A is an
eigenvalue of M.

Definition 6./23] A square matrix M is called diagonally dominate if |m;;| < Xz j|m;;|

Definition 7./22] An n x n matrix M is converges if u(M) < 1.

3 Mathematical Formulation

In this study we consider the fractional differential equation of the form

YV 0@y +y@y=t(),  xelab] ()

with the boundary conditions
y(a)=Bi, y(b)=5 )
Where ¢ (x), y(x)andt(x) are functions of x, By and B, are constants.Then the interval [a, b] can be uniformly divide into
j subintervals the length of uniform subintervals can be define as:Ax = h = 2=¢ n = j— 1. In this existing literature

j Y
we can modify the model of nonpolynomial spline and the factional continuity by using Caputo type as follows:

S(x) =Si(x),x € [xi,%i41],i =0,1,2,...,n 3)
Here the nonpolynomial spline function with fractional order defined by
Si(x) =ai+bi(x —x;) +ci(x— x,~)2 +di(x— x,~)3 +eisin(k(x — x;)) + ficos(k(x — x;)) 4)

where a;,b;,c;,d;, e;, fi are constants for i = 0,1,2,...,n and k is a free parameter .The function S;(x) interpolates y(x) at
the points x; by depending on k. To find the value of constants in equation (4) we supposed the following conditions:

Si(xi) = i, Si(xit1) = Yir1, 7,
) (xi) =y (x+l) Yit1,S g) y; )
f

Si+1(xi+1):y§;1,sfi)() PuS( (Xit1) = Pig1-

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 231-239 (2024 ) / 233

Applying the conditions in equation (5) the value of all constants in equation (4) obtained as follows:

A
ai:(l—mf \/7)’,“ A%Piﬂ-i-A—TPh

iy 2
bi:y’“ Vi (29A|+hﬁ+sme+/fme I)lerl*_((l*ez)AzJFAs

+sin6(%\/%—%)—/”j—ol‘w)})i \/j——(-)z\/7+h3A ——\/;sm(-)
$\/ 2 coso 2 9% A 0+c0s6)A
ff Wit + (5 + G — (B oy LnbdoosBia
k ik
¢ =g Pt~ zé‘fpl 2k2\fyz+l+ L ©)

— (L _ 4B
di = (g5 — 347\ # V1 — %A]\/7+6h AleJr

2
(\fk sgm@ ﬁAZ )p”
6hk2
ei:(k\/_g A_z)pl AIPH—I \/7yl+l+3A] \/Iy”

_ 1 h h
ﬁ_A_lpl+ —Epz——[y,+1+3Al\/7

where :M,Alzﬂc2 ﬁ—i—S h ﬁ—l—k% (cos 6 + 32 + sin 9—|—3—7r
6h 4

Ay = NI \[osin(0+ 3F),As = 2\ /LAy = — 5 /L, As = 20 _ B 6 — kp i = 0,1,....n. Therefore we

obtain the nonpolynomial spline functlon, 1t can be easily verified that the spline scheme approximation S(x), is
successfully uniquely determined using the equation (6) recurrence formula for all 4 which in the interval, see[24].

Substitute these values in equation (4) we obtain

A Vi1~ Yi

S() = <1—E[ O i Bipi (2
1
h

2 . A
/i(Zem + Aﬂ+szn9+ 050 — I)PH—I ((1—92) 2+A5+

A Apcos®
(T2~ )4 [T 2 o
4
4 cos6 1,02 | 6% A
+h3A4—§\/7sm6—\/;7]) YL+ 2A]3 _h3(ﬁA]3

. ;
) OOy () (P — Ay 202 [yt 7

1k2 h
R [)yz)(x*xi)%r((é*% Vi — 3A|\/7+6h
2.
£ pivr + (2o %)pl)( xP+
6hk?2

A—z)PHrAlpm 4\/EYf/+1+3A1\/7 Ysin(k(x —x;))+

(ALlPi 1—A—1Pz——\/Zyl+1+3Al\/; Jeos(k(x —x;)).

—_—

x) =8"(x),m =

=

Now apply the fractional continuity conditions of the spline function S;(x) where the splines S , (x)
joined, we obtained the following equations:
(3) % k(VZ 24 4/ 1 4
Siz (‘xi):%pi+1+ Z(kL%__]z)pl_T\/Z;ﬂ(l—’—A_)szrl 3\/2%;|)’1 (8)
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, And
(2) 2 VR(cos(0+E)4sin(0+5))  42Bh3 a3
S ) = E= (i —yi) + ( S S T A
Vkcos(8+E)A
o e e e e
aond V2ksin® _ Arp w23 2L,
5+15\/—( éilm ,42] ) 3/mA; \/ﬁ)l’l 1
42Bh2 /1 4BVh 4\/§sin(9+ ) 4\/_cos(9+4) 1662
+(15A]\/—(@ %A]\/—) 3VE a 53A]ﬁ o
sy, 8k (1 KVh 2L, 4212 2BVh
Vi Vi +(3\/—(__3A1\/—)_\/_nih_ 15\/%(3A1ﬁ+@)_
270 (sin(0+%)+cos(0+%)) \
3AVE Vil
Such that, s
2
L= %+hﬂ+cofl+Ylne 1

Lzzﬁ (1 92—sm9)+h3A5+(‘/—;—2—f)

h3A4+(—f% _ 4913n9 74§ZSIG)\/Z’
Ly = ﬁ + 552 Lk A% —1-113(ﬁA—A]3 — &)—l—’:—?(sine—i—cosﬂ)

I\)

Here by equating equation (8) and equation (9) we obtain

XPH—I‘*’CIPI 34\/\/2;7[(14'1411 )yﬁﬁrl—Czy \/*(y —Yi— 1)

+C3pi—1+Cay! =0

| VR a3 438 VK(sin(0+F)+eos(0+5))
k A 3A1V/r 15/7A; A
C) — 4/0 2Ly 1682 + aon3 (& — 4BVh )7 4V0sin(6+%)  4V6cos(6+%)
27 32mA, rﬁ —97: 15/7\6h — 3A,x ENZ 3/mA;
2, 4R, 42h3 (TRsind _ AsB V2
G = \/ﬁ+3Al\/—+15\/_( 6;1;1 _A2_1)_\/1€sm(9+ )(—2——)4—\//;003(94- )A—2

Cy= 2Ly Shi (1 PN )Jr 42;,% (6_1h+ 28Vh )+ \/7(cas(6+ +sm(6+1)).

T Vir 3WE\2 3a/m/ T 15yx 3A1V/E 3A1ﬁ

Where, C; =

from equation (1), and using backward, central, and forward difference formula for y/’ T v, andy!

piv1 = ¢z+l(x)y,+1 Vi1 (X)yip1 + Tip1(x)
pi = —¢i(x)y} — wi(x)yi + T (x),

pi-1 = *4’171 (X)y,_1 Vo1 (X)yiz1 + Ti—1(x)
1 Yiel —2yityi-| Virl =itYict o Yigl —2itYio|
Yir1 = 7112 7)’1 2 Vil =T 2

substitute equation (11) in equation (10) we obtain:
aiyi-1 +biyi + ciyiv1 = Fi
Then, a system of linear equation is formulated using equation(12) as follows :

Ay=F

(C))

(10)

| respectively we have

(1)

12)

(13)

such that
bl C1
a)n b2 Cc)
as b3 Cc3
A=
an—1 bp1 cp
a, by
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y=D1 y2 33 - Y1 Yol sand F=[Fi—ayo B2 -+ Fp1 Fy—cpynti]
Such that,
ai=#ﬁ?”—3\‘}‘2%5]12(1+AL1)—%—,%(Q-Q)-i—ﬁ—%—@%—h
b= 2 B0 (14 L) 200200 20— Gy) - Cryi— =,
Ci = _\/hZ]:IIHI - \/z—fxljliﬂ - 3%2(1+A]>7%7%+#(C4*C2)
E:A@lkTHI*CITi*CﬂH, =12,---.n

4 Numerical experiments

In this section the method applied to several numerical examples of boundary fractional differential equations, the result
compared with the exact analytical solution to show the methods efficiency. The computational programs were written in
MatLab. Here the algorithms of the conjugate gradient method is presented.

Algorithm 1suppose that we have the linear system (13) where A is symmetric positive definite matrix The conjugate
gradient algorithm expressed as:

—chose yg € R", and putdy =ro = F — Ayg fork=0,1,2,---
=If di, =0, stop and yy. is a solution of Ay = F.
otherwise compute

VTV
— Tk'k —

~Tiy1 = Tk — OAdy, B = %
=i 1 = Tir1 + Brd
Example 1./20] Consider the fractional differential equation

3

D) y(x)+y(x)=1+xx€]0,1]. (14)

/\

with the boundary conditions y(0) = l,y(l)
,The exact solution of (14) is given by y(x) =

The numerical results using conjugate gradient method with, & = x5, and 31 iterations tabulated in Tablel

32°
X Exact solution proposed method Absolute error
0.125 1.125 1.125927 9.27x 1074
0.25 1.25 1.251416 1.41x1073
0.375 1.375 1.376678 1.67x 1073
0.5 1.5 1.501712 1.71x 1073
0.625 1.625 1.626516 1.51x 1073
0.75 1.75 1.751092 1.09 x 1073
0.875 1.875 1.875442 4.42x107%

Table 1: Exact, approximation solution, absolute error of example 1
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Example 2./25] Consider the fractional differential equation

16}
>15}
14}

13}

— Eracl
Cq

0 01

Fig. 1: Exact and approximate solution of example 1 with 7 = 5

02 (] 24

with the boundary conditions y(0) = 1,y(1) = 1.84147
,The exact solution of (15) is given by y(x) = sin(x) + L.

The numerical results using conjugate gradient method with, 2 = 0.01, and 99 iterations tabulated in Table 2 with

comparison to reference [25].

095
X

06 c7 co

D(%>y(x) = cos(x+ g),x €10,1].

0¢ 1

X Exact solution proposed method Absolute error Absolute error [25]

0.1 | 1.09983 1.09051 9.32x 1073 2.29%x 1073

0.2 | 1.19866 1.17982 1.884x 1072 9.97x 1072

0.3 | 1.29552 1.26783 2.768 x 1072 1.03 x 107!

0.4 | 1.38941 1.35445 3.496 x 1072 8.901 x 1072
0.5 | 1.47942 1.43959 3.982 x 1072 1.995x 1072
0.6 | 1.56464 1.52320 4.144%x 1072 9.144 x 1072
0.7 | 1.64421 1.60521 3.900 x 1072 8.577 x 1072
0.8 | 1.71735 1.68560 3.174 x 1072 9.177 x 1072
09 | 1.7833 1.76435 1.896 x 1072 7.467x 1072

Table 2: Exact, approximation solution, absolute error of example 2
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Fig. 2: Exact and approximate solution of example 2 with 7 = 0.01

Example 3./26] Consider the fractional differential equation
D?y(x) +VaD Dy (x) + y(x) = 0,x € [0,1].

(16)

with the boundary conditions y(0) = 1,y(1) = 0.775989.

The numerical results using conjugate gradient method with, 2 = 0.125, and 7 iterations tabulated in Table 3, with
comparison to reference [26]

X Exact solution proposed method Absolute error Absolute error[26]

0.125 0.99437 0.98819 6.17x1073 1.24%x 1073

0.25 | 0.979919 0.971592 8.32x 1073 5.11x 1073

0.375 0.958424 0.95024 8.17 x 1073 1.387 x 1072
0.5 | 0.930957 0.92424 6.71x1073 2.614 x 1072
0.625] 0.898335 0.89367 4.65x 107 4.039 x 1072
0.75 | 0.861241 0.85868 2.56x 1073 5.579 x 102
0.875 0.820277 0.81939 8.8x 1077 7.148 x 1072

Table 3: Exact, approximation solution, absolute error of example 3
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o1 22 2 X) 05S 06 27 () 09
X

Fig. 3: Exact and approximate solution of example 3 with 2 = 0.125

5 Conclusion

This study constructs a non-polynomial spline function to approach the Bagley-Torvik Fractional Differential Problems
with the conjugate gradient method. The numerical examples demonstrate that the non-polynomial spline and conjugate
gradient techniques are more adaptable for approximating functions. The graphs of exact and approximate solutions for
numerical examples show the superiority of our approach.
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1 Introduction

Let H and K be two groups and ¢ : K — Aut (H ) be a group homomorphism, where Aut (H) is the group of automorphisms
of the group H. Then G = H x4 K is called the external semidirect product of groups H and K. On the other hand, let
G = HK be a group, where H and K are subgroups of G and K acts on H by conjugation defined as #* = khk~! for all
h e H and k € K. Then G = HK is called the internal semidirect product of subgroups H and K, where H is a normal
subgroup of G and K is a non-normal subgroup of G.

Bidwell et. al. [1] studied the structure of automorphism group of direct product of two groups as the matrices of maps
satisfying some certain conditions. The next interesting question was to study the structure of the automorphism group of
semidirect product of two groups. The automorphism group of semidirect product of two groups was studied by Bidwell
and Curran [2]. Later, M . J. Curran [5] and D. Jill [6] studied the automorphism group of the semidirect product of two
groups that fixes the normal subgroup. In this paper, we study the structure of the automorphism group of the semidirect
product of two groups that fixes the non-normal subgroup. We apply our main result to compute such automorphisms of
non-abelian metacyclic p-groups and non-abelian p-groups (p > 5) of order p*, where p is a prime.

Let K be a non-normal subgroup of a group G. Let S be a right transversal to K in G with 1 € S. Then the group operation
on G induces a binary operation on S with respect to it S becomes a right loop, a right action 6 of K on § and two map
f:SxS— Kand 0:5x K — K (see [8] for details) . Let Autx (G) = {O € Aut(G) | ©(K) = K}. In [8, Theorem 2.6,
p. 731, R. Lal obtained that ® € Autx(G) can be identified with the triple (¢, ¥, 0), where oo € Map(S,S), y € Map(S,K)
and § € Aut(K) satisfying the conditions in [8, Definition 2.5, p. 73] given below,

(Do(xy) = (a(x)07(y))o(y)

(i) (f (x, ) ¥(xy) = ¥(x) O () (Y()).f ((x)07(y), ()

(iih) o (x0k) = a(x)08 (k)

(v)8(0x (k) Y(xOk) = Y(x) G (x) (8 (k)

for all x,y € S and k € K. In the case when there is a right transversal H to K in G which is a normal subgroup of G, the

group G is the semidirect product of K and H. In this case, the conditions on ¢,y and 6 agree with the conditions given
in [7, Lemma 1.1, p. 1000]. These conditions are given as follows.

* Corresponding author e-mail: m_ vermarattan789 @ gmail.com

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.


DOI: https://doi.org/10.47013/17.2.5

242 V. Kakkar and R. Lal : Automorphisms of semidirect products fixing the non-normal subgroup

(ChHa(hh') = o(h )05( e

(C2yp(h) = v()°¢

(C3)a(h) = a(h)®*

(C4)For any W'k € G there exists a unique ik € G such that a(h) = A’ and y(h)8 (k) =K.

Remark.In [8], the author put the non-normal subgroup in the left in the factorization of G. To match the terminology
with that in [5], we put the non-normal subgroup K in the right, that is G = HK. Through out the paper, we will use the
terminology used in [5]. We will identify the internal semidirect product G = HK with the external semidirect product
H x4 K, where ¢ : K — Aut(H) is the corresponding homomorphism.

2 Structure of the automorphism group Autk (G)

In this section, we will give the structure of the group Autk (G).Consider a set

Mo — o0\, aeMap(H,H), y€ Hom(H,K),
k=1{ys)l and 5eAu(K) [

where the maps o,y and § satisfy the conditions (C1) — (C4). Let us define a binary operation on the set .# as,

0 "0 ! 0

(? 5) ((qx/ 5/) = (yafxfsy 56’)’ M
where aa’,88’ are the usual composition of maps and (ya' + 8Y)(h) = y(c' (k)6 (Y (h)), for all h e H. Then using

(C1) — (C4), for all h, W' € H, we have (ya/ + 87)(hh') = ( (hh’))S(J/(hh’)) y(a! () ()Y M8 (y (h)y (1)) =
y(e () y(o ()Y )& (v () 8(y (1)) = yel'(h (@ o ()2 IS(y (h)8(Y (1)) = 'h)5(9/(h))}’05 (K)8(y'(h)) =
(o +87)(h)(ya' + 8y)(K'). Thus the map ya' + 8y € Hom(H K). Since a, o € Map(H,H) and 8, 6’ € Aur(K),

oo’ € Map(H,H) and 68’ € Aut(K).

Now =~ aw(W) & = o) = ale(ha W) = a(@m)aa @)
aa (h)(o ( '(H))° ’/fh) = ad'(haa’ (h/)("“f‘w Also, (yal' + 57/)(hk) (o' (1))8 (7/( ) =
( o () > @) (y ()W) = }’( '(h))5 s (}"( ) <5<)):(7(0€'(h))5(}"(h))) = (ya/ +87)(h)°* V. Clearly,
(h))°® )-

/
ao (hF) = a(a (h)¥®)) = a(a (h) . Hence, (yaixf&/ 5%’) satisfies (C1) — (C4). The inverse of an arbitrary

a0\ ' a™! 0
yé) ~ \ =8 lya! 57!

and <é (1)> is the identity element, where 1 denotes the identity group homomorphism and O denotes the trivial group

/

element (? g) IS //fk is given as

homomorphism. Hence My is a group with the binary operation as given in the Equation (1).
Proposition 1.Autk (G) is a subgroup of Aut(G).

ProofLet ©),0, € Autg(G). Then ©;(K) = K and ©,(K) = K. Then ©,0,(K) = 0,(0,(K)) = ©;(K) = K. Also, since
01,0, € Aut(G), ©,0, € Aut(G). Hence, @0, € Autk(G). Further, for all @ € Autx(G), @ '(K) = K. Thus, @~ ! €
Autg(G). Hence, Autk (G) is a subgroup of Aut (G).

Proposition 2.Let G = H X K be the semidirect product of groups H and K. Let My be defined as above. Then the group
Autk (G) is isomorphic to the group M.

ProofLet © € Autk(G). Then define the maps @,y and 6 by means of @(h) = a(h)y(h) and © (k) = o(k) forall h € H
and k c K. Now, for all hh € H,
a(hh)y(hi') = @ (k') = O(h)O (1) = a(h)y(h)ou(K)y(K') = ou(h)ac(h' )" y(h)y(K'). Therefore, by the uniqueness of
representation, ¥ € Hom(H,K) and (C1) holds. Using a similar argument, we get 0 € Hom(K). Now,
a(H)y(hS (k) = O (hk) = O(khk'k) = O(kh) = O(k)O(h) = §(k)a(h)y(h) = a(h)’®)§(k)y(h). Then, by the
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uniqueness of representation, (C2) and (C3) hold. Since @ is a bijection, (C4) holds. As a result, we can assign to every

O € Autg(G) a unique element ((; g) € M. This defines a map v : Autx(G) — A given by O ((;c/ g)

On the other hand, let (? g) € . Then we define a map @ : G — G by O (hk) = a(h)y(h)S (k). Now, for all h, i’ € H
and k,k’ € K, using (C1) — (C4), we get

Thus O is a group homomorphism. Using (C4), it is clear that © is a bijection. Thus ® € Auz(G). Since ®(K) = 6(K) and
6 € Aut(K), ®(K) = K. Hence, © € Autg(G). This shows that the map y is a bijection. Now, let @' (hk) = o' (k)Y (h) &' (k).
Then we have

00 (hk) = O(0' (hk)

~—

Write <Z> for hk, then

(7 5) (£) = Ginsto)
wnd (59) (i) = Garsy o) (1)

!/
for all h € H and k € K. Therefore, y(O0') = <‘ya£x—€6)/ 505’> = y(O)y(O’). Hence, v is an isomorphism of groups.

From now on we will identify automorphisms in Aurg (G) with the matrices in M. Now, we have the following remarks.

Remark. (g (1)) € Autg(G) if and only if & € Aut(H) and a(h¥) = at(h)* forall h € H and k € K.

Remark. (;/ (1)) € Autg (G) if and only if y(H) C Cx (H) and y(h*) = y(h)*, for all h € H and k € K, where Cx (H) = {k €
K | h* = h, ¥V h € H} is the centralizer of H in K.

Remark. ( ) € Autg(G) if and only if k=18 (k) € Cx(H) forall k € K.

10
006
Now, let us consider the following subsets of Aut(H),Aut(K) and Aut(H) x Aut(K),

U={acAu(H)| o(h*) = a(h)*,Yh e H k €K},
V ={8 cAut(K) |k '8(k) € Cx(H),Vk € K},
W = {(a,8) € Aut(H) x Aut(K) | (") = a(h)°® Vh e H k € K}.
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Clearly, U, V and W are the subgroups of Aut(H), Aut(K), and Aut(H) x Aut(K), respectively. The corresponding
subgroups of the group Autk (G) are

A:{(‘g‘?) Ian},Dz{((l)g)|5eV} andE:{(g‘g)l(a,(S)ew}.

Note that, if o € U and 6 € V, then (&, 0) € W. Therefore, U x V < W.
Clearly, E is a subgroup of Autk (G). However, one can check that E need not be a normal subgroup of Autg (G). Let

<~ { (71’ ?) € Aut(G) | Y(H) € Cx(H) and y(h") = y(h)",¥h € H and k € K} .

10 a0
Then, for all (Y 1) € Cand (0 5) c E, we have

GDEDES) (o) ®

Now, for all h,/' € H and k € K, we have pSve () — pd(ra” (W) — pr(@ () — . This implies that Sya~' (1) €
Cx(H). Also, Sya ! (1) = 8y(o (1)) = 8(v(a ()% ) = S(y(a ! ()% W) = (8" (k)yo ' ()& (k) ") =

kSya~'(W)k~! = Sya~'(h)*. Thus < € C and so, C is a normal subgroup of the group Autg(G). Clearly,

10
Sya~'1
ENC={1}. Now, let <‘;‘/ g) € Autg(G). Then,

(58) = () (55) <=

Hence, Autk (G) = CE. Thus, we have proved the following theorem,
Theorem 1.Letr G = H X K be the semidirect product. Then Autg(G) ~ C X E.

3 Computation of Autx (G) for some groups

In this section, we will compute the automorphism group Autk (G) for non-abelian metacyclic p-groups and non-abelian
p-groups (p > 5) of order p*, where p is a prime. The notation Z,, will denote the cyclic group of order m.

Metacyclic p-groups

n

First, assume that p is odd. A non-abelian split metacyclic p-group G is of the form G = (a,b | a?" =1 = b"" ,a® =
a P’y where m >2,n>1,and 1 < r < min{m — 1,n}. Let H = (a), K = (b) and ¢ : K — Aut(H) be defined by
¢(b)(a) =a'*""". Then G = H x4 K.

Note that [H,K] = (a”"") =~ Z,r. Since K is abelian, by [2, Corollary 2.2, p. 490], y(h*) = y(h) is equivalent to y €
Hom(H/[H,K],K). Define % : H — K by yi(a) = b,1 <i < p" when m —r > n and by yi(a) = b"" """ 1< i< pm

when m —r < n. Since [H, K] C Ker?;, it will induce a homomorphism from H/[H,K] to K. Let 7 = (}11 ?) . Then, one can

easily observe that y; (H) € Cx (H). Therefore, Hom(H /[H,K],K) 2= C = (fi) = Z min(m-rn} - Also, Cx (H) = (b?") ~ L
and for b € K, b~'8(b) € Cx(H). Therefore, there are p"~" choices for §(b). If 8;(b) = b'*7", then V = (&) ~ L

and so, D ~ Z . Now, for all & € Aut(H), a(a®) = a(a"7"") = a(a)!"""" = at(a)®. Therefore, U = Aut(H)

s (p—1) and s0, A = Z n-1 (p—1)- Then, by Theorem [5, Theorem 2, p. 207], E = A x D. Now, by Theorem 1, Autg (G)

Z ymingm-rny X (Zpm-1,,_1) % Lyn-r). Hence, Autg (G) is a subgroup of index pmintmat in the group Aut(G).

~
~

Now, assume p = 2. Then, as given in [4], the non-abelian split metacyclic 2-group is one of the following three forms,

HG={a,b|a® =1=0b*",a" =a"t?""),1 <r<min{m—2,n},m>3n>1.
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(i)G={(a,b|d®" =1=b",a" =a"*?"") 1 <r<min{m—2,n},m>3,n> 1.

(iNG = (a,b|a® =1=b",a"=a"),m>2,n> 1.

Let H = (a) ~ Zyn and K = (b) ~ Zy». We will compute the automorphism group, Autg(G) in the above three cases
(i) — (iii). Using the similar argument as for odd prime p above, in the case(i),[H,K] = (a*" ) ~ Zyr and Cx(H) =
(b*") = Zop-r. Then Hom(H /[H,K],K) = Zpmingm—rn} - ThUS C =~ Zoymingin—rny, A = Z X Zym—2 and D =~ 7y X Zipn—r—1. Hence,
Autg (G) =~ Lymingm—rny X (Lo X Liym—2 X Ly X Liyn—r—1).

In the case (ii), [H,K] = (a?) ~ Zow-1 and Cx(H) = (b*) ~ Zynr. Thus, C =~ Zp,A =~ Ly X Lism—2 and D ~ Zy X Zopyr-1.
Hence, Autk(G) =~ Zy X (Zy X Zom-—2 X Zy X Zon—r1). Similarly, in the case(iii), [H,K] = (a*) ~ Zyn-r, and Cx(H) =
(b*) ~ Zyn1. Thus, C ~ Z, A ~ Zp X Zym2 and D =~ Z X Zpn-r-1. Hence, Autg (G) == Zn X (Zo X Zom2 X Lo X Loyn2).

Non-abelian p-groups of order p* (p > 5)

Burnside in [3] classified p-groups of order p*, where p is a prime. Below, we list 10 non-abelian p-groups (p > 5) of
order p* up to isomorphism.

ab|a” =1="bP a® =a'*r),

2 2
a,bla” =1=0bP"a" =al*P),

2
a,b,c|a?”” =1=>b" =cP ,cb=aPbc,ab = ba,ac = ca),

Gy = (

(i)Ga = (

(ii))G3 = {

(iv)G4 = {a,b,c | a?’ =1=bP =P, ca=a'*Pe,ab = ba,ch = be),

V)Gs = <abc|ap2:1fb”fcpca:abc ab = ba,bc = cb),

(vi)Gg = (a,b,c | ap =1=b? = cP,ba=a'*Pb,ca = abc,bc = cb),

(vii)G7 = (a,b,c | a’ =1=pP = c?.ba = a'*Pb,ca = a'*Pbc,cb = a’bc),

(viii)Gg = (a, b, ¢ | a’ =1=0pP = c?,ba = a'*Pb,ca = a'*%bc,cb = a®’bc,d # 0,1 (mod p)),

(ix)Gy = (a,b,c,d | a? = bP = c? =dP = 1,dc = acd,bd = db,ad = da,bc = cb,ac = ca,ab = ba),
x)G1o = (a,b,c,d | aP = bP =P =dP = 1,dc = bed,db = abd ,ad = da,bc = cb,ac = ca,ab = ba).

Observe that G| and G, are metacyclic p-groups. Autx (G1) and Autk (G,) (for the corresponding K) can be calculated as
in the previous case.

The group G3. Let H = {(a,b | a” =bP = 1,ab=ba) and K = (c | c” =1). Then G3 ~ H x4 K, where ¢ : K — Aut(H) is
given by ¢(c)(a) = a and ¢(c)(b) = aPb. Note that [a“b", c] = (a“b*)c(a"b*) "' ¢~ = a“b’(a**P'b")~! = a~P". Therefore,
[H,K] = (aP) ~ Z,. Also, if ¢* € Ck(H), then a'b’ = c’a'b/c™* = a'*P/*b/. Therefore, js =0 (mod p) for all j and hence,
Ck(H) = {1}. This implies that Hom(H /[H,K],K) is the trivial group. Since K is abelian, by [2, Corollary 2.2, p. 490]
C is the trivial group. Note that, each a € Aut(H) defined by a(a) = a’b/ and o (b) = a”"b' can be expressed as a matrix

<’; {),Whereogigpzl,gcd(p,i) =1,0<m,j<p—Tland1<1<p—1.Also,letd e Aut(K)~Z,_ be defined

by 8(c) =", where 1 < r < p— 1. Now, if (&, 8) € W, then (i) a(a®) = a(a)®( and (ii) a(b¢) = (b)), By (i), a'b’ =
a(a) = a(a®) = a(a)®®) = (a'b))" = a'aPIb/ = a'*P"IbJ. Thus, prj =0 (mod p*) which implies that j = 0. Now, by (ii),
APyl — g (aPb) = a(bC) = a(b)5©) = (aPmpl) = g (bl = aPmarripl — aPm+ripl Thus, i = 1 (mod p). Lett be

a primitive root of 1 (mod p) and x = ((I—Sp O) 51) ,y= (G (1)) ,51) and z = ((I—Sp O) 5,),where Op(c) =cP.

Then W ~ (x,y,z | x?(P~1) = 1 =y = 2P(P=1) x7 = zx,xy = yx, 77" *y’71> Therefore, W =~ (Z X Zp(p—1)) X Zp(p—1)
and 80, E =~ (Zp X Zp(p—1)) X Zp(p—1)- Hence, by Theorem 1, Autk (G3) == (Zp X Zp(p—1)) X Zp(p—1)-

The group G4. Let H = (a,b | a” =bP = l,ab=ba)andK = (c | c? =1). Then G4 ~ H x4 K, where ¢ : K — Aut(H ) is
given by ¢(c)(a) =a'** and ¢(c)(b) = b. Note that [H,K] = (aP) ~ Z,. By the similar argument as in the case G3 above,
Ck(H) ={1}. Since K is abelian, by [2, Corollary 2.2, p. 490] C is the trivial group. Note that, any o € Aut (H) defined by,

a(a) = a'b’ and a(b) = a”"b' can be expressed as a matrix ,where 0 <i < p?>—1,gcd(p,i)=1,0<m,j<p—1

L]
m [
and 1 <1< p—1.Also, let 5 € Aut(K) ~ Z,_; be defined by 6(c) = ¢, where 1 <r < p—1. Now, if(oc 0) € W, then
(i) a(a®) = a(a)®© and (i) a(b®) = a(b)%(©). Note that a(b¢) = a(b) = a”"b' and a(b)%(©) = (aP"b)*" = (aP™) bl =

aPm1+p) pl = gPmpl Therefore, each o € Aut (H) satisfies (ii). Now, by (i), (a'b/)'*? = a(a' ) = a(a®) = at(a)®©) =
(a'b))" = (a') b) = a'"P)bi. Thus, i(p+1) = i(1 + p)” (mod p?) which implies that r = 1. Therefore, W ~ Aut (H) ~
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Zp—1 % (((ZpxZp) X Zp) ¥ Zp_1). Hence, E ~ Zp_1 X (((Zp X Lp) ¥ Lp) x Lp—1). Thus, Autg (Ga) ~ Zp_1 % (((Z)p x
Zp) X Lp) X Lp1)-

The group Gs. Let H = (b,c | b? =P = 1,bc = cb) and K = (a | a’ = 1). Then Gs ~ H x4 K, where ¢ : K — Aut(H )
is given by ¢(a)(b) = b and ¢(a)(c) = b~ 'c. Note that [H,K] = (b) ~ Z,. Also, if a® € Cx(H), then b'c/ = a*bic/a™ =
b*=is¢l. Therefore, s = 0 (mod p) and Cx(H) = (aP). Since K is abelian, by [2, Corollary 2.2, p. 4901, y(h*) = y(h) is
equivalent to y € Hom(H /[H,K],K). Define ¥ € Hom(H /[H,K],K) by %(b) = 1 and % (c) = a’* forall 0 <k < p— 1.
Since [H,K] C Kery,, it will induce a homomorphism fromH/[H,K|to K. Let ) = (;I (1)> . Then, one can easily observe
that y; (H) C Cg(H). Therefore, Hom(H /[H,K|,K) ~ C = () ~ Z,. Note that, any & € Aut(H) ~ GL(2, p) defined as,

a(b) =bic/ and a(c) = b'¢™ can be represented as a matrix, ,where 0<[,j<p-—1land1<im<p—1.Also,

ij
I'm
let § € Aut(K) ~Z,(, ) be defined by 8(a) = a’, where r € Z 2, gcd(p,r) = 1. Now, if (a,8) € W, then (i) a(b) =
a(b)?@ and (ii) a(c?) = a(c)®@. By (i), b'c/ = a(b) = a(b?) = a(b)®@ = (bic/\* = bib~"ic/ = bi~"ic) Thus, rj =
0 (mod p) which implies that j = 0. Now, by (ii), b~ c" = a(b~'c) = a(c?) = a(c)3@ = (ble™)@ = bl (™)

b'b="™c™ = b!="™c™. Thus, i = rm (mod p). Let ¢ be a primitive root of 1 (mod p) and x = <<i ?) ,51), and y =

t 0
(t+p)~'t
p(p—1) X Lp(p-1))-

<<t+p O) 5,>, where 8y (a) = aP. Then W =~ (x,y | xP(P~1) = 1,yP(P=1) = 1 yxy~! = x*), where x* =

0
Then W > Z,(,—1) X Zyp(p—1) and 80, E == Z(,_1) X ZLyp(p—1)- Hence, Autx (Gs) ~ 7, x (Z

p(p— p(p—

The group Gg. Let H = {a,b | a” =bP = 1,ba=a'"Pb) and K = (¢ |c? =1). Then G ~ H x4 K, where ¢ : K — Aut (H)
is given by ¢(c)(a) = ab and ¢(c)(b) = b. Note that [H,K| = (b~',a’) ~ Z, x Z,. By the similar argument as in the case
G3 above, Cx(H) = {1} and hence C is the trivial group. Now, & € Aut(H) as given in [2] can be expressed as a matrix
(g ?),Where n(a)=d,0<i<p*—1,gcd(p,i)=1,B(b)=a?’,0<j<p—1,E(a)=b",0<k<p—1,and 1(b) =b.

Also, § € Aut(K) is given by 8(c) = ¢",1 < r < p— 1. Now, if (&, 8) € W, then (i) a(a®) = at(a)®© and (ii) ot(b®) =
(b)), Note that o (b°) = a(b) = aPib and at(b)2©) = (aPib)e" = ("ac™")Pib = (ab)Pib = api+rp™ 5= ppirt1 — gpip,
Therefore, each oc EAut(H) satisfies (if). Now, by (i), aP/b*+! = a(ab) = a(a®) = o(a)®) = (a'bk)" = (c"ac™") bk =

(ab")ibk = a5 pritk, Thus, ri = 1 (mod p) which gives thati =2j+ 1 (mod p). Therefore, i € {(2j+1)+Ap|A €

Zp}.Lett be a primitive root of 1 (mod p) andx:((w(r)po) 6,) ((1 0) 51),andz=((1$p0) 51),where

Op(c) =cP. Then W =~ (x,y,z | xP(P=1) = 1 = yP = 77 xyx~! = y°,xz = zx,yz = zy), where y* =

1 . Hence,
t+p) 1
W ~Z, % ((Zp x ZLp) ¥ Zp—1) and so, E ~ Z,, X ((Zp X Lp) x Lp—1). Thus, Autg(Ge) ~ Zp X ((Zp X Zp) X Lp_1).

The group G7. Let H = (a,b | a” = bP = 1,ba = a'*Pb) and K = (c | ¢ = 1). Then, G; ~ H x4 K, where ¢ : K —
Aut(H) is given by ¢(c)(a) = a'™Pb and ¢(c)(b) = a’b. Note that [H,K]| = (b,a’) ~ 7, x Z,. By the similar argument
as in the case G3 above, Cx(H) = {1} and hence C is the trivial group. Each o € Aur(H) can be expressed as a matrix

(2 ?) where 1(a) = a',0 <i < p? —1,gcd(i,p) = 1, B(b) = a?,E(a) = b*,0 < j,k < p—1, and 1(b) = b. Also,
8 € Aut(K) is given by 8(c) =¢",1 < r < p— 1. Now, if (a,8) € W, then (i) ot(a®) = a(a)®( and (ii) (b)) = e ()3,
( )]

By (i), aPitprip = a(a’b) = a(b°) = a(b)S(c) — (apjb)c’ — (Cracfr)pj(crbcfr) = (a 14+p*©

r(r+|)

)i arh) =

ar’i (ab”)Pia"Ph = aPI*P"h. Thus i = r (mod p). Now, by (i), a"+P)TPipk+l = g (a'*Ph) = a(a®) = o(a)®©) =
(@b = (cac™")i(c"be™ )k = @t pri(@Ph)k = it trekpritk - Thus, ri = 1 (mod p) and
ip+pj = pri(*H) + rpk (mod p ) implies that i + j = r+ rk (mod p). So, j = rk (mod p). Using r =i (mod p) and
ri =1 (mod p), we get i# = 1 (mod p?). Let tr be a primitive root of 1 (mod p) and
11 10 t+p0

x = ((O 1),61),y = (( 0 1) 61> and z = (( 0 1),5[), where  Op(c) = c¢P. Then
W~ (yz |2 =1 =y = 2P0 xy = yx l,zxz_l = x,yz = 29) = Zpp-1)y X (Zp x Z) and so,
E ~Zy,-1) % (Zp x Z). Hence, AutK( 7) p(p X (Zp X L) = Dap X Lp(,—1), Where Dy, is the dihedral group of
order 2p.
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The group Gg. Let H = (a,b | a” =bP =1,ba= al™Pb) and K = (c | c? = 1). Then Gg ~ H x4 K, where ¢ : K — Aut (H)
is given by ¢(c)(a) = a'T¥Pb and ¢(c)(b) = a??b, d #0,1 (mod p). By the similar argument as for the group G7, we get,
C is the trivial group and E ~ Z,(,_1) X (Zp ¥ Z3). Hence, Autk (Gs) =~ Dap X Zp(p—1)-

The group Go. Let H = (a,b,c |aP =bP = ¢ = 1,ab = ba,bc = cb,ac = ca),and K = (d | d” = 1). Then Gg ~ H x4 K,
where ¢ : K — Aut(H) is given by ¢ (d)(a) =a,¢(d)(b) = b, and ¢(d)(c) = ac.

Note that [H,K]| = (a) ~ Z,. By the similar argument as in the case G3 above, Cx(H) = {1} and hence C is the trivial

group. Note that, Aut(H) ~ GL(3,p) and Aut(K) ~ Z,_;. So, any automorphism ¢ € Aut(H) can be identified as an
i jk o

element [ / m n | in GL(3,p). Let a € Aut(H) and § € Aut(K) be defined as, a(a) = a'b/c*, a(b) = d'b™c", a(c) =
App

a*b*cP, and §(d) = d", where 1 <i,m,p,r < p—1and0< j k,I,n,A,u < p—1.Now, if (&, §) € W, then (i) a(a?) =

a(a)®@, (i) o(b?) = a(b)® @D and (iii) a(c?) = at(c)?).

Note that, d’ed™" = a’e. By (i),
a'bick = a(a) = a(a?) = a(a)®@) = (d'b/K) = a'bi (d"cd ") = d'b! (a"c)* = a’t"™*bIck. Therefore, rk = 0( mod p)
which implies that k = 0. Now, by (ii), a'b"c" = a(b) = a(b?) = a(b)?D = (d'b"c")" = a'+b"c". Therefore,

rn = 0( mod p) which implies that n = 0. By (iif),
adtrpitHer = a(ac) = a(c?) = a(c)® @ = (a*bHcP)? = a*HPEP. Thus, i = rp and j = 0. So, we have,
rp 00 t00 100
o= |1 mO]. Let t+ be a primitive root of 1 (mod p) and u = 010,86 ], v= 0r0]),6 |,
Aup 001 001
t00 100 100 100
w= 010,86 1|,x= 110]),6),y= 010,61 ], z= 010],06 |, where &(d) = d°. Then
001 001 101 011
W~ (u,v,w,x,y,7 | uP™l =1 =yP" L = WPl =xP = yP = 2P v = vu,uw = wu, uy = yu,vw = wv,vy = yv,wz = Iw,xy =
vz = ot = X uzl = Zool = vl = 2wl = 2 Lwyw ! =y o = xyz) o~

((Zp x Zp) X Zp) X Lp—1) X (Zp—1 X Zp—1) and so, E =~ (((Zp x Zp) X Zp) X Lp—1) X (Zp—1 X Zp_1). Hence,
AMIK(G9) ~ (((Z[, X Zp) X Zp) X prl) X (Zp,| X prl)

The group Go. Let H = (a,b,c |a? = bP = c” = 1,ab = ba,bc = cb,ac = ca) and K = (d | d” = 1). Then, Gjo ~ H x4 K,
where ¢ : K — Aut(H) is given by ¢(d)(a) = a,¢(d)(b) = ab, and ¢ (d)(c) = bc.

Note that [H,K] = (a,b) ~ Z, X Z,. By the similar argument as above, C is the trivial group. Note that, Aut(H) ~
ik

GL(3,p) and Aut(K) ~ Z,,_. So, any automorphism o € Aut(H) can be identified as an element | / m n | in GL(3, p).
Aup

Let a € Aut(H) and § € Aut(K) be defined as, a(a) = a'b/ck, a(b) = a'b™c", a(c) = a*b*cP, and §(d) = d”, where

1<im,p,r<p—1and0<jklnApu<p—1 Now,if(a,8) € W,then (i) a(a?) = a(a)®?, (i) a(b?) = a(b)°

and (iii) a(c?) = a(c)®@,

Note that, d’bd " = a’b and d"cd " = a™ T b'c. By (i),

a'bick = a(a) = a(a?) = a(a)® @ = (a'bi X = a'(d"bd ") (d"cd ") = d(a’b)

r(r—1) r(r—1)

(a=T Do)k = atritkT pitrkek, Thus &k = 0 and j = 0. Now, by (ii),
atlpmet = afab) = a(b?) = a(b)®@ = (b = abtmen it pntnen, Thus, n = 0 and i = rm. By (iii),
adtrpmtier = a(be) = alct) = a(c)®@ = (atbHcP)? = A purp p Thus, m = rp and
?p 00
I=ru —|—pr<r—2_1) (mod p). So, we have,x = | [ rp O |, where [ =ru —i—p@ (mod p). Let ¢ be a primitive root of
A oup
t00 200 100
1 (mod p) and x = 0t0].,6 ],y= 0r0|,6 | and z= 110,60, |, where &(d) = d°. Note that,
001t 001
©2024 YU
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100 100
(zy = (|110],({010]) is an abelian group of order P2 Therefore,
011 101
1 00
W o~ (ryz | 70 =yl = P xy = yraz = oy ! = ), where ¢ = [¢7' 1 0]. Thus
t=21 11

W ~ (Z, x Zp) X (Zp—y X Zp—1) and so, E o~ (Z, x Zp) X (Zp—1 x Zp—1). Hence,
Autg(Gyp) = Lp—1 X ((Zp X Zp) X Zp_l).
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1 Introduction

The Fibonacci sequence and its generalizations offer a variety of intriguing features and uses in science and art (see, e.g.,
[9,10]). The Fibonacci and Lucas numbers { f; } and {/; } are expressed as the recurrence relations, respectively, for 4 > 0

Jn+2 = fut1 + fn with initial conditions fy=0 and f} =1,
Ipyo = lp41 + 1 with initial conditions lp=2 and [} =1

Filipponi [5] introduced the incomplete Fibonacci and Lucas numbers. The incomplete Fibonacci numbers Fj,(u) and
Lucas numbers L (v) are expressed, respectively, by

Fh(u)g)(h;i), (L%J Suéhl)

and

Lh<v>=ihh,-(hi_i)7 (L%JSvsh—l)

i=0

where |x] is the largest integer less than or equal to x and (}) = - Itis obvious that

Kl (n—k)!
A= f and (2 =0,

where the 7—th Fibonacci and Lucas numbers are denoted by fj, and [j,, respectively.

The generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers were examined by
Djordjevic [3]. The incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers were defined and studied by
Djordjevic and Srivastava [4]. The generating functions of the incomplete Fibonacci and Lucas numbers were discovered
by Pintr and Srivastava [18]. Ramrez [14] presented the bi-periodic incomplete Fibonacci sequences, the incomplete
k—Fibonacci and k—Lucas numbers [15]. The incomplete Tribonacci numbers and polynomials were introduced by

* Corresponding author e-mail: hmenken @ mersin.edu.tr
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Ramirez and Sirvent [16]. The incomplete Fibonacci and Lucas p—numbers were defined by Tasci and Firengiz [26].
The incomplete bivariate Fibonacci and Lucas p—polynomials were defined by Tasci et al. [27]. We refer to other studies
on incompletes of some impressive numbers and polynomials [2,11,12,13,17,20,25].

In [6,22,23,28], the (p,q)—Fibonacci and (p,q)— Lucas sequences are defined, respectively, by

Fh(pyq) _ th(f,lq) +th(f’2q), Fo(p"’) -0, FI(M) —1, (1)
and
L(p q) _ pL( )+qL§l 2)7 L(()pvq) _ 27 L(ll’vq) =p.

where p and g are real coefficients.
In [8,19,24], the (p,q)—Fibonacci and (p,q)— Lucas sequences are also given by the well-known formulas

h—1
Sl
P =y <’. >p’“‘2f‘1qf, h>1

j=0 J

and

B

2] h o

Z h— ( >Ph_2161]7 h>1.
=0 J

Note that Fh(p 9 and L,(f 0 reduce to the Fibonacci and Lucas sequences Fj, and Ly, respectively, when p = ¢ = 1; see,
respectively, sequences A000045 and A000032 in [29].

According to Filipponi, the specific use of well-known combinatorial expressions for Fibonacci and Lucas numbers yields
two interesting classes of integers (specifically, F;, (k) and L, (k)) ruled by the integral parameters n and & [5]. In this paper,
we examine how the specific application of combinatorial phrases for (p,q)—Fibonacci and (p,q)—Lucas numbers yields
to two interesting classes of integers governed by the integral parameters n and k. Moreover, we derive some identities
and the generating functions of the incomplete (p,q)—Fibonacci and (p,g)—Lucas numbers.

2 The Incomplete (p,q)—Fibonacci Numbers

Definition 1.The incomplete (p,q)—Fibonacci numbers F<( q)) are defined as

h—j—1\ , 91 h—1 N

F((hpkcg)_zb( ; )ph 2j lqj, (1§h;0§k§LTJ:h)- )
j=

The numbers F(( q)) are displayed in Table 1. It shows the first few /& values and the corresponding permissible k values:

Table 1: The first few values of the incomplete (p,q)—Fibonacci Numbers

m\k | 0 1 2 3
1T [ 1
2 P
3| P pPtg
4 | P pP+2pg
s | pt pt+3p% pt43p7q+4
6 | p° p+4p’q P +4pPq+3pq’
7 | p® p+5ptq PO +5ptq+6p7d? PP +5ptq+6p° +4°
8 | p’ p'+6p°q p +6pg+10p°¢>  p’+6p g+ 10p ¢ +4pg’
9O | P P+7p% pP+7p8q+15p*¢  pP+7p8q+15p% ¢ +10p°4
10 | p° pP°+8p’q pP4+8pTq+21p3¢% pPP+8p q+21p° 42 +20p3 43

The relation (2) has some special cases as follows:
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LR =ph (h>1)
20 FP = ph 4 (h=2)ph g, (h=3)
h—4)(h—3
3.0 R =p 4 (h=2)p" s+ )2( LS, (n=5)
O e N (Y
h h_

5 F(Paq) _ }:‘}1([7711)__pq(7 D (h even) h>3
T (hh-1) T ( )2 1 , (h=23)

' FPY—¢")  (h odd)

2.1 Some identities of the numbers F(%)

)

Proposition 1.The incomplete (p,q)—Fibonacci numbers F((hp kq) can be given by the recurrence relation

(p.9) (p.9) (p.9) 7
o) = PPt ey T4 ggy s 0k <h. A

Proof.Using Definition (3), we obtain the desired equality as follows:

ktl /p — ko /p—j— . -
-] .]
pF((h 1)[( N qF(pq ( ) h— 2]+lqj } ( ) h—2j—1_j+1

™

j=0
k+1 h— k+1 h— ) )

_ < .J)ph zj+1qjJr ( -1]>ph—2j+1qj
=\ J =V

-1 [("7)+ o)1)
=0 j j—1 —1
k+1 h— 1 . .

_ < {Jr >ph—2j+1qj_0
Jj=0 J

_ p(pa)

=K (h+2,k+1)

Proposition 2.The following identity holds:
(p.q) (p.a) (p.q) h—k—=1\ 4 o1 ket
Frrwy = PEoin T 9F sy — ( v )P q (4)

Proofiit is clear that

£[07) ()

S (h—J\ 2 u h—2j+1
ZZ( )p ”q“r):(J 1)19 gl

j=0

—1
1\
F(lerqlk + Z < >ph Hlgrt

j=—1
k .
) h—j—1 i1 i h—k—1 o
:pF((th}ql),k)"'(l)th"'qZ( ; )ph 2j Iq]_( ) )ph 2k lqurl
j=0

h—k—1 Y
- pF((lﬁ?,k) _i_qF((hlil-,g)_( ) ) P2k g
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Proposition 3.The following identity holds:

y rippa)  _ plpa) h—r—1
Zb (1) r'q ]F(th] k) = Frzraery 0Sks— ®)
=

Proof:-We use induction on r. The sum (5) is plainly valid for » = 1; Assume it is true for a specific case r > 1. In order to
perform the inductive step r — r+ 1, we get

Fra) v r i1 plpa)

(A+2(r+1) k(1)) ,Z -1 rla (hj kt-j)
- r—j 2 (Ps9) r r+1 2 5(p.4q)

qg < > g ]Fh+jk+])+ <r+1)p T E i k)

% 1 (pa)
Z< > - F(h+]k+j)

_ r(rg ji+1 (p.q)
qF(h+2rk+r +0+ Zl< ) g ]F(h+j+1k+j+1)
=

_ r—j(P:q) r —1_r+1(pq)
th+2rk+r +PZ ( ) A R (1>p 4" Fop

(r.9) (P.9)
qF(h+2rk+r) T PE ot k) TO

Proposition 4.For n > 2k + 2, we have

i 2 -(p.q) o ( q) r(p.q)
ZP gt Fif:qu k)~ q" F(hp+qr+1,k+1)_pF(’f)ﬂ“qlvk“)' ©

Proof:-We use induction on r. The sum (5) is plainly valid for » = 1; Assume it is true for a specific case r > 1. In order to
perform the inductive step » — r+ 1, we obtain

-

i+2 -(P,q) 1 j+2 -(P:q) +2 1-(P:q)
Pl Floja = PZP” TG T4

J=0
_ r+1(p.4) r(P.g) r+2 - (Pq)
=P (‘1 " F(hp+qr+1 1) P F(;iuql k+1)) +q"" F(;f:uqu)
_ ol (p.q) (p.q) r+1(p.9)
=q" (pF(h+r+lk+l)+qF(h+rk)) P Flt )
r+1 (Pq) r+1 (Pq)
=q" F(}f;+qr+1k+1) P F(if:qu k+1)

In [24,1], note that if p and ¢ in (1) are real variables, then Fh(p ) Fy(x,y) and hence they correspond to the bivariate
Fibonacci polynomials expressed as

Fh(x7y)ZXFhfl(x)y)+th72(x7y)a FO(-xay):O7 Fl(-xay):17 hZZ

Lemma 1.In [1], the following relation holds:

IFP)  hEPD 4 q(h—2)FPS —2pFPY

dap p2+4q

Lemma 2.For h € Z*, the following equality is true:

f}. (h —j- 1)ph2,-,q,~ _ ((h=1)(P*+49) = hp) " — pg(h—2) Y 4+ 2p2F, ")

frd J 2(p*+4q)
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Proof.-We are aware that

h
—1 .o
prq Z< J > h2jqj

By derivating into the previous equation with respect to p, we get

From Lemma 1, the proof is completed.

Proposition 5.For h € Z™, the following equality is true:

fi o _ (2R ht3) (P> +4q) + p)E" Y + pa(h =23 2p°F," ]!
& 2(p? +4q)

Proof.From Lemma 1, we obtain

_ h—1 h—1 h—1 h—1 h—2 h—3
(s)r +[<0)P (7)o
h=1\ 1 (P72 s h—=h—=1\ ;i1 j
(s (e
A h—1 h—3 h_ho1 -
=(h+1) phlJr/’l ph_3q+...+ . ph—Zh—lqh
0 1 h
h .
h—j—1 o
Z (h—j+1) ( Y )ph2]lq]
j=0 J
; h=J=1\ poict ;W (h=i—=1\ iy
(h“)Z( : )p“’ 'q’—ZJ( )Y

Jj=0 J Jj=0 J

((h=1)(p*+4q) —hp)E"" — pq(h — 2)F"Y + 2%,
2(p* +4q)
((2h—h+3)(p*+4q) +hp)F"" + pa(h = 2) RS — 2p ")
- 2(p* +4q)

(P.a)
= (hath+ 1)F,"% —

3 The Incomplete (p,q)—Lucas Numbers

Definition 2.The incomplete (p,q)—Lucas numbers Lg Z)) are defined by

k .
(ra) _ h (h=Jj\ naj ; : hy s
L(ZZ) th—_]< j >P q’, <1§h,0§k§L§J_h)' )

The numbers LEZ’Z)) are displayed in Table 2. It shows the first few /& values and the corresponding permissible k values:
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Table 2: The first few values of the incomplete (p,q)—Lucas Numbers

n\k| 0 1 2 3
1 P
2 | p? PP+2q
3| P pPP43pg
4 | pt pt+dapg p+4pPq+24*
5 | P pP+5pg P’ +5p°q+5pq°
6 | p° pP+6pig P +6p*q+9p°q pe +6p *q+9p%¢* +24°
7| P P +7p°q P +Tpq+14p3¢ p7 +7p q+ 14p3q +7pq’
8 b pd+8pg P8 +8pPq+20p* 42 P8 4+8p0q+20p 4% + 16p2¢°
9O | p°  PP+%’q  PP+97q+21p°¢ PP +9p q+27p q2 +30p°q°
10 | plo p'%+10p8%¢  p'04+10p8g+35p°¢%  p'O+10p8q+35p°4% +50p* 43

The relation (7) has some special cases as follows:

L(pq) h (h>1)

(h,0) )2

—Lgf)) pl4hp' g, (h>2)
h(h—3
—L(8) = p+ hph=? +7( 5 L4, (h>5)
L =100z 1)
(r.g) (I

(r.g9) L 24"z} (h  even)
_[\Pd h>2

(hi—1) {L(p,q) hpq(%) (h odd) ( )

3.1 Some identities of the numbers L 5 Z

—~
N

Proposition 6.The following identity holds:

I3 qu) _ qF(pyq) 4+ Flpa) 0<k<h.

(
(h.k) (h—1k—1) T T (h+1k)

Proof.Using Definition (2), we obtain the desired equality as follows:

; h—j—2 h—j A
AT I W (A I 0 W (R

j=0 J
k
h 1 o h
ZQZ( .]1 ) h21q11+2( .]) h—2j j
=t =0\ J
h—j—1 h—j _ h—1
| ) (=)
=0 J— J -
k .
h h_-]) h—=2j j (p.q)
=) —\ . )P ¢ -0=Ly
,Zz)hj( J (k)

Proposition 7.The incomplete (p,q)—Lucas numbers LEZZ)) can be given by the recurrence relation

(Pa) _ 7 (Pa) (p.a) N
Ly gy = PLi i ey T qL(h  0<k<h

Proof.Relation (9) can be proved by using (8).
Proposition 8.The following identity holds:

(pg) _ r(pa) (pa) h (R=k\ o ki
Lty = PLy o +aly, )_hk( )P g

®)

©)

(10)
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Proof.Relation (10) can be proved by using (4) and (8).

Proposition 9.The following identity holds:

> (")e (P-4) (p.a)
'Zz) (J) 1 Jp L(h+1 k+j) — L(h+2r,k+r); 0
Jj=

IN
Pl
IN
=
|
<

1D

[\

ProofRelation (11) can be proved by using (5) and (8).

4 Generating Functions of the Incomplete (p,g)—Fibonacci and (p,q)—Lucas Numbers

The generating functions of the incomplete (p,q)—Fibonacci and (p,q)—Lucas numbers are given in this section.

Lemma 3.Assume {T},}, _ is a complex sequence that obeys the non-homogeneous second-order recurrence relation:
T,=aTly_1+ BT, 2+Ry, h>1,

where ., 3 € C (the field of complex numbers) and Rj, : N — C is a sequence. Then the generating function U(t) of Tj, is

G(l)+T0—R0+(T1—OCSo—R1)t

vt = 1 — ot — Br?

where the generating function of {R;,} is denoted by G(t) (See [18]).

Theorem 1.The generating function of the incomplete (p,q)—Fibonacci numbers F(( g) is

)

x2gkH! (p.9) (p.q)
- ,l,]x)url +Fyiy taby X
Gpaul®) = 1 — px—gx?
Proof.-Assume £ is a fixed positive integer. Using (2) and (4), F< ktg) Ofor0<h<2k+1, F((Qiz)l 0= = F}, 42141, and

(ra) _ ppa)
F (z’?im F, 2/f+qz’

(pa) _ -(p.q) (p.) h—k—=3\ 4 23 ket
R —pF(}f’_ql7k)+qF(,f_'727k)—( A

; _ rpa) _ plpa ) Fpa)
Now consider Ty = Fi5, ?) ), Ti = F, and T, = Fj, D gy

Also, consider Ry =R =0,

etk =2\ 2 ki1
R, = .
h <h—2 >P q
Here,
2kt
Gx)= —4
(1_px)k+l

is the generating function of the sequence {R),} (see [21]). As a result of Lemma 3, we obtain the generating function
Gi,q,k(x) of the sequence {7}, }.

(p.q)
Fing)

Theorem 2.The generating function of the incomplete (p,q)—Lucas numbers is

2—px)q (p.9) (p,q)
L (x): ((1;%4»[4 +qL2k Ix

G
p:a-k 1 — px—gx?
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Proof.Assume k is a fixed positive integer. Using (2) and (4), LEZ’Z)) =0for 0 < h <2k, P9 — Lé’l';’q), and LP9  _

(2k.k) (2k+1k)
e,
(ra) _ 7 (pa) (pg)  h—2 h—k—=2\ 4 o2 k41
Ly = PEn—10 92 ~ "5 2 (h k-2 q
: _7(pa) ) _ 7(pa)
Now consider Ty = L(Zk,k)’ T\ = L(2k+17k) and 7, = L<n+2k7k).
Also, consider Ry =R; =0,
n+2k—=2(h+k—=2\ ;5 ;1
" htk—2 ( h—2 )p 1

Here,

x2(2 = px)gtt!
G(x) = ((1 _ ;C))kcil

is the generating function of the sequence {R;, } (see [21]). As a result of Lemma 3, we get the generating function Gé q (%)

of the sequence {7}, }.

5 Conclusion

In this paper, the incomplete (p,q)—Fibonacci and (p,g)—Lucas numbers are defined. Some properties and identities for
them are given. The generating functions are derived. From these results, we can reach familiar results for some special
numbers, such as Fibonacci, Lucas, Pell, and Jacobsall, as special cases
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1 Introduction

A single combined method for random variables arranged in increasing order is known as the generalized order statistics
(gos). This method is proposed by [1] and provides certain other methods for ordered data as special case. The density
function of all of the variables in a gos is given by [1] as

gl,...,n:n,[,K(ylv' .. ;yn) =K (H’;;]l ’yj) [1 - G(yn)]K_lg(yn)

<1 {{1 —G(yj)}’g(yj)}, (1

where the quantities n, ¢ and Kk are the parameters of the density function such that ¥, = Kk + (n —h) (r + 1). The gos
produces different other methods for ordered data for different values of the parameters. The most popular of these are
ordinary order statistics, kth record values; by [2]; and simple record values by [3].

The probability density function of a single gos is

pas ) = g 0= GO G0)) ®

where C,—1 =[T;_, ¥; and

[17(17u)l+1}/(t+1) 11

ft(u)hz(”)hf(o){_ln(l—u) st=—1
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The probability density of any two gos is given as

e 00 s 02 1= GOl 7 O()

< [1=G )" [ {G (v2)} = {G ()} 7, 3)
for —eo < y; < yy < eoand

gtk (V1,)2) = (

e () = (A =uw)f™ 1) £
' “In(l—u)ir=—1.

The gos is a single general method to model the data arranged in increasing order. Different simple methods are the special
cases of this method for specific values of the parameters. The simple order statistics is obtained from gos if + = 0 and
k = 1. The model reduces to kth record values of [2] for t = —1. The simple upper record values; [3]; are obtained from
gos fort = —1 and k¥ = 1. Some more details can be found in [4] and [5].

Several authors have used different distributions to study their properties in context of the gos. A lot of work has been
done in obtaining expressions to compute moments of gos recursively for specific distributions. A general expression for
relations between moments of gos for any parent distribution has been obtained by [6] and [7]. Pareto and related
distributions have attracted several authors to obtained the recurrence relations for moments of gos and its special cases.
The relations for moments of generalized Pareto distribution were obtained by [8]. The expressions for recursive
computation of moments of record values for Pareto and generalized Pareto distribution were obtained by [9] and [10].
The recursive expression for moments of gos for Pareto distribution are developed by [10]. The relations for recursive
computation of moments of gos for Kumaraswamy Pareto distribution are developed by [11]. Some characterizations for
the distributions using gos have been given by [12].

The area of recursive computation of moments for transmuted distributions is yet to be explored. This paper deals with
developing some recursive methods to compute moments of gos for a transmuted Pareto distribution. A brief about the
distribution is first given in the following section.

2 The Transmuted Pareto Distribution

The Pareto distribution; [13]; has tremendous applications in economics and finance. The distribution has been proposed
as a suitable distribution for modeling income. The distribution has following density and distribution function

oac?
f(y;kaa):ya_H yyzc, (OC,C) >0

and

o
c
F(y;k;o)=1— <—) ;y>c, (a,¢) > 0.
y

The distribution is studied extensively by several authors. Various authors has given different modifications of the
distribution. A modification of the Pareto distribution has been given by [14] by using the technique of [15] and is
referred to as the transmuted Pareto distribution. The density and distribution functions of this transmuted Pareto
distribution are

g(y);cfl |:1+)LZ)L{1<§> H s y>c, (o,c) >0, 4)

o[- ()4 -6 roe oo

where A is the transmutation parameter such that —1 < A < 1. The transmuted Pareto distribution has wide spread
applications in modeling of financial and geological data. It is easy to see that (4) and (5) are related as

and

c

1—G<y>=§g<y>—7t(;)m- ©)

This paper deals with obtaining recursive expressions to compute moments of gos for the transmuted Pareto distribution.
The distribution has also been characterized on the basis of these recursive expressions of single and joint moments. The
recursive expressions are obtained in Sections 3 and 4 below.
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3 Relations for Simple and Reciprocal Moments

This section deals with obtaining recursive expressions to compute simple and reciprocal moments of gos for a transmuted
Pareto distribution are given. These recursive expressions are obtained in the Theorem and the resulting corollaries, below.

Theorem 1.The simple moments of gos for transmuted Pareto distribution can be recursively computed as

(N

r —
IJ'p:nJ,K -

aYp — Ac*%r yp(K—l)CP*I{ 2o e }
a,yp —r pnt,K (ri Z(X) '}/pCp—l(K—l) pnt,Kk—1 p—Lint,xk—1 ’

where Yy(c—1) = (K= 1)+ (n—h) (t+1) and C,_ (1) = [Tj— Ya(x—1)-

Proof.1t is shown by [7] that the recursive expression for moments of gos for any distribution can be obtained by using

r r rC, —1 « r— » -1
up:n,t,K - up—l:n,f,K = m ‘/700)) : [1 - G(y)]YI flp [G (y)] dy7 8)
where ., , . = E (Yl;n’t’,c) and Y., ,  is the pth gos. The relation (8) can be written as
rCp_1

r.n _ r_ " _ - p=1 « r—1 l—G 1—-G ypfl
Bpns = Bhonsn = 702 [ =G0 -GO)

—1
<G ()] dy.
Now, using (6) in above equation, we have

, o . GC—l ‘/oo r—1 X ()71 E 2
Mpne e~ Hp—1mpx = ')/p(P—l)! ; y ch y y

<[1=G)" " 77 [G ()] dy.

GC—l /'°° , R |
=——— [ YeWI-GO)I" £ GD)|dy
s [ e i-co ! 7 6w)
kczaGC_l/‘” 201 ~1 op—1
- TP r—200— 1-G Y P G d,
or
T, _ Lﬂr B A% Ype—1)Cp—1 (r—=20)Cp_y(ie_1)
pint,K p—1lintx ay, pint,K (r—20£) prp,l(,(,,) ’)/p(,(il)(p—l)!

. /cmyr_z‘”_l [1= GO 77 G ()] dy,

where Y1) = (K—1)+(n—h)(t+1)and C,_j (1) = I, Yiu(x—1)- Now, again using (6), we have

’ r r r 1020‘7 ’y,; Kk—1 Cpfl r—2 r—2
MUpngx — Hp—1ingx = a—,yp”p:n,r,lc - (r_ 206) ')/p(cp—i(tc—l) |: p:n,l(,fol - upfl?:l,l,Kfl:|
or
u;:nt K= patl |f¢—1:nt K Aty YP(K—UCP*' { r'i2ta -1 nur:21q —1}‘| »
ey P (r=20) pCpoy ey VPR P

which is (7) and the proof is complete.

The recursive expression for simple moments of gos for Pareto distribution, given by [10], is readily obtained from
(7) by using A = 0.
Following corollaries are immediately obtained from Theorem 1.

Corollary 1.Using —r instead of r in (7), we have following recursive expression for the reciprocal moments of gos for
the transmuted Pareto distribution

oy
—r _ P
.up:n,r,K -

€))

pnt,Kk—1 p—ling xk—1

W B A%y ‘J/p(K'fl)Cp—l{ —(r+2a) _ —(r+2a) }
ayp+r p—1lintx (r+20£) chpfl(vcfl)
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Corollary 2.Using t = —1 in (7), following relation for moments of kth upper record value for transmuted Pareto
distribution is obtained

ak KkP1A % 2a 2a
r — r _ r r— 10
Hk(p) = e —r lﬁ‘k(pl) -1 (r—2a) {”K 1(p) ~ Hx-1(p- 1>} (10)
The recursive expression for moments of kth record value for Pareto distribution; given by [9]; is obtained as a special
case of (10) by using A = 0.

Corollary 3.The recursive expression for simple moments of order statistics is derived by usingt =0 and x =1 in (7)
and is

_Gzptl) [, mAer 20 _ 2
a<np+1>p[””“” (r72a>(nfp+1>{”” Z= (in

The recursive expression for moments of order statistics for Pareto distribution is obtained by setting A = 0in (11).

roo_
up:n -

Corollary 4.The recursive expression for reciprocal moments of transmuted Pareto distribution are obtained by using

t=—1in(9)andis

., ak | _, kP Ac2%r —(r+2a) | —(rt20)
y']((p) = aK—r [uK(pl)_ (K’* l)pfl (r+20£) { K—1(p) _uK_l(P_l)} ’ (12)

Corollary 5.The recursive expression for reciprocal moments of order statistics is obtained by usingt =0 and x =1 in

(9) and is

—r an—p+1 _r nAc*®r . ;
= ol [ - {mpd 29—, GO (13)

a(n—p+1)+p [ r2a) (i pr VT et

We will now obtain recursive expression for joint and ratio moments of gos for transmuted Pareto distribution.

4 Recursive Computation of Joint and Ratio Moments

The recursive relations for joint moments of gos for a transmuted Pareto distribution is obtained in the following theorem.

Theorem 2.The joint moments of gos for transmuted Pareto distribution can be recursively computed by using

.ufs’.qn”c: % .up.,ql. - A 6] %(K 1) sl
TR o —q |TTE (g 20) Gy (k1)
2 2
{“fsang 1 ufsqlnaflc 1}} (14)

where ﬂ[r;fqanﬂf =F (Yr Y ) and p < q.

pint,ktgmnt, K

Proof.The joint moments of gos for any distribution are related as; see [7];

rSs rSs C
Hpgnie = Mpgtngx = % (p 15 qql p—1)! / / y1y2
x[1=G )] 7 GO - G ()]
x [h {G (y2)} — e {G (y1) )77~ dyadyy, (15)

where 1,51« = E (Y} 1 Yons.)- The relation (15) can also be written as

s 7, sC, "
Hpgnte —Hp g tng e = Y (p—1)! qql p—1)! / /)1 y1y2
<G -G )
X [1=G ()] [1 -G ()]
x [ {G (v2)} = h {G (1) 1" dyady.

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 259-266 (2024 ) /

263

Using (6), we have
pgmae = My, = Tyt / i / g 0n)
D,q:n,t,K p.g—Llint,K }’q( IR )!(qufl)! e Iy 172
<G ONIN =G o)) [1=G )
b c
X[O‘g(yZ) A(yz)}
< [h {G (y2)} — e {G (y)) " dyrdyy
or
r,s r,s SC 1
”PyqunJ,K7”p’,q71:n,[,1€:,yq( q —p— 1) //ylyzl g1)g(n)
><[1—G(y1)] LGOI =G )]
x [ {G (v2)} = h {G (y) 1?7~ dyadyy
lczasC -1 g
7,)/(1( q p—l / / y1y2 )’1
><[1—G(y1)] LGOI 1= G )]
< [h {G (y2)} — e {G (y)) " dyrdyy
or
r,s r.s N A/CZGSCq,]
I‘J'p’,qin,l,K'_ﬂp”q—];n,[,}(: ,yy'pqn[K' ,y( 71)'(q7p71)'
/ / Yy 00 1 =GO
i
<P GO =G )]
X[ht{G(yz)}*hz{G(yl)}]q P~ dy,dy,
or
”r,s 7”r,s :Lur,s A2 SYq(x— 1)Cl]—1
p,qn,t,K p7q—1;n7t7){ a,yq p,q.}’l,t,K (S_za)yq o ](K l)
(5_205) q 1(k—1) / o1
X Y1y
Yq(Kfl)( '(g— P*l) i 2
Xg(y1)[1*G(y1)] GGy )][ G ()]

< [hAG (y2)} = e AG (y1)}*™

“Ldy,dy,,

where 1) = (K = 1)+ (n—h) (r+1) and C,_y(c_1) = [T}_| Vn(x—1)- Again using (15), we have
TS TS _ S ) )chas’}/q(,( I)C‘I*l
I“J'Pﬁqinﬁl-,K_#p,qflzn,r,K - W”P;qin,ﬁ’( (S*ZOC) ’}/q 1 (c—1)
rs—2 r,s—2
|:”pyqn;x1€ 1 oupi] laan ]i|
or
T o ay ur,s B Ac?%s YII(K—I)CII—I
p,g:nt,K a,y — p,q—Lint,x (3—2(1) Yqufl(Kf])
2 2
S T 1

This is (14) and the proof is complete.

The relation (14) transforms to the relation for joint moments of gos from Pareto distribution, obtained by [10], for

A =0 as it should be.

Theorem 2 provides following corollaries.
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Corollary 6.Substituting —s in (14), the recursive expression for the ratio moments of gos for transmuted Pareto
distribution is

ur _ oy r—s B Ac*s Yyx-1)Cq-1
p.g:nt,K (xyq+s p,g—lint,x (S+2(X) ’}/qu—l(K—l)
r,—(s+2a) r—(s+2a)
{”pqnz K—1 ”p,q—l:n,t,K—l}} ' (16)
Corollary 7.Substituting t = —1 in (14), following recursive expression for (r,s)th moments of (p,q)th upper record
values for transmuted Pareto distribution is obtained
;s _ ax 7S Kq_l)“'zas rs—20 rs—20 17
Hx(pa) = aK—s H(pg-1)~ (k— 1)(171 (s—2a) {”K l(pa) ~ Hx—1(pg— l)} a7

Corollary 8.Substituting t = 0 and x = 1 in (14), following recursive expression for joint moments of order statistics for
transmuted Pareto distribution is obtained

a(n—qg+1 nAc2%s
Wy = _Gln—gtD) oyt — {u;sq Py 21“,1} : (18)
o(n—qg+1)—s , (n—q+1)(s—2a)

Corollary 9.Substituting t = —1 in (16), following recursive expression for the ratio moments of kth record value for
transmuted Pareto distribution is obtained
aK r,—s K9 Ac?%s r—(s+2a) r—(s+2a)
'uK(pq) aK+s Hxpg-1)~ (k— 1)11—1 (s+2a) {'“K 1(p.q) — Mg 1(p.q— 1)} 19)

Corollary 10.Substituting t = 0 and x = 1 in (16), the following expression for recursive computation of ratio moments
of order statistics for transmuted Pareto distribution is obtained

r—s _ a(n—q+1) r—s nAc*%s r—(s+2a) —(s+20a)
up’qznia(nqurl)Jrs pg—1ln (n7q+1)(s+2a){ P ”Pq Lin } ' (20)

The above relations are useful for recursive computation of moments.

5 Some Characterizations

Some characterizations of the transmuted Pareto distribution in terms of simple and joint moments of gos are given in the
following theorems.

Theorem 3.For a random variable X to have the density and distribution functions given in (4) and (5) respectively, the
simple moments of its gos should be related as

r L _L r _ ACQO!’, YP(K*I)CP*I
up:n,t,K up—l:n,f,K - ay, lJ'p:nJ,K (I‘*Q,(X) YPCp—l(K—l)
r—2 r—2
|:”pnla1€ 1 IJ’p IO;HK' li|

Proof.The necessary part of the Theorem is easily proved from Theorem 1. The sufficient condition is proved by
considering (7); with G (x) = 1 — G (x); as
rCp_1 ® (A 1
ﬁ/ y ! {G(y)}ypftp (G (y)]dy
(

GC1 /yy {G }ypl )]

X l%g(y) —A (;)m
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or

%/fyy‘l{(;(y)}”’_1 711G (y)]

G(y) — {%g(y)—a <§)MH dy=0.

Applying Miintz—Szdz theorem; see [16]. We have; from above equation;

c<y>{§g<y>x(g)2“}.

The above is (6) and hence the proof is complete.

Theorem 4.For a random variable X to have the density and distribution functions given in (4) and (5) respectively, the
Jjoint moments of its gos should be related as

ﬂr,s ﬂr,s S ur,s Ac*® SYq(k I) q—1
p.q:nt, K~ Fpg—lintx — pgint, K
- *Yq (s —2a)%Cy- 141
rs—2o rs=2a
|:lJ'pqan 1 y’pq lint,Kk— Ii|

Proof.The necessity is readily proved from Theorem 2. For sufficiency consider (15) as

rsl

s s SCq 1 /
Mpgnee = My g1 = 1y Y1)
AR Btk oy (p =g = p =D e Sy T2

x [c‘;(y.)] PG )] [G ()]
< [ {G (y2)} = h {G (y1) 4" dyndyy,

Now, using above relation with (6) we have
SCq l / / s-lg ¢ p—1
Yy yol fi G
Al B ARG T LU I
x [h,{G<yz>}—h,{G(y1 e [G(m]%f dyady,

- Squ_ FE / /y1y2 g[GO A G Om))

Y (p—
x[h,{G(yz)}fh,{G(y,)}] [G(yz)]yq 1
200
X{%g(yz)—l(y%) }dyzdyl
or
SC r..s t —
Yo (p— qql p—1)! / /> ¥ ) [GON] A G O]

x[h,{G@z)}—h,{G(y.)}]q - I[G(yz)]yq !

c 20
G i) - {{fg(m (£) H dyady

Applying Miintz—Szdz theorem; see [16]. We have; from above equation;

=0.

6= 2002 ()

The above is (6) and hence the proof is complete.
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6 Conclusion

This paper deals with obtaining some recursive expressions to compute the simple and joint moments of gos for a
transmuted Pareto distribution. These expressions can be used to recursively compute the higher moments from the lower
moments. We have also given the recursive expressions for the simple and joint moments of the specific cases of gos.
The simple and joint moments are also used to obtain some characterization results. We have found that the recursive
expressions for simple and joint moments of gos for the Pareto distribution appear as a special case. These relations are
also useful in studying certain properties of the transmuted Pareto distribution.
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1 Introduction

Fuzzy set is an idea proposed by Zadeh [35] in 1965. Since then, this concept has been widely acknowledged by
researchers and utilized in diverse branches of mathematics as well as real life applications. At a later point, Kramosil
and Michdlek [18] presented fuzzy metric spaces as an extension for the probabilistic metric spaces with the perspective
of fuzzy sets. Their notion was later modified by George and Veeramani [8] so that Hausdorff topology can be studied on
this space. Grabiec [13] pioneered the investigation of fixed-point theory on fuzzy metric spaces. Consequently,
researchers studied fixed-point theory intensively on this abstract spaces and its generalized spaces. A few fixed-point
theories on these spaces may be seen in [10], [9], [22], [23], [25], [26], and [33].

In fixed-point theory, one of the well-known contraction mappings is Kannan-type contractive mapping introduced by
Kannan [16, 17]. There are several thoughts about the important of Kannan-type contractions, especially under the scope
of metric fixed-point theory. One of the reasons is the famous Banach contraction by Banach [3] requires continuous
mapping, but Kannan-type contractive mapping needs not to be continuous. Another reason is the relationship between
Kannan-type contractive mapping and the completeness of the metric spaces. Connell [7] gave an illustration of metric
space that is not complete and yet any Banach contractive mapping assigned on it have fixed point. However, this is not
the case for Kannan-type contraction mappings in metric spaces. Subrahmanyam [30] demonstrated that metric space is
complete implies and is implied by all Kannan-type contractive mappings in this space contain fixed points. Recent works
related to Kannan-type contractive mappings can found in [6], [11], [12], [20], and [36].

Aamri and El Moutawakil [1] proposed El Moutawakil-Aamri (E.A. for short) property for noncompatible
self-mapping on metric space in 2002. This (E.A.) property allows one to acquire fixed point results without the
completeness of the space. However, it requires a condition of closeness of range for fixed point to exist. Later,
Sintunavarat and Kumam [28] proposed a novel property, dubbed “common limit in the range” (CLR for short) that is

* Corresponding author e-mail: zabidin@umt.edu.my
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more versatile compared to (E.A.) property, as it no longer needs the condition of closeness of range. These two
properties are studied extensively in different spaces (see [2], [4], [14], [19], [21], [29], [31] and [32]).

The objective of this research is to validate several common fixed-point theorems for generalized Kannan-type
contractive mappings equipped with a common limits in the range or (E.A.) properties on fuzzy metric spaces. This
manuscript is arranged into four main sections as follows: Section 1 presents introduction. Section 2 provides
preliminary definitions and notions. Section 3 contains primary findings and their proofs. Section 4 is the conclusion and
open problems.

2 Preliminaries

We recollect some terminologies from the fuzzy fixed point theory that will be employed in this manuscript.

Definition 1([16]). Let (X, §) denoted as metric space and 7 : E — E be a self-mapping. Then,  is called a Kannan-type
contractive mapping if there exist k € [0, %) satisfy

8(78,Tx) <k, 78)+6(x,7x)]
forallE y €X.

Definition 2([27]). A binary operation  : [0,1] x [0,1] — [0,1] is referred to as continuous t-norm if the conditions below
hold:

l.ax1=aforeveryainl0,1];

2.x s associative and commutative;

.axb<ixjprovideda <iandb < j, where a,i,b,j € [0,1];
4.x is continuous.

Definition 3([8]). Let E be a nonempty set, x be a continuous t-norm and I' be a fuzzy set defined on E x E x (0,0) such
that the following conditions hold:

1.0 < [(®, 0, 5);

2I'@,0,%) =1 <— ©=w;
3IN(@,0,%) =T (0,0, »);

40(0, 0,5+ ¢) > I'(@,0,) «'(0,9,6);
5I'(@,0,-) : (0,00) = (0,1] is continuous,

Sfor every @, @, € E and any »,6 > 0. Then, an ordered triple (E,I", ) is called a fuzzy metric space.
Lemma 1([13]). If (E,T", %) is a fuzzy metric space, then I’ (@, @, ») is increasing for any pair of @, ® in E.

Definition 4([8]). Lez (E,I", ) be a fuzzy metric space and {®,} be a sequence in E. Then,

1.{®@,} is convergent provided there exists x € E satisfies lim,_o. I'(®,,x, ) = 1 for any > > 0;

2{@,} is called Cauchy sequence provided that for any 0 < € < 1 and > > 0, there is ny € N satisfies I (®,, Wy, ») >
1 — € for every n,m > ng,

3.(E,T",%) is complete whenever each Cauchy sequence in E is convergent.

Consider .%, 4 : E — E where E is a nonempty set and consider an element @ € E. We say that @ is a fixed point
of & if it satisfies . @ = ®. For the case where .# ® = Y, @ is called a coincidence point of % and 4. Moreover, if
F o =0=%o, then @ is known as the common fixed point of .% and ¥.

Definition 5([15]). Let E be a nonempty set. Two self-mappings F,9 : E — E are weakly compatible if both F and 9
commute at the coincidence point of % and 9, for instance, F w = 4 ® for some ® in E implies that 9w = Y F ®.

The following definitions are (E.A.) and CLR property defined on two and four self-mappings. It is notable that
definitions below are written under the framework of fuzzy metric space instead of the space where they originally defined.

Definition 6([1]). For a fuzzy metric space (E,I", %), a pair (F, ) of self-mappings satisfy the (E.A.) property if there is
a sequence {®,} C E such that
im I'(Z ®,,z,%) = im I' (T ®,,z,) =1

n—yeo n—oo

for some z € E and for all s > 0.
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Definition 7([21]). For a fuzzy metric space (E,I",x), two pairs (¥#,T ) and (4 ,.7) of self-mappings satisfy the common
(E.A.) property if there are two sequences {®,},{@,} C E such that

lim ['(F®,,z, %) = im [ (T ®,,z,5) = lim [(4@,,2,%) = lim T (L @y, z, ) = 1

n—yoo n—yoo n—oo n—oo

for some z € E and for all 5« > 0.

Definition 8([28]). For a fuzzy metric space (E,I",%), a pair (%, of self-mappings satisfy the common limit in the
range of 7 property, denoted by (CLR 7 ) if there is a sequence {@,} C E such that

lim I'(F ®,,z,%) = im I'(T ®,,z,%) =1

n—oo n—oo

for some z € TE and for all » > 0.

Definition 9([34]). For a fuzzy metric space (E,I",x), two pairs (¥#,T ) and (4 ,.7) of self-mappings satisfy the common
limit in the range of F and . property, denoted by (CLR 7 ) if there are two sequences {®,},{®,} C E such that
lim I (@2, 5) = im (T @y, 2, 5) = lim [ (@, 2, 5) = lim [ (S 0,2, 5) = |

n—oo n—oo n—oo n—oo

for some z € TENSE and for all » > 0.

Definition 10([24]). For a fuzzy metric space (E, I, %), assume F,7, and ./ are three self-mappings of E. The pair
(F,T) satisfy the common limit in the range of /' property, denoted by (CLRz, 7) &), if there exists sequence {®@,} C E
such that

lim I'(F ®,,z,%) = im I'(T ®,,z,) =1

n—oo n—oo

for some z € TENSE and for all » > 0.

Remark.Using condition (2) in Definition 3, Definition 6 can be expressed in a way similar to its metric counterpart, that
is, the pair (%, .7) satisfies the (E.A.) property if there is a sequence {®,} C E such that for some z € E,

lim @, = 11m T, = 7.

n—yoo

This is applicable to Definitions 7, 8, 9, and 10 as well.

By setting . =¥ and .7 = .% in Definition 7 and Definition 9, one can obtain Definition 6 and Definition 8,
respectively. Moreover, we can see that Definition 9 implies Definition 10, but this is not the case for converse. This is
shown in the examples below.

Example 1.Suppose (E,I',«) is a fuzzy metric space where E = [0,00), I" is a fuzzy set on E X E X (0,%) and * is a
continuous ¢-norm. In addition, consider .%,¥¢,.7,.% : E — E expressed as:

7@ =2,
9 (@) = @,
G)'
(@) =
We have 7EN.7E = [0,). Define sequences {@,} = {1} and {®,} = { 5 } for every n € N. Considering that

lim 4 ®, = lim J ®, = lim¥%®, = lim Y ®, =0

n—yoo n—yoo n—oo n—yoo

and 0 € JENYE, both (F,.7) and (¥,.7) satisfy the (CLR 7.») property. Moreover, (%, .7) satisfy (CLR (7 7) )
property.
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Example 2.Suppose (E,I',) is a fuzzy metric space where E = [0,00), I" is a fuzzy set on E X E X (0,e0) and x* is a
continuous ¢-norm. Furthermore, consider .%,¥, .7 ,.% : E — E expressed as:

F(O)=w0+2,
(@) ="11,
7 (@) =30,

S(@)=o+3

We have JE = [0,) and .7E = [3,e0) which implies .7EN.E = [3,0). Consider a sequence {@,} = {1 }. It is
clear that
lim % ®, = lim 9 ®@, =3

n—soo n—soo
and 3 € JENYE. Thus, the pair (F, .7) satisfy the (CLR 7 7 ) property.
If we let sequence {®, } = {%} we get

1
lim¥%w, = - and lim Y®, =3
n—soo 2 n—soo

which means that lim,, .. & @, # lim,,_,e . @,. This concludes both (&#,.7), (¢,.7) do not satisfy (CLR &) property.
The function below will be utilized in our later results.
Definition 11.A mapping y : [0,1] x [0,1] — [0, 1] is called as \P-function if:
1.y (u,v) is monotonically nondecreasing in both u and v variables;
2.y (u,v) is lower semicontinuous in both u and v variables;
3.y (v,v) > v foreveryv € (0,1);
4.y(1,1) =1 and y(0,0) = 0.
¥ is denoted as the collection of all ¥'-functions. Examples of ¥-functions are y(u,v) = %ﬂﬁ where k,/ € R,
y(u,v) = /uv, and y(u,v) = min{u,v} for all u,v € [0,1].

3 Main Results

Theorem 1.Suppose that (E, I, *) is a fuzzy metric space and 9 .7, T are self-mappings of E satisfying the following
condition:

I'Zo,90,%)+h(l —max{[ (T 0, Y0,),I (L0, F0,»), (T0,70,x)})
1
> w(r (%,yw,ﬂ) T (yw,gw,ﬁ)) M
p q

forany @, € E and » > 0 where h > 0, 3¢, 321, 300 > 0 with 3 = 1 + 30, p,q > O with p+q € (0,1) and y € ¥y. Assume
that both pairs (%, 7 ) and (4 ,.) satisfy the (CLR 7 ) property, then the pairs (%, ) and (4, have a coincidence
pointin E.

Proof.Given that both pairs (#,.7), (¢,.7) satisfy the (CLR #.) property, there exist sequences {@,} and {@,} in E
such that for all »c > 0,

lim I'(Z ®,,z, ») :nh_r)n I'(T @y, z,5) :nh_r)n I'(Ywy,z, ) :nh_r)n I'(Swy,z,¢) =1

n—so0

for some z € JEN.ZE. This means that

lim #®, = lim 7®, = lim %, = lim .Y ®, = z.
n—oo n—oo n—oo n—oo

As z € JE, one can find an element u € E satisfy z = Zu. We will show that Fu = Ju. Assume Fu # 7 u, which
means, 0 < I'(Fu, Tu,») <1 for some > > 0. Using inequality (1), for all > > 0, we yield

I'(Fu, 9wy, ) +h(1 —max{I' (T u, 4wy, ),I (L @y, Fu,),I(Tu,Swy,x)})
2
21//(1" (fu,yu,ﬂ),l" (ﬁﬂa)n,gw,,,ﬁ)). @
p q

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



271

n

JIMS 17, No. 2, 267-281 (2024 ) /
# and 0 < r < 1. Then, from (2) we can obtain the

9% and r = p + q. Clearly, we have ”71 = %

Let x| = ﬁ,%z = m
I'(Fu,9 oy, ) +h(1 —max{I'(Tu,9 w0y, ), (L @y, Fu,s),I'(Tu, S oy, x)})

following:

> 14/(1" (ﬂu,ﬂu,%) ,r (Ya)n,gw,,, %)) .
By taking the limit as n — oo, we yield

[(Fu,z,5) +h(1 —max{I(Tu,z, ), (z,.Fu,), I (Tu,z,%)})

- (r (7urnZ) (2 )

= l[/(l" (fu,ﬂu,%),l).

Since 7 = Ju, the inequality above can be rewritten as
[(Fu, Tu,5) +h(1 —max{1,[(z, Fu, ), 1}) > y/(r (myu }7’) , 1)

[(Fu, Tu,5)+h(1—1)> y/(r (yu%%’)l)

T'(Fu,Tu,») > l/I(F (914,?14,—%) 71) )
r
By W-function’s properties and Lemma 1, we yield
I'(Fu,Tu,»)> 1[/(1 <§u,ﬂu,—%) ,1)
r
P

> l[/(F <§u,ﬂu,7
>F(9u,fu,z)
,

>T(Tu, Fu, )
=I'(Fu, Tu,x)

which leads to a contradiction. As a result, I' (% u, T u, ») = 1 for each s > 0. By the condition (2) from Definition 3, we
yield Zu = Ju = z. This implies that point  is a coincidence point of the pair (%, 7).
Additionally, since z € FE, one can find an element v € E satisfy z = .#v. We will show that ¥v = .v. Assume
Gv #+ v, which means, 0 < I'(4v, #v, ») < 1 for some 3 > 0. Using inequality (1), for each s > 0, it follows that
I'(F®,,9v, )+ h(1 —max{I[ (T ®,,9v,),I (Sv,F®,, ), (T®,,Sv,x)})
(3

>y (r (70,70, %) 1 (#090.22)).
p q
P+ q. Then, from (3) we can obtain the following:

Again let 3 = %,%2 = % and r =
I'(F @y, 9v,5) +h(1 —max{M (T @,,9v, ), (v, F @y, ), (T®,,Sv,x)})

- y(r (70070, %) 1 (75 5))
By taking the limit as n — oo, we yield
I'(z,%v,5) + h(1 —max{I (z,9v, »),I (Sv,z,5),[ (z,v,3)})
S )
= y/(l,F (YV,%V,%)) .
1,F(yv,§¢v,i:))
1,F(yv,§¢v,§))
(1 F(Yv,gv,%)).

/N

Since z = .%v, the inequality above can be rewritten as
I'(v,%9v,5)+h(1 —max{"(SVv,9v,5),1,1}) >y

I'(v%v,2)+h(1-1)>y
(G, x) >y

Y

)
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Due to W-function’s properties and Lemma 1, we yield
I'(SvGv, ) > l/l(l,F (Yv,gv,z))
P
> l/I(F (Yv,gv, z) I (Yv,gv, z))
r r

>TI (Yv,gv,f)
.
>T(Sv,9v, )

which leads to a contradiction. As a result, I' (¢v, v, ») = 1 for each s > 0. By using the condition (2) from Definition 3,
we yield 9v = v = z. So v is a coincidence point of the pair (¢,.7).

Remark.It is possible to obtain Theorem 2.2 in Choudhury et al. [5] if we let % =¥, 7 = . and
max{[ (7 ®,9w0,), (L0, F0,x),I (T0,70,x)} =max{[(T0,90,x),] (L0, F®,»)} in our Theorem 1
above. In addition to that, they require the fuzzy metric space to be equipped with Hadzic type #-norm, whereas in our
result the 7-norm for fuzzy metric space picked is arbitrary. Hence, our results improvises their results without #-norm
restriction and completeness on fuzzy metric space.

We deduce the subsequent corollary from Theorem 1.

Corollary 1.Suppose that (E, I, *) is a fuzzy metric space and F ;4 ., T are self-mappings of E satisfying the following
condition:
I'Zo,90,%)+h(l —max{[ (T 0, Y0,),I (L0, F0,»), (T0,70,x)})

4
214/(1" (9@,%@,%),1‘ (yw,gw,%)) @

forany @, € E and » > 0 where h > 0, 3¢, 321, 300 > 0 with 3 = 31 + 305, p,q > O with p+q € (0,1) and y € ¥y. Assume
that TE, SE are closed subsets of E and the pairs (F,.7), (¢,) satisfy common (E.A.) property, then both pairs
(7,T) and (¢4,.) have a coincidence point.

Proof.As both pairs (#,.7),(¥,.7) fulfill common (E.A.) property, we have some sequences {@,},{®,} C E such that
for all >« > 0,

im I'(Z®,,z,5) = im ' (T ®,,z,) = im I (Y@,,z,5) = im I'(.@,,z,5) =1

n—yoo n—yoo n—oo n—yoo

for some z in E. This means that

lim #®, = lim Y, = lim¥%w, = lim 7@, =z.
n—soo n—soo n—soo n—soo

Given that JE is closed set, there is an element u € E satisfy z = .7 u. Moreover, since .”E is closed, we can identify
an element v € E satisfy z = #v. Hence, z € JE N .ZE. This concludes that both pairs (#,.7),(¥,.7) satisfy the
(CLR 7.») property. The remaining of this proof follows from Theorem 1.

Theorem 2.Suppose that (E,I", %) is a fuzzy metric space and F,9,.7, T are self-mappings of E satisfying the following
condition:

[(F6,90,) >y (r (yw,yw, %) I (yw,gw, ﬁ)) 5)
q

forall @, € E and » > 0 where t|,ty > 0 with 3 = 321+ 30, p,q > 0 with p+q € (0,1) and y € Wy. Assume that both
pairs (F,7) and (9 ,) satisfy the (CLR 7 &) property, then both pairs (F, ) and (¢4,.7) have a coincidence point.
Furthermore, if both pairs (%, ) and (¥4,.7) are weakly compatible, this implies that mappings %, 7,9, have a
unique common fixed point in E.

ProofTo show both pairs (#,.7),(¥,.) possess a coincidence point, consider # = 0 in (1) and the proof follows as in
Theorem 1.

For the rest of the Theorem, as (.#,.7) is weakly compatible and .Fu = Ju = z, it follows that 7z = .7 Fu =
F Tu=.Fz We say that point z is the common fixed point of (.:%,.7). Using (5) and ¥-function’s property, for each
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x>0, we yield

Thus, I'(%z,z, ) = 1 for each 5 > 0, which means, %z = Jz = z. So, z is a common fixed point of .% and 7.
Also, since (¥¢,.%) is weakly compatible and ¥v = v = z, this implies that .’z = SYv = 4.¥v = ¥z. We say that
point z is a common fixed point of pair (¢,.7). Using (5) and ¥-function’s property, for each s > 0, it follows that

I'(2,92,%) =T (Fz7,92,%) > ¥ (F (ﬂz,ﬁz, %) T <Yz,€¢z, %))

(F (z,z, ﬂ) I <%z,%z,£))
p q
, 1

v
y(l,1)
1.

As aresult, I'(z,9z, ) = 1 for every s« > 0, which means, ¥z = z = .%z. Thus, z is a common fixed point of pair (¢,.%).
This shows that z is a common fixed point of mappings .#,¥,.7,.%.

For the uniqueness, assume two common fixed points z;, zp € E are distinct, for instance, 0 < I'(z;,22,5) < 1 for
some s > 0. Using (5), for any s > 0, we get

F(ZHZZ;%) :F(jzlngQa%)

ZW(F (9Z1,§Z1,E)I (yZLgZLE))
p q
(F (Z],Z[,ﬁ),F(ZQ,ZZ,E))
14 q

v
w(1,1)
1

which is contradict to our assumption. Thus, z; = z» which proves the common fixed point is unique.
By substituting ¢ with .# and . with 7 in the theorem above, we deduce the subsequent corollary.

Corollary 2.Suppose that (E,I",*) is a fuzzy metric space and 7, are self-mappings of E satisfying the following
condition:

[(70,F70,%) >y (F <yw,yw, ﬂ) T (mujw, ﬂ))
V4 q

forall @, € E and » > 0 where 1,50 > 0 with 3 = 31 + 30, p,q > 0 with p+gq € (0,1) and y € ¥y. Consider the
pair (F,T) satisfies (CLR ) property, then the pair (F,5) has a coincidence point. Furthermore, if the pair (% ,9)
is weakly compatible, this implies that both mappings . and 7 have a unique common fixed point.

Theorem 3.Suppose that (E,I", %) is a fuzzy metric space and F 9,7, T are self-mappings of E satisfying the following
condition:

[(70,90,5%) >y <r <§w,fiw, ﬂ) Na (yw,%, @»
p q

forall @, 0 € E and » > 0 where 1,500 > 0 with s = 31 + 30, p,q > 0 with p+q € (0,1) and y € ¥;. Assume that
TE and SE are closed subsets of E and the pairs (F, ) and (¥ ,.7) satisfy common (E.A.) property, then both pairs
(F,T) and (¥4,.7) have a coincidence point. Furthermore, if both pairs (% ,.7) and (¢,.) are weakly compatible,
this implies that mappings %, 94, have a unique common fixed point.
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Proof-As both (#,.7),(¥,.7) satisfy common (E.A.) property, there exist {@, },{®,} C E such that for all ¢ > 0,

lim I'(Z ®,,z, ») :nh_r)n I'(T @y, z,5) :nh_r)n I'(Ywy,z, ) :nh_r)n I'(Swy,z,¢) =1

n—yoo

for some z € X. This means that

lim %®, = lim Yo, = lim%w®, = lim I ®, = z.
n—soo

n—yoo n—oo n—oo

As JE is closed, there is an element u € E satisfy z = .7 u. Moreover, since .ZE is closed, there is an element v € E
satisfy z = .#v. Hence, z € .7 EN.YE which means that both (.#,.7),(¥,.7) satisfy (CLR &) property. The rest of the
proof follows from Theorem 2.

By substituting ¢ with .# and . with .7 in Theorem above, we obtain corollary below.

Corollary 3.Suppose that (E,I",*) is a fuzzy metric space and ¥, are self-mappings of E satisfying the following
condition:

7o, 7o,x)> w(l“ (9@,9@,%) . (%ofwﬁ))
q
forall @, € E and » > 0 where 1,30 > 0 with 3 = 31 + >0, p,q > 0 with p+q € (0,1) and y € ¥;. Assume that the

pair (F,.7) satisfies the (E.A.) property, then the pair (%, 7 ) has a coincidence point. Furthermore, if the pair (F,.7)
is weakly compatible, then mappings % and & have a unique common fixed point.

We will present an example below to demonstrate our Theorem 2.

Example 3.Suppose that (E,I",*) is a fuzzy metric space with E = [2,8), % is a product continuous #-norm, that is,
axb=ab forany a,b € [0,1] and I'(@, 0, c) = forevery @,w € E, > 0.Let #,9,7,% : E — E define as
follows:

%HC;D'(—(D\
2 ifwe {2} U(7,8),
7 (@) =
(@) {2.3 ifwe (2,7,

2 if@e{2yu(7,8),
9(@) = {2.5 if e (2,7),

2 if m € {2},
4 ifoe(2,7),
o) =
7 (@) 5 ifwe {7},
885 ifme(7,8),
2 if o € {2},
6 ifoe (2,7),
) =
Z(@) 7 if o e {7},
25 ifw e (7,8),

and y(u,v) = /uv where u,v € E. One can easily validate that inequality (5) is satisfied for every @, ® in E and for all
s> 0. Now, we pick sequences {@,} = {7+ 1} and {®,} = {2}. Itis clear that we have

lim o, = lim I ®, = lim%w, = lim .Y ®, = 2.

n—soo n—soo n—soo n—soo
Since 2 € JEN.YE, it implies that both pairs (&, ) and (¢,.) satisfy (CLR 5 &) property. Furthermore, it is
straightforward to verify that both pairs (%#,.7) and (¥¢,.%) are weakly compatible. Hence, each conditions of

Theorem 2 hold. Furthermore, 2 is the unique common fixed point of .#,%,7 and .. Figures 1, 2 and 3 provide a
visual representation of the inequality with specific assigned values.

Remark.It is obvious that Theorem 3 cannot be applied on example above because both JE, .E C E are not closed.

Before we proceed further, we present two lemmas that are needed the next results related to four mappings but only
two mappings satisfying (CLR) or (E.A.) property, respectively.
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Fig. 1: Graphical view of inequality I'(F®,9 ®,) > l//(F (9&5,?&5, %) I (Y(o,%a),%)), where the orange

plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: s =5,3¢1 =3,300 =2,p=0.5,and ¢ = 0.3.

Fig. 2: Graphical view of inequality I'(Z ®,9®,») > ¥ (F (9&5,,?7&5, %) I (f’a),%w, %)) where the orange
plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: e =5,5¢1 = 1,200 =4,p =0.5,and ¢ = 0.3.

Lemma 2.Suppose that (E,I',x) is a fuzzy metric space and F,9,T ,. are four self-mappings of E such that the
following conditions hold:

1.the pair (F,T) (or (4,.7)) satisfies the (CLR 7 ) (or (CLR )) property;
2.7E C YE (orYE C JE);

3.E C E closed;
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Fig. 3: Graphical view of inequality I'(F®,9®, ) > y/(l" (ﬂw,yw, %) T (Ya),ga), %72)), where the orange
plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: s =30,3¢; = 5,00 =25,p=0.5,and ¢ = 0.3.

4{Yw,} converges for all sequences {®,} in E provided {7 ®,} converges (or {F m,} converges for all sequences
{o,} in E provided {7 @,} converges);
5.%.9,7 and & satisfy inequality (5) for every @, € E and any » > 0.
Then, both pairs (¥, ) and (4 ,.7) satisfy the (CLR 7 &) property.

Proof.As (¥, .7) satisfy (CLR &) property, there is {®@,} C E satisfy

im I'(Z ®,,z,5%) = im I' (T ®,,z,%) =1
n—roo

n—yoo

for some z € JE. This means that

lim ¥ ®, = lim I ®, = z.
n—yoo Nn—yoo

Since #E C .YE, for each @, there is an element ®, € E satisfy .Z @, = . @, for every n € N. Thus, we yield

lim % ®, = lim .Y, = z.
n—yo0 Nn—>o0

Since .YE is closed, the convergent point z is in . E. Therefore we have z € JEN.ZE and
FO, > 7,70, —z, and L@, — 2
as we let n — 0. Due to condition (4), sequence {¥4 @, } converges, which means, there is a point 8 € E satisfy

limYw, =6.

n—oo

We claim that 8 = z. Otherwise, let 6 # z. This implies that 0 < I"(60,z, >) < 1 for every s > 0. Using inequality (5), we
have

[(F®,90,,%) >y (r (%n,%n, ﬂ) . (fwn,%wm 3))
14 q

qx
ptq

where 3,300 > 0 with 3¢ = 301 + 30, p,q > 0 with p+q € (0,1) and y € W Let 3q; = L= 50, =

e and r = p+gq, the
inequality above can be rewrite as

I, 9w, ») > 14/(1" (ﬂafn,ywn, %) I (ywn,%a)n,%)) .
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Letn — oo,

F(z,97%)Z‘I’(F(szv%)vr(z’e’%))

(o)

Due to the properties of W-function and Lemma 1, it follows that
»
[(2,0,)>y (1,F (z, 0, —))
,

>y(r(z6.%).r(z6.%))
r r
>T (z, 0,” )
,
>T(z,0,)
which leads to a contradiction. As a result, I'(w, z, ) = 1 for any » > 0 which means 6 = z. Hence, we conclude

im I'(F®,,z,%) = lim (T ®,,z,%) = lim I'(Yw,,z,%) = im ['(.%w@,,z,%) =1
n—o0 n—yoo

i
n—o0 n—yoo

which means that both (%, .7),(¥¢,.7) satisfy (CLR &) property.

Lemma 3.Supose that (E,I",x) is a fuzzy metric space and 7,9, , are four self-mappings of E such that the
following conditions hold:

1.the pair (#,7) (or (¢,.7)) satisfies (E.A.) property;
2.7E C YE (orYE C JE);

3{Y w,} converges for all sequences {®,} in E provided { L w,} converges (or {F w,} converges for all sequences
{w,} in E provided { T ®,} converges);

4.7 .9, T and .7 satisfy inequality (5) for every ©®,® € E and any > > 0.
Then, both pairs (F,T), (4, satisfy common (E.A.) property.
Proof.The proof is similar to Lemma 2 so we omit here to avoid repetition.

Theorem 4.Suppose that (E,I",*) is a fuzzy metric space and F,9,. T are self-mappings of E satisfy the following
conditions:

1.the pair (F,9) (or (4,.7)) satisfies the (CLR 7 ) (or (CLR )) property;
2.7E C YE (orYE C JE);

3{YG w,} converges for all sequences {@,} in E provided {7 ®,} converges (or {F ®,} converges for all sequences
{@,} in E provided { 7 ®,} converges);

4.mappings F .9, T and & satisfy
Al )
I'9%o,90w,%) >y (F (ﬂw,fw, ?) ,r (Ya),ga), —))
q

for every @, € E and any > > 0 where 1,505 > 0 with 3 = 31+ 30, p,q > 0 with p+q € (0,1) and y € ¥;.

Then, both pairs (%, ) and (4,.) have a coincidence point. Furthermore, if both pairs (%#,.7) and (¢,.%) are
weakly compatible, this implies that mappings % ;.7 .4 ,. have a unique common fixed point.

ProofBy Lemma 2, both pairs (%,.7),(¥,.7) satisfy (CLR 7.) property. Hence, there are {®, },{®,} C E such that
for all 5« > 0,

lim I'(F®,,z, ) = im [ (T ®,,2,5) = lim [(4@,,2,5) = lim T (L @y, z, ) = 1

n—oo n—oo n—oo n—oo

for some z € JEN.YE. The remaining of this proof follows from Theorem 2.
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Theorem 5.Suppose that (E,I',x) is a fuzzy metric space and F,9,.7 T are self-mappings of E satisfy the following
conditions:

1.the pair (F,7) (or (¢,)) satisfies the (E.A.) property;
2.E C YE (orYE C JE);

3{Yw,} converges for all sequences {®,} in E provided { S ®,} converges (or {F m,} converges for all sequences
{@w,} in E provided { 7 o, } converges);

4.mappings F .9, and . satisfy
[(F0,90,%) >y (F (yw,yw, ﬂ) . <yw,f¢w, ﬂ))
p q

for every @, € E and any 3 > 0 where 3, > 0 with » = 1 + >0, p,q > 0 with p+q € (0,1) and y € ¥;.
Then, both pairs (F,7) and (4,.7) have a coincidence point. Furthermore, if both pairs (¥ ,7) and (4,.) are
weakly compatible, this implies that mappings % ,.7 ;%4 ,. have a unique common fixed point.

ProofIn view of Lemma 3, both (.%,.7) and (¢,.) satisfy common (E.A.) property. Hence, there are {®@, }, {@w,} CE
such that for all >z > 0,

im I'(Z ®,,z,5) = im ' (T ®,,z,%) = im I (Y@,,z,5) = im I'(.@,,z,5) =1
n—soo

n—o0 n—oo n—oo
for some z € E. The remaining of this proof follows from Theorem 3.

Theorem 6.Suppose that (E,I',x) is a fuzzy metric space and F,9,.7, T are self-mappings of E satisfy inequality (5)
for every for every @, € E and any > > 0. Assume the pair (F,7) satisfy (CLR(7,7),9) property, then both pairs
(Z,9) and (4,.7) have a coincidence point. Furthermore, if both pairs (% ,.7) and (¢, are weakly compatible,
this implies that mappings %, 7 ;4 ,. have a unique common fixed point.

Proof.Consider the pair (%, 7) satisfy (CLR(#, #) o) property, we have a sequence {@,} € E such that for each s > 0,
lim I'(F®,,z,%) = lim (T ®,,z,%x) =1
n—oo n—oo

for some z € JEN.YE. This means that

lim ¥ ®, = lim I ®, = z.
n—oo n—yoo

As z € YE, there is an element u in E satisfy z = .%u. We will show that Yu = . u. Assume Yu # . u, which means,
0<I'(Yu,Su,s») < 1 for some s > 0. Using inequality (5), for any 3¢ > 0, it leads to

[(F®,Gu,x) >y <F <9mn,ywn, ﬂ) T (;ﬂu,%, ﬂ)) . (6)
p q
Let 70 = %,m = % and r = p + q. Then, we obtain
I'(F®,,Yu,s) > l[/(F (96%?6)’,,,2) I (Yu,gu,z)) .
r r
As we let n — oo, it follows that

F(#uduz) >y (I (222).0 (F090.2))

= 14/(1,1" (Yu,gu, }7[)) .

Due to properties of ¥-function and Lemma 1, we yield
I'(Su,Gu, ) > w(l,F(Yu,%u,é))
> y/(F (Yu,%u,}f) ,F(Yu,%u,%))
>I (Yu,gu,z)
,
>I'(SLu,Yu, )
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which leads to a contradiction. Therefore, I'(%u,%u, ») = 1 for any 3 > 0, which means, Yu = Yu =z Sou is a
coincidence point of pair (¢,.7).

Moreover, since z € 7 E, we can find an element v in E satisfy z = .7 v. We will validate that .#v = Jv. Assume
Fv # T v, which means, 0 < I'(Zv, Tv, ) < 1 for some s > 0. Using inequality (5), for all >z > 0, it leads to

F(ﬁv,%u,%)Zl]/(F (ﬂv,ﬂv,ﬂ),F (5”u,%u,£)>. @)
p q

s = 2 and r = p +q. Then, we obtain

Again let s = ota

b
ptq’
» » »
I'(Fv,Gu,») > l//(F (ﬂv,ﬂv, —) I (Yu,%u, —)) = l//(F (ﬂv,ﬂv, —) ,1) .
r r
Since Yu = z = Jv, by W-function’s properties and Lemma 1, it follows that

I'(Fv, Tv, ) >l/l( (ﬂvﬂv ) )

>y(r (% P, ) N (%%%))
>I (74.5%.7)

>TI'(Tv, Fv, %)
=T (Fv,Tv,x)
which leads to a contradiction. As a result, I'(.%v, Jv,3) = 1 for any » > 0, for instance, Fv = v =2z Sovisa
coincidence point of the pair (%,.7).
As (#,.7) is weakly compatible and v = T v, these leadto Tz =T Fv=.F T v=.%z We say that zis a common
fixed point of (.%, 7). Using inequality (5) and the property of ¥'-function, for any » > 0, we obtain

I'(Fz,2,%) =T'(Fz,9u,) > W(F (yZ,QZ,%) I <yu,gu,%>)

=y (F (ﬁz,ﬂz, ﬂ) ,r (z,z, ﬁ))
V4 q

= W(l 1 )
=1.
Thus, I'(Fz,z,) = 1 for all ¢ > 0,that is, .#z = z = 7 z. Therefore, z is a common fixed point of the pair (%,.7).
Also, as the pair (¢,.7) is weakly compatible and Yu = .Zu, this implies that ¥z = SGu =9 .S u = 4z. We say
that z is a common fixed point of the pair (¢,.7). Using inequality (5) and the property of ¥-function, for any s > 0, we
obtain

I'(2,92,%) =T (Fz7,92,%) > ¥ (F (ﬂz,ﬁz, %) T <Yz,€¢z, %))

)
p q

v
w(l,1)
1

Thus, I'(z,%z, ) = 1 for any 3 > 0, which means, ¥z = z = Sz. So z is a common fixed point of the pair (¢,.7). This
shows that z is a common fixed point of mappings .#,¥,.7,.7.

For the uniqueness, consider two common fixed points z;, zp are distinct, which means that 0 < I'(zy,22,) < 1 for
some s > 0. By inequality (5), for every s > 0, we have

I(z1,22,%) =I'(Fz1,92, )

Zl]/(F (ﬂz;,ﬂzl,ﬂ),F<<7Z2759127£)>
V4 q
(F (Zl,Zhﬁ),F (Z27Z272))
p q

v
w(l,1)
1
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which is contradict with our assumption. Thus, z; = zo which proves the common fixed point is unique.

4 Conclusion and Open Problem

Our paper generalized Kannan-type contractive mappings equipped with (CLR) or (E.A.) properties on fuzzy metric
spaces and established several common fixed-point results of these mappings. Researchers can investigate the existence of
fixed points for Kannan-type contractive mappings on more general setting, for example, fuzzy b-metric spaces, controlled
fuzzy b-metric spaces, fuzzy bipolar metric spaces and etc. Additionally, Choudhury and Das [6] used A-coupled Kannan
type mapping and obtained a common coupled fixed points for two mappings on partially ordered fuzzy metric space.
This raise a question whether our results for four mappings able to expand to partially order fuzzy metric space. As
mentioned in Section 1, Subrahmanyam [30] proved that the fixed point of Kannan-type contractive mappings implies the
completeness for metric space. Therefore, we will end this paper with an open problem: Does the existence of fixed point
for Kannan-type contractions imply the completeness on fuzzy metric space?
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1 Introduction

Fuzzy logic was established by [17], defining what is a fuzzy set and establishing most of the operations and properties.
Later on, [4] extended the concept of a classical entropy to present what is known as the fuzzy entropy (FE).
In the following, we will define a fuzzy set and the fuzzy entropy:

Definition 1 A fuzzy set A defined on a universe of discourse X is given by [17] as:

A= {{x,pa(x)lx € X}, (1)

where, Us(x) € [0, 1] is the membership function of A, it describes the degree of belongingness of an element x to the set
A.

Its quite important to note that, considering the elements x1,x2,...,x, € X, the Y.} | ta(x;) is not necessary equals to 1.
Hence, p4(x) is not a probability.

The measure which quantify fuzzy information gained from a fuzzy set or is referred to as fuzzy entropy. In other words,
a fuzzy entropy measures the average amount of knowledge or information from fuzzy data.Its different than the classical
entropy which depend of a probabilistic concept, where FE is define on the basis of membership function.

[4] defined a fuzzy entropy ( denoted by HPT (x) ) on the basis of shannon’s entropy ([14]),

HDT i [UA xi)log .UA(XI))Jr(l*HA(xi))log(lqu(xi))]_ )

They presented a set of axioms needed to be satisfied by any measure to be considered as an entropy; say H(x) of a fuzzy
set A. The axioms are

1.H(x) =0iff A is a non-fuzzy set (crisp set), i.e. 14 (x;) =0 or 1 Vx; € A.
2.H (x) is maximum iff s (x;) = 0.5,Vx; € A.

* Corresponding author e-mail: m.altalib@yu.edu.jo, maltalib@pmu.edu.sa. ORCID: 0000-0002-7238-8839.
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3.H(x) > H*(x), where H*(x) is the entropy of A* a sharpened version of A.
4.H(x) = H°(x), where H(x) is the entropy of A; the complement set of A. A° = {(x,1 — pa(x))|x € X}.

Many researchers and many articles studied fuzzy entropies and proposing modified and generalized versions of
such entropies. [11], defined what is known now as a Hybrid entropy, where the fuzzy entropy is considered to be a
generalization of the classical entropy (see, [2],[7]). This kind of entropy dealt with efficiencies of the total entropy which
was proposed by [4].

In the same article, [11] introduced a higher order fuzzy entropy which measures the uncertainty associated with any
subset with r combination. The entropy of order r of a fuzzy set A is

H() =~ L RSP lox((5D) + (1 - (S5 log(1 ~ K(S7),

where, S denotes the Shannon function, and p(S7) is the degree of membership through the function S.
[3] introduced a generalization of fuzzy entropy of order & based on Renyi’s entropy of a fuzzy set A as

HPP(0) =~ log () + (1~ a(w)) ) @7 L >0, 3

[9], [10] Introduced a fuzzy entropy based on the exponential behavior of information gain, of a fuzzy set A as

H (x) D Z [“A “HACE) 4 (1 — iy (x, ))eﬂA(x,) '} , 4)
1:1

Later on, [16] generalized the exponential fuzzy entropy of order—, of a fuzzy set A is given as

HYS(x) = Z[ )eI=Hi (D) (1_“A(xl.))eu7<1—uA<x,->>“>fl}; a>0. (5)

( (1-0.5%) l:I

[1] proposed a fuzzy entropy of order & with a promising application in decision making. The measure of a fuzzy set
A is given by

n a/2 a/2 l/a
NT oy e () (1= pa () ,
=g LA(xi)e ail- B (1= pa())e e |7 %7 > ©

The reader may refer to [5], [6], [8] for more details.

2 Transmuted Fuzzy entropy

2.1 Quadratic Transmuted Fuzzy entropy

As noted earlier, generalizing fuzzy entropies is a common custom in fuzzy theory. Adding extra parameter(s) to an
existing fuzzy entropy make it more flexible and hence secure all information from losing due fuzziness.

In a similar fashion, [15] introduced the quadratic transmuted family of distributions, where it enhances an existing
distribution by adding additional variable, for solving drawbacks in financial mathematics field. The cd f for a distribution
in the quadratic transmuted family is

F(x)=(14+1)G(x)—AG*(x), x€eR,

where A € [—1,1], and G(x) is the c¢df of baseline distribution.
Motivated by this family of distributions, we propose the Quadratic Transmuted Fuzzy Entropy (QTFE) defined below,
also we study and prove that QTFE satisfies the axiomatic properties of [4].

Definition 2 For a fuzzy entropy H(x) of the Fuzzy set A, the transmuted fuzzy entropy of A is given by
Hjy(x)=(14+A)H(x)— AH*(x), x€A,A€[-1,1]. (7

Theorem 1. The Quadratic Transmuted Fuzzy Entropy Hé (x) is a fuzzy measure and satisfies The axiomatic properties

[4].

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 283-291 (2024 ) / 285

Proof. The set of four axiomatic properties are checked as follows

e Hj(x) = 0iff Ais anon-fuzzy set (crisp set), i.e. ia(x;) = 0 or 1 Vx; € A.
When, p4(x;) =0 or 1 ,¥x; € A then it straight forward that H(x) = 0. Hence, Hg (x) = 0. on the other hand, when
Hj(x) =0, then (14+A)H (x) — AH?(x) =0, i.e.,
H(x)x [(1+24)—AH(x)] =0,
hence at least one of the factors is zero
H(x)=0or (1+1)—AH(x)=0,Vx € A.

If H(x) =0, then 4 (x;) =0 or 1 Vx; € A, as H(x) is a fuzzy entropy and satisfies this axiomatic property.

Now, when (1 +1) —AH(x) =0, so, H(x) = % This conclusion is false, as it means that the fuzzy entropy is always
constant and ranges between [0, 2].

e H(x) is maximum iff pa (x;) = 0.5,Vx; € A.
by differentiating Hé (x) with respect to 4 (x;), we get

dH/, (x) 9H (x) 9H (x)
0
=(14+A —2AH(x) —~=
amae T ame) Y G )
_ JdH(x)
= 350) [(1 +A)— zw(x)}
_ 9H()
= Sl [1 +a-(1- 2H(x))}
Let, 0 < pa(x;) <0.5.
Notice that ;LZ EQ) is always greater than 0 as H (x) satisfies this particular axiomatic property, since its a fuzzy measure.

IH} (x)

i.e., the statement 1 + 24 - (1 —2H (x)) should be positive in order to have 5 TRED)

Case 1: A > 0,H(x) <0.5. The statement is valid.
Case 2: A <0,H(x) > 0.5. The statement is valid.
Case 3: A > 0,H(x) >0.5.

Now, we have

> 0.

0>(1-2H(x)) > -1
0>A-(1-2H(x)) > —A > —1, (multipling by 1)
1>1+A-(1-2H(x))>1—-A>0, (addingl)
hence, 1 + A - (1 —2H(x)) > 0, The statement is valid.
Case 4: A <0,H(x) <0.5.
1>(1-2H(x))>0
—1<A<A-(1-2H(x)) <0, (multiplingby A)
0<14+A<1+A-(1-2H(x))<1, (adding1)
hence, 1 + A4 - (1 —2H(x)) > 0, The statement is valid.

] T
Hence, aﬁf(g > 0 when 0 < s (x;) <0.5.

Now, let, 0.5 < [JA(X,') <1.0,
IH(x)
I (x;)
hand and as explained earlier, the statement 1+ A - (1 —2H (x)) is positive. i.e.,

IH ()
Jua(x;)

is always less than 0 as H(x) satisfies this particular axiomatic property, since its a fuzzy measure. On the other

142 (1-2H@)]

OHY (x)

0

» Ity <0

Thus, Hg (x) is a concave function which has a global maximum at 4 (x;) = 0.5.

Hence
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. Hé (x) > H*(x), where H*(x) is the entropy of A* a sharpened version of A.

As shown in the last point, Hé (x) is increasing on the interval [0,0.5) and decreasing on the interval (0.5,1]. It
follows that 1 (x;); the membership function entropy of A, is less the 4 (x;) in the interval [0,0.5) and its greater than
Ua (x;) in the interval (0.5, 1]. Hence, Hg (x) > H*(x)

o H}(x) = H}' (x), where H})*(x) is the entropy of A°; the complement set of A.
H)(x) = (1+A)H(x) — AH*(x) = (1 + A)H (x) — AH (),

as H(x) is a fuzzy entropy. So,
(1+A)H (x) — AH (x) = H)  (x).

Hence the theorem is proved, the QTFE satisfies the axiomatic properties, i.e., Hg (x) is indeed a fuzzy entropy.

2.2 Cubic Transmuted Fuzzy Entropy

[12] and [13] introduced the idea of the cubic transmuted distribution function, The cd f for a distribution in the cubic
transmuted family is

F(x) = (1+M)G(x) + (A2 — A4)G*(x) - G (x), x€R,

where 1 € [~1,1], A € [-1,1] and —2 < ¥'7 A; < 1. G(x) is the cdf of baseline distribution.
On the basis of the defined family of distribution, we define the Cubic Transmuted Fuzzy Entropy (CTFE).

Definition 3 For a fuzzy entropy H(x) of the Fuzzy set A, the Cubic Transmuted Fuzzy Entropy of A is given by

HE () = (14+A0)H () + (A — A H? (x) — L H (x), ®)
where, 11,22 € [~1,1], and =2 < ¥?2; < 1, x € A.
Theorem 2. The Cubic Transmuted Fuzzy Entropy Hg (x) is a fuzzy measure and satisfies The axiomatic properties [4].

Proof. The axiomatic properties are checked as follows,

e H.(x) =0iff Ais a non-fuzzy set (crisp set), i.e. a(x;) =0 or 1 Vx; € A.
When, p4(x;) =0 or 1 Vx; € A then H(x) = 0. and hence HZ (x) = 0. on the other hand, when HZ (x) = 0, then
(14 A0)H () + (A — A)H2(x) — LH3(x) = 0, ivc.,
H(x) x [(14+ A1) + (M — A1) H(x) — H?(x)] =0,
hence at least one of the factors is zero

H(x)=0o0r (14+2A))+ (Aa— A1) H(x) — L,H?(x) = 0,Vx € A.

If H(x) = 0, then ua (x;) =0 or 1 Vx; € A, as H(x) satisfies this axiomatic property.
Now when (1 + A1) + (A — A1)H (x) — A,H?(x) = 0, this will give a specific value of the entropy dependent on the
choice of A; and A,. And hence this factor is not zero.

o H[ (x) is maximum iff p14 (x;) = 0.5,Vx; € A.
by differentiating HZ (x) with respect to 4 (x;), we get

9HL (x) HO) oo e, HE) oo OH)
Jua (x;) =+ )3 A (i) T2h = A)HE) A (x;) 3AH" () J s (x;)
;}Zg) {1+Al )+2(A — A1) H (x) —3;LZH2(x)-}
aH(x
) [1+;Ll (1—2H(x ))+),2H(x)-(2—3H(x))]
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Let, 0 < g (x,') <0.5,

Notice that aa“f: (&)) is always greater than 0 as H(x) a fuzzy measure and hence it satisfies this axiomatic property, i.e., the
oH}
statement 1 +A; - (1 —2H (x)) + A,H (x) - (2 — 3H(x)) should be positive in order to have a“%(ix; >0

Case 1: 1,4, > 0,H(x) <0.5. The statement is valid.

Case 2: 11,4, > 0,0.5 < H(x) < 2/3. The statement is valid.
Case 3: 41,42 < 0,H(x) <2/3. The statement is valid.

Case 4: A1,A, > 0,H(x) > 2/3.

we have 0>(1-2H(x))>—-1 , O0>Hx)(2-3H(x))>-1
0>A4-(1-2H(x)) > -4 >-1 , 02X -Hx)(2-3H(x)>-1>0
hence,
0>A41-(1-2H(x))+A-H(x)(2—-3H(x)) > —1,
then,

1>14+A-(1-2H(x))+A-Hx)(2—3H(x))>0

hence, The statement is valid.
Case 5: 41,42 < 0,H(x) <0.5.

we have 1>(1—2H(x) >0 , 1>H®(2=3H(x)>0
<M A-(1=2H(0)) >0, 130> h-HEx)(2—3H(x) <0
hence,
13 A (1= 2H()) + Ao H(x) (2 — 3H(x)) < 0,
then,

0<14A-(1—2H(x)+A-H(x)(2—3H(x))

hence, The statement is valid.
Case 6: 41,4, <0,0.5< H(x) <2/3.

we have
1<(1-2H(x)<0 , H®(2-3H(x))>0
I>A>A4-(1-2Hx))>0 —1<HL<A-Hx)(2-3H(x))<0
1> >A4-(1-2Hx)>0 , 0<14+44 <14+ -Hx)(2-3H(x))<1
then,

0< 1441 (1—2H(x)) + A H(x)(2 — 3H(x))

. . JHL (x)
hence, The statement is valid, and hence EITRED) >0
Now, let, 0.5 < pa(x;) < 1.0,

aa;: g)) is always less than 0 as H(x) satisfies this particular axiomatic property, since its a fuzzy measure. On the other
T
hand and as shown above, the statement 1+ A, - (1 —2H (x)) + A»- H(x)(2 — 3H(x)) is positive. Hence, g%éj; <0

Thus, HCT (x) is a concave function which has a global maximum at 4 (x;) = 0.5.

e H. (x) > H*(x), where H*(x) is the entropy of A* a sharpened version of A.

As shown in the last point, H. (x) is increasing on the interval [0,0.5) and decreasing on the interval (0.5,1]. It
follows that (3 (x;); the membership function of A*, is less the i (x;) in the interval [0,0.5) and its greater than pi4 (x;) in
the interval (0.5,1]. Hence, HX (x) > H*(x).

o HX (x) = HL(x), where HL®(x) is the entropy of A°; the complement set of A.
HE(x) = (14+A)H (x) + (A — M) H? (x) — LH? (x),
as H(x) is a fuzzy entropy; i.e., H(x) = H°(x). So,
(14 A)H () + (A2 — 2)H? (x) = I H " (x) = HL" (v).

Hence the theorem is proved, the Cubic Transmuted Fuzzy entropy satisfies the axiomatic properties, i.e., Hg (x) is a fuzzy
measure.
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2.3 k-Transmuted Fuzzy Entropy

[12] have introduced the k-Transmuted families of distributions, a generalization of transmuted families, defined as
k .
F(x) =G(x)+[1—-G(x)] Z LG (x),
i=1

where, A; € [—1,1] and —k < Y¥A; < 1. G(x) is the cdf of baseline distribution.
Based on this family of distribution we define the kTransmuted Fuzzy Entropy.

Definition 4 For a fuzzy entropy H(x) of the Fuzzy set A, the k-Transmuted Fuzzy Entropy of A is given by
k .
Hl (x) =H(x)+[1-H(x)] Y LH'(x), x€A. )
i=1

Where, A; € [—1,1] and —k < Y¥ A < 1, k=2,3,....

It follows that we have another version of cubic Transmuted Fuzzy Entropy, given as
3 .
HI (x) =H(x) +[1 — H(x)] ZliH’(x),
i=1

which after simplifying turned out to be equivalent to CTFE.
Lets define a Quartic Transmuted Fuzzy Entropy; a k-TFE at k = 4, denoted by H4T (x) given by

4
HY (x)=H(x)+ [l — H(x)] ;Mli(x). (10)

Theorem 3. The k—Transmuted Fuzzy Entropy H kT (x) is a fuzzy measure and satisfies The axiomatic properties [4].

The proof is straight forward as done in the previous theorems.

3 Transmuted entropies of well known fuzzy measures

Fuzzy entropy literature is rich in many versions and generalizations of FE, among many of these measures, we
presented the most known and applied measures in equations (2) - (6). The Quadratic, Cubic and K-Transmuted Fuzzy
entropies of fourth order are generalizations of the fuzzy measures mentioned above are found by applying equation (7),
(8) and (10), respectively.

Table 1 presents the values of Deluca and Terminin 1972 performance at different values of p4(x;) (refereed to as
Normalized Values) alongside its Transmuted Fuzzy entropies.

tia (x;) HPT HY" HAT HPT
0 1.71x107% | 3.08x10°° | 8.56x10~7 | 8.56x10~”
0.1 0.325 0.501 0.279 0.284
0.2 0.501 0.700 0.488 0.501
0.3 0.611 0.801 0.622 0.640
0.4 0.673 0.849 0.696 0.716
0.5 0.693 0.863 0.719 0.740
0.6 0.673 0.849 0.696 0.716
0.7 0.611 0.801 0.622 0.640
0.8 0.501 0.700 0.488 0.501
0.9 0.325 0.501 0.279 0.284
1.0 1.71x107% | 3.08x107¢ | 8.56x10~7 | 8.56x10~

Table 1: Normalized Values of HP7 (A) and its respected transmuted generalizations
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All transmuted fuzzy entropies are performing better than the original entropy, as we expected. There is a significant
increase in the values of the generalized entropies in comparison with De-Luca and Termini measure. QTFE enhances the
performance of the entropy measure more than the others.

The difference in performance between QTFE and CTFE, k-TFE is noticeable. But does this remark going against what
we believe in?, introducing more parameters will end up in a better performance of a measure?

In fact, parameter A in QTFE is acting as an additional parameter to the measure, but in the cases of CTFE and k-TFE,
more A’s is not considered more parameters, it is just a division of one parameter.

As shown below in Table 2, TFE is performing better than the original measure, with best performance for QTFE.

Ua (xi) HPP ng HgP HfP
0 419%x10~7 | 7.54 x10~7 | 2.09x10~7 | 2.09x10~
0.1 0.370 0.558 0.332 0.338
0.2 0.651 0.833 0.670 0.689
0.3 0.846 0.950 0.880 0.899
0.4 0.962 0.991 0.975 0.982
0.5 1.000 1.000 1.000 1.00
0.6 0.962 0.991 0.975 0.982
0.7 0.846 0.950 0.880 0.899
0.8 0.651 0.833 0.670 0.689
0.9 0.370 0.558 0.332 0.338
1.0 | 419x1077 | 7.54 x10~7 | 2.09x10~7 | 2.09%x10~7

Table 2: Normalized Values of H"?(A) and its respected transmuted generalizations

Ua (-xi) HBP HSP HgP H43P
0 2.00x10~7 | 3.60x10~7 | 1.00x10=7 | 1.00x10~7
0.1 0.198 0.325 0.147 0.149
0.2 0.385 0.575 0.349 0.356
0.3 0.545 0.743 0.542 0.557
0.4 0.654 0.835 0.674 0.693
0.5 0.693 0.863 0.719 0.740
0.6 0.654 0.835 0.674 0.693
0.7 0.545 0.743 0.542 0.557
0.8 0.385 0.575 0.349 0.356
0.9 0.198 0.325 0.147 0.149
1.0 2.00x1077 | 3.60x10~7 | 1.00x10~7 | 1.00x10~7

Table 3: Normalized Values of H2”(A) and its respected transmuted generalizations
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Ua (xi) HVS H\Q/S HXS HXS
0 1.26x1077 | 5.99x10~7 | 1.66x10~7 | 1.66x10~7
0.1 0.837 0.494 0.274 0.278
0.2 0.985 0.791 0.608 0.626
0.3 0.999 0.936 0.851 0.871
0.4 0.999 0.989 0.969 0.977
0.5 1.000 1.000 1.000 1.000
0.6 0.999 0.989 0.969 0.977
0.7 0.999 0.936 0.851 0.871
0.8 0.985 0.791 0.608 0.626
0.9 0.837 0.494 0.274 0.278
1.0 1.26x1077 | 5.99x107 | 1.66x10~7 | 1.66x10~7

Table 4: Normalized Values of H"S(A) and its respected transmuted generalizations

.uA(xi) HNT HgT HéVT Hﬁ\’T
0 3.16x107% | 5.69x10~% | 1.58x10~% | 1.58x10~*
0.1 0.346 0.527 0.303 0.308
0.2 0.527 0.726 0.520 0.534
0.3 0.677 0.852 0.701 0.721
0.4 0.784 0.919 0.819 0.840
0.5 0.824 0.940 0.859 0.879
0.6 0.784 0.919 0.819 0.840
0.7 0.677 0.852 0.701 0.721
0.8 0.527 0.726 0.520 0.534
0.9 0.346 0.527 0.303 0.308
1.0 3.16x107% | 5.69x10~4 | 1.58x10~% | 1.58x10~4

Table 5: Normalized Values of HV7 (A) and its respected transmuted generalizations

We state the following based on Table 1 and Table2;

HPT < HET < HPT < H)T,

PP PP PP PP
H™ <H{" <H; <Hp .

In the later tables we studied three generalized fuzzy entropies of order &, and we a reached similar conclusion, In Table
3
BP BP BP BP
H™ <H: <H, <Hj,.

Also, in Table 4
HYS < HZS <HYS <Hp®.

And in Table 5
AT < BT <H)T <HJT

4 Conclusion

The proposed generalized entropy named Transmuted Fuzzy entropy is another form of generalized entropies. we
presented 3 different measures; QTFE, CTFE and k—TFE with performance much better than the original FE, where
QTEFE presented the best enhancement.

As TPD was first introduced in financial mathematics and later applied in modeling lifetime and survival data, we are
intrigued to apply TFE, and specially QTFE in these fields in future research.
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Abstract: We consider a linear quadratic differential game on an infinite time horizon with two types of an information structure.
The game models are considered in both information structures: the open loop design and feedback design. The Newton solver for
computing the stabilizing solution of the associated Nash-Riccati equations has been established. Moreover, a convergent linearized
iterative method depending on a negative constant is introduced for each information structure. The linearized iteration has a linear
convergence rate, however there are cases where the iteration is faster than Newton’s method. Numerical experiments are implemented
to explain the computational advantages of the introduced solvers.
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1 Introduction

There is a correlation between the behaviour of economic agents and their profits on a market. Game theory has used to
model and investigate the equilibrium of a market. The market price is defined via a dynamic system equation. Typical
applications of game models are in different branches in economics [10, 13] and specially in modelling the energy markets
[17], gas network optimization [1].

The Nash equilibrium theory is an effective instrument for the analysis of the equilibrium states in game models. We
analyze the problem of computation the optimal strategies to the Nash equilibrium in linear quadratic differential games.
Considering a linear dynamics upon the quadratic cost, the problem lead us to solve the coupled Riccati-like differential
equations.

Nash equilibrium (or optimal) strategies for differential games are studied in many papers and applications. Nash
equilibrium strategies depending on a special solution of coupled algebraic Riccati equations [10] - [13].

The Nash equilibrium and its applicability in the machine learning classification via support vector machines was
investigated recently in many papers, for example [5, 14]. It is important to find the corresponding equilibrium fast and
effective.

We consider a dynamic system of the type

X =Ax+ Biui + Byuy, x(O):xo. ()

In Equation (1) the state vector is denoted by x, the initial vector is xo € R"*!, and matrices A,B;,B, belong to
Rem RO RPXM2 - where RP*4 denotes a set of p X ¢ matrices with real entries. Control vectors are uy,u;. Each player
has to choose its control in order to increase its profit. If for all nonnegative vectors xo, u1, u the state function x(¢) takes
only nonnegative values, then system (1) is a positive one. Moreover, system (1) is positive if and only if matrices B and
B, are nonnegative ones and the matrix (-A) is a Z-matrix [2].

We consider an infinite time horizon game model for a positive system in two cases: (a) with an open loop information
design and (b) with a feedback information one. The Newton method and its computer realization for computing the

* Corresponding author e-mail: i_ivanov @feb.uni-sofia.bg
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Nash equilibrium for the same problem was presented and analyzed in [3]. The Newton algorithm solves a Lyapunov
matrix equation at each iteration step via Kronecker product, which approach increase double the size of computational
problem [3]. In this paper we explore a problem to find Nash equilibrium strategies for a two-player infinite horizon linear
quadratic differential game in these two cases. We propose new faster iterations to determine the stabilizing solution
of the corresponding Nash-Riccati equations. Based on the stabilizing solution the optimal controls of each player are
established. The computational algorithm of the new iteration needs to compute only two matrix inverses of each iteration
step. Numerical experiments are implemented to explain the computational advantages of the introduced solvers.

1.1 A feedback design game model

The theory of the Nash equilibrium in a feedback design was established in [15, 16] and computationally investigated in
[2,3,8]. The goal of each player is to maximize the corresponding cost function. Cost functionals Ji,J, for players are
defined

oo 2
Ji(FlaF2;x0):+/0 ! <Qi+ ZIFjTRiij> xdt, (2)
=
for i = 1,2. Matrices Q; and R;; are symmetric ones with Q; € R"*" and R;; € R™*™ and i, j = 1,2. The following

additional requirements are assumed:
(a) O1,02,R1>, and Ry are symmetric and nonnegative matrices;
(b) Rl-;' is nonpositive, i = 1,2.
Moreover, to compute a feedback Nash equilibrium point one has to solve the couple of Nash-Riccati equations [2]:

0=2%(X1,X2) = AT X| —X1A— Q1 + X1 $1 X1 + X1 $2 X2 + X252 X1 — X2 S12 X2, (3)
0 =% (X, ,Xz) = —ATX) — XA~ Q0+ X252 X2 + X251 X1 + X1 81 X2 — X1 521 X1, “4)
where the matrix coefficients are computed via:
(2) Si=B;R;'Bl', S; =57 <0,i=1,2;
(b) S12 = BaR5, R12R, B,
Sip=51,>0, (Ri2=R1));
(c) Sa1 = B1R 'Ry 1R 'BT
Sy =584 >0, Riu=RL,, Ry =R},
We derive a faster iteration to calculate an n x n stabilizing solution (X1,X,) of (3)-(4). The closed loop matrix A —
S1X, — S2X, of system (1) is a stable one. Thus, the feedback Nash equilibrium is defined by Fj = fR;le]T Xj ,j=1,2
and optimal functional’s value is J;(Fi, F>,x0) = x} X;x0,j = 1,2 [15,16].

1.2 An open loop design game model

In addition, we define the cost functionals Jj,J, for the players in a game with an open loop design

Ji(uy,uz,x0) Jr/ < Q,x+2u R,juj> dt. 5)

The matrix coefficients in (5) are the same as (2). Players choose their own strategies u1,u; based on the information
for the initial state xy [2]. The Nash equilibrium point of the game is a solution of the couple Nash-Riccati equations:

0=LZ1(X1.X2) = —ATXi = X1 A = Q1 + X1 $1 X1 + X1 $2X5, 6)

0= gz(X[ ,Xz) = 7ATX2 —XA—0r+ X5 X+ X851 X . 7

A solution (X, X5) has a property the closed loop matrix (A — S1X; — S»,X5) is stable. Moreover, the Nash optimal

strategy (u},u}) in the game is given by uj = —R;j'BJTXfx*,j = 1,2 and x* solves the closed loop equation % = (A —
Si1X{— SQXZ*)X, X(O) = X0.
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1.3 Notations and facts

A matrix Q = (g;;) is nonnegative one in the element wise ordering if ¢;; > 0 . A real square matrix A is called a Z-matrix
if there exists a real number ¢ and real nonnegative matrix Q, such that A = o/ — Q. A square Z-matrix has nonpositive
off-diagonal elements. If ¢ > p(Q), the matrix A is a nonsingular M-matrix. Note p(Q) is the spectral radius of Q.

The described two player linear-quadratic differential game is applied to positive differential system (1). We need
some properties for nonnegative matrices and especially for M-matrices.

According to theory of nonnegative matrices the following allegations are equivalent for a given Z-matrix (-A):

(a) (—A) is a nonsingular M-matrix;

(b) A is stable .

Lemma 1./4]. For a Z-matrix A, the following items are equivalent:
(a) A is a nonsingular M-matrix;
(b) A~ >0;
(c) Au > 0 for some vector u > 0;
(d) All eigenvalues of A have positive real parts.

Lemma 2./6]. Let A = (a;j) € R™™ be an M-matrix. If the elements of B = (b;j) € R™™ satisfy the relations b;; >
aij, aij < bjj <0, i#j,i,j=1,...,mthen B also is an M-matrix.

The paper is organized as follows. In section 2, we consider the linearized process to modify the Newton method to
compute the feedback Nash equilibrium. The convergence proof is derived. In section 3, we slightly modify the introduced
iteration to a game with an open loop design. In section 4, we present some numerical illustrations of the proposed
iteration. Finally, we finish the paper with some conclusions.

2 Linearized iteration applied to a feedback equilibrium
We discuss how to compute the feedback Nash equilibrium. The Newton iteration is defined and investigated in [2, 8]
(i=1,2):
T, (k+1 k+1 k) y (k41 k1) v, ()T k
J#i
where

AW =a—5x0 _5,x®

wis = x® s, — x5,
Wz({() = Xz(k)Sl *Xl(k)Szl ) 9)
0 =0+ xPsixV + Y xPsx® +xMsxY).

J#i
The linearized process was effectively applied to construct iterative methods for solving the algebraic Riccati equation

associated with M-matrices [7,9].
At each step of Newton iteration (8) it is necessary to find a solution of a Lyapunov matrix equation. We propose

a linearized modification for the Newton method. We take X I(O) = XZ(O) = 0, and negative constant 7, and construct two
matrix sequences {Xi(p),)’i(p)};":o, i=1,2 via:
FP =yl +A— 51X — $:x37,
Tl(p) =i, _AT +X1(p)Sl +X2(p)S27
YI(P) Fl(p) _ Tl(p)Xi(p) _ Ql(Xl(p);Xz(p)) (10)
Fz(p) _ yIn +AT o Yl(l’) SI _ Yz(p) SQ,

TZ(p) _ yIn —_A +SIY1(p> +52Y2(p>
F2(P) Xi(PJFl) — YI(P) T2(P) _ Qi(yl(l’) , Y;Sk)) (11)
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where
Qi(Zi,Z;) = Qi + ZiSiZi + Z;SiZ;

with (i, j = 1,2;j #1).
We remark that the standard properties for the matrices of the above matrix sequences in the following Lemma:

) y®)

Lemma 3.The matrix sequences {Xl.(p Y, };:0, i=1,2 are obtained applying iteration (10) - (11) with initial zero

matrices Xl(o) =0 ,XZ(O) =0, and y < 0. Then, the following equalities are satisfied for p =0, ... oo

(l) (Y(p) 7Xj(p))F1(p) _ (X(p) _ Yi(p_l)) (yIn —A+ Slxl(p) +S2X2(p))

+ (Xj([’) _ Y}P_l))ijl p) + Y[(P)sj (X](p) _ Yj(l’_l))
—1 —1
_ (Xj(l’) _ Y]([’ )SleI(p) _ Y](F)SU (X(p) o Yj(p )) ’

% S]Xl(p) + (X](p) _ Yj(p))Sl]Xl(p) + Yj(p)Sl] (X](p) _ YJ(P)) .

Moreover, if the couple (Xl ,Xg) is an exact solution of (3)-(4) the identities can be verified (i=1,2):

(iii) (V") —Z)FP) = (vl — AT) (X" — %) + XSi (X — X)
+xsj(xjp> X))+ (X —X)8, %+ X;8,(x” — %)
+ (X - XP)si;X, +Xj(”)S,J(X -Xx7),

(i) P (xP) — X)) =+ — %) (1, - A)

1 1

+ (7 = X)S%+ (Y~ X))SX;
+ (57 = )8 %+ XS (v}

—Xj)

a2

+ (f(j - Yj(p))Sijf(j + Yj(p)S,-j(Xj — Yj(p)).
Based on the proved Lemma, we confirm the convergence of the proposed iteration (10) - (11) in the following
Theorem:

Theorem 1.Assume matrices A,S1,S», and Q1 , Q> are coefficients of the set of matrix equations Z;(X,X2) =0, j=1,2.
There exists a negative y < 0, such that —(yl, + A) is an M-matrix and yI, — A < 0.

),Yi(p) . 0, i=1,2 obtained via (10) - (11) satisfy the properties:

i X > Xi(pH) > Yi(p) > l. for p=0,1,..., i=1,2 for any exact nonnegative solution X1,X» of %i(X1,X2) = 0,
i=1,2.;

(i) The matrices (—Fl(p ) ) and (—FQ(p )) are M-matrices for any positive p.
(p) o

The sequences {Xl-(p

(iii) The matrix sequences {Xi(p ) ,Y;
Nash-Riccati equations (3)-(4).

_o i=1,2 converge to the stabilizing nonnegative solution X1, X5 to couple of

Proof:-We provide a proof by mathematical induction on the number p of the iteration step. In the beginning, we prove

) = x{% = 0, and construct the couple of sequences {X\”),v” )}‘;’:O,i =1,2

theorem’s statements for p = 0. We take X I(O
applying recursive equations (10) - (11) with XI(O) =0 ,XZ(O) =0and y<O.

For p = 0 we have FI(O) =vl, +A, ie. (yI, +A)~' <0. This means that (fFl(O)) and (sz(O)) are M-matrices. and
01(x” x”) > 0. Thus Y\” > 0:v" > x1”, j=1,2.

In the second step, we formulate the inductive hypothesis, i.e. we assume that the statements are true for the a positive
value of p. We assume that Xi(p) > Yi(pfl) > Xi(pfl) > 0 for some integer p and i=1,2. It is true that Xi(p) - Yi(pfl) >0, and

vP~Y —xP"Y > 0. In addition, (—F\")) and (—F\")) are M-matrices.

1
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The next is the induction step, where we prove the statements for p+ 1. We have to prove inequalities Xl.(p D) > Yi(p ) >
Xl-(p) >0and (fFI(pH)) and (7F2(p+1)) are M-matrices.
Applying Lemma 3 (i), we get
Y(P) _ X(P) — W(P) (FI(P))fl
1 ] ]

)

where
W([’) = (X(p) o Y-(p_l))('}/ln —A +S|X1(p) +S2X2(p))

1 1 1

+ (XJ(P) _ YJ(P*I))SJXl(P) + Y[(P)sj (X](p) _ Yj(P*I)) _ (X](p) _ Yj(P*l))Sini(P)
-1

1 1

We note the following S; < 0,5, < 0,7, —A < 0,513 > 0,8y > 0. Thus W”) < 0. Therefore ¥ — x) > 0,
because (Fl(p))_1 <O0fori=1,2.
Further on, according to Lemma 3 (ii) we have

Xi(pH) _y — (Fz(p))*' HP)

1

where
HP) .= (y1, — AT JrYl(p)Sl JrYz(p)sz) (Yi(p) 7Xi(p)) JrYi(p)Sj(Yj(p) 7Xj§p))
+ (Yj(p) . XJ(F)) S Xl_(p) + (Xj(p) . Y]{p)) Sini(p) + Y]{p) Si; (Xi(p) . Yl_(p)) '

With similar arguments we arrive at the conclusion X ;p ) _y j(p ) >0,j=1,2.

We  compute (i=1,2) Xl-(p U Via (I1) and Yl-(p ' Via (10). Consider the  matrices
Fl(p+1) =y, +A— SIXl(p+1) — SzXz(pH) and F2(p+1) =7, +AT — Yl(pH)SI — Y2(p+1)52. According to Lemma 2 and
properties Xi(pH) > Xl-(p) and Yi(pH) > Xi(pH) ,i = 1,2 we derive the conclusion (7F1(p+1)) and (sz(p-H)) are
M-matrices and therefore (Fl(pﬂ))_1 <0and (FZ(p_H))_1 <0.

Thus, the sequences {Xi(p ),Yi(p ) p—0,1=1,2 are monotone increasing. We have to prove that they are bonded above.
Consider any exact nonnegative solution (X;,X>) of %;(X1,X2) = 0, j=1,2. We shall prove that the solution is an upper
bound of the matrix sequences.

For p =0, we have X>X 0 _ 0, and according to Lemma 3 (iii)

:
O —%)F” = —(y1, —AT) X — XS, % — XS, X — ;8% — X;S, X+ X;8i,%,; >0,
weinfer ¥\” — X, < 0,i=1,2.

Moreover, for p > 0 we have
(P = %) = (v, = AT () = %)+ KSi (X~ %) + %S (X[~ X))
+ (X X))S%+ XS (X — %) + (X~ X)S%; + XX~ X)) > 0,
we have Yi(p) -X,<0,i=1,2.

(p+1)

We evaluate the matrix difference X;” U _X,.i=1,2. Applying Lemma 3 (iv) we obtain:

EPx) %) = 0" = %) (v, — A) + (17 —K)Si%i + (1 —X)8,%;

Thus, X\""V - X; <0,j=1,2.

(P)y oo
Yi p=0°

()?1,)?2). By taking the limits in (10) - (11) it follows that the couple of matrices is a solution to Nash-Riccati equations

The matrix sequences {Xi(p ), i=1,2 of nonnegative matrices converge to the couple of nonnegative matrices
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(3)-(4). Moreover, the limit matrix has the property X; < X;,i = 1,2 (in the element wise ordering). The matrix —A +
S1 X1 + S2 X is an M-matrix because (fFl(m) is an M-matrix for all positive p. Therefore, the matrix A — S X +8: X%, is
stable. The solution (X|,X5) is a stabilizing one.

Corollary 1The stabilizing solution (Xl ,Xz) of Nash-Riccati equations (3)-(4) derived in Theorem 1 is the minimal one
to (3)-(4).

3 Linearized iteration applied to a open loop design

In this section, we change iteration formula (10) - (11) to obtain a new iteration to compute the stabilizing solution of the
set of Nash-Riccati equations in case of a game with open loop design. In formula (10) - (11), we change the matrices
0i(Zi,Zj), i,j=1,2;j # i as follows:
0i(Z,Z)) = Qi+ Z:SiZi + Z;SZ;, (12)
withi,j=1,2;j#1i.
Applying Theorem 1, we derive a proof for the convergence of iteration (10) - (11) in the next Theorem:

Theorem 2.Assume matrices A,S1,S>, and Q1,0 are coefficients of the set of matrix equations £;(X1,X,) =0, i=1,2
defined with (6) - (7). There exists negative y < 0, such that —(yl, + A) is an M-matrix and yI, — A <.
The sequences {Xi(p), Yi(p)};’:o, i=1,2 constructed by (10) - (11) with Q;(Z;,Z;) defined in (12) fulfill the properties:
i X > Xl-(pH) > Yi(p) > Xi(m for p=0,1,..., i=1,2 for any exact nonnegative solution X,X, of £;(X1,X2) = 0,
i=1,2.;
(ii) The matrices (—Fl(m) and (—Fz(p)) are M-matrices for any positive p.
(iii) The matrix sequences {Xi(p >,Yi(p ) ;":0, i=1,2 converge to the stabilizing nonnegative solution (X1,X») to couple
of Nash-Riccati equations 4;(X1,X,) =0, i=1,2. In fact the matrix A — $1X1 — S, %, is stable.

4 Results

In this section, we apply the proposed iterations to compute the stabilizing solution of the couple Nash-Riccati equations
which help to find the Nash equilibrium point for the games with feedback information structure and the open loop
information stricture. Experiments are provided with different matrix coefficients of Nash-Riccati equations (3)-(4) and
(6)-(7). In addition, we present the comparative analysis between Newton method (8) and proposed linearized iterations
in the considered two cases. All experiments are executed with MATLAB R2018b on a Laptop with 1.50 GHz Intel(R)
Core(TM) and 8 GB RAM, running on Windows 10. The stop criterion for each iteration is

max (1122 (X7 X{) 2, 122 X012 ) < ot or max (1124 (X, X0 |2, | 22069 X[)112) < rol, where |||1> is
the spectral matrix norm and tol = 0.1e — 10.

Moreover, the property of symmetry for matrices S1,S, give us possibility to improve the computational scheme of
iteration (10)-(11) in order to decrease the computations for each iteration step and accelerate the algorithm based on

(10)-(11).

Example 1.Consider the matrix coefficients of system (1) and cost functions Ji,J:

—4 1 105 5 100 1
1-508 1 0 0.8100.2
A=l 1 124 1) B2 B=|0311 o]"
09 1 2-6 0 0600 1
Q) = diag [5; 0; 0.5; 3], Q) = diag [50; 4;5;0], Ry = —90 € R'*!; Ry; =200 € R™*!, Ry, = diag [400; 200; 500;
300], and
—400 0 0 —10
0-100 0 0
Ry =

0 0 —200 0
—10 0 0 —400

We compute the matrix coefficients S} < 0,5, < 0,512 >0, and Sp; > 0.
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The proposed iteration
{10)-at)

Y It CPU time
seconds

-10 219 0.55

-5 118 0.30

-1 73 0.18

-1.25 | 42 0.105

-0.5 no result

Table 1: Results for Example 2 with tol = .1e — 10.

To compute the stabilizing solution of the couple of Nash-Riccati equations (3)-(4) we apply linearized iteration (10)
- (11). After 118 iteration steps with Y = —5 we obtain the stabilizing solution (X ,X,). The matrices are nonnegative and
symmetric:

1.1055 0.3416 0.4615 0.2485 8.8338 2.0633 2.6256 1.2793

% = 0.3416 0.1767 0.2514 0.1449 %, 2.0633 1.2650 1.2269 0.5980
=1 0.46150.2514 0.4074 0.2194 | > 2~ | 2.6256 1.2269 2.1363 0.8011
0.2485 0.1449 0.2194 0.3415 1.2793 0.5980 0.8011 0.3741

The closed loop matrix A — S 1 X1 — 82X, has the eigenvalues
—1.1274,—4.7929 ,—5.6682, —6.8395.

To compute the stablllzmg solution of the couple of Nash-Riccati equations (6)-(7) we apply linearized iteration (10) -
(11) with the matrices Q;(Z;,Z;), i, j = 1,2; j # i defined by (12). Matrices X1, and X, are nonnegative and nonsymmetric:

0.7775 0.1567 0.2067 0.1260 7.5325 1.4131 1.7341 0.8439
% — 0.1569 0.0678 0.1007 0.0726 %, — 1.4048 0.9198 0.7526 0.3661
171 0.20790.1011 0.1990 0.1195 | > “2~ | 1.7156 0.7499 1.4809 0.4807

0.1279 0.0734 0.1202 0.2938 0.8248 0.3617 0.4765 0.2154
The closed loop matrix has the eigenvalues —1.3124 , —4.8023, —5.6708, —6.8395.

Example 2.Consider the same matrix coefficients as in Example 1. We compare the Newton iteration and the proposed
linearized iteration to compute the stabilizing solution of (3)-(4).

The Newton method computes the solution for 6 iteration steps and CPU time of 0.21 seconds for 100 runs. Results
from experiments with proposed iteration are given in Table 1. The execution CPU time for 100 runs is given. The
convergence of the proposed method is proved in Theorem 1. The proposed iteration executes smaller number of iteration
steps (It=42) for y = —1.25. For this value of y the proposed method is faster than Newton method which has a quadratic
convergence rate. In addition, the method does not converge for y = —0.5. Weakness of the method that one has to find
a properly value of a which gives speed of the method. In addition, we check the conditions of Theorem 1 for choosing
values of 7.

Example 3.Define the matrix coefficients of system (1) and cost functions Ji,J, as follows (n=8).

24 0 0 2 07 2800 0
20-25 0 0 0.9 050 0

A= "9 16-25 o Bwo=]o9| B0o=| (¢0415]"
15 0 18-24 08 003 8

A =diag[Ao,Ao], Bi =diag[Bio,B10], Ba= diag[Bao, B,
Rii=-19eR™, Ry =20e R,

v = diag[40,30,20,10,40,60,70,80], Ry» = diagv],

Ra» = diag[—150,—1,...,—1,—120] € R"™"

0. = diagl4,1,..,1,1.5] € R™"

0, =0.50;.
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The proposed iteration
{10)-at)

Y It CPU time
seconds

-20 | 101 0.32

-16 | 88 0.297

-15 ] 85 0.292

-121 75 0.254

Table 2: Results for Example 3 with tol = .1e — 10.

We compare the Newton iteration and the proposed linearized iteration to compute the stabilizing solution to set of
matrix equations (3)-(4). Results are given in Table 2 The execution CPU time for 100 runs is given. The Newton method
computes the stabilizing solution of (3)-(4) for 7 iteration steps and CPU time of 0.97 seconds for 100 runs.

Example 4.Define the matrix coefficients of system (1) and cost functions Ji,J, as follows (n=16) using notations from
Example 3;

A = 2diag[Ao,Ao,A0,Ao] ,

By = diag[B19,B10,B10,B10] s

By = diag[B>o, B2o, B2o, Bao) , R12 = diag[v,v].

The Newton method computes the stabilizing solution of (3)-(4) for 4 iteration steps and CPU time of 1.774 seconds
for 10 runs. Moreover, new iteration (10)-(11) finds the stabilizing solution for 22 iteration steps, CPU time of 0.047
seconds for 10 runs and y = —20.

5 Conclusion

The computation of the stabilizing solution of the Nash-Riccati equations is important for applications. In this paper,
we applied a linearized process to modify Newton’s method to compute the stabilizing solution for a set of Nash-Riccati
equations. Moreover, we have proposed fast iterative methods to find this solution. Here, we were presented a convergence
proof to effective iteration scheme (10)- (11). The computational simplicity of the algorithm leads to the efficiency of the
proposed iteration and it makes the new iteration an alternative method for computing the stabilizing solution. Related
discussions are expected to lead to new computational algorithms to similar problems. Based on the considered examples
we may conclude that the proposed iteration is an effective solver for these examples. As a future research the linearized
process may be extended to construct a new iteration to find the Nash equilibrium strategies of an N-player infinite horizon
linear quadratic differential game.
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Abstract: This paper deals with the Continuous Laguerre Wavelet Transform CLWT, and we prove several versions of the uncertainty
inequalities. More precisely, we get the analogue of Heisenberg inequality for CLWT. Moreover, dealing with concentration in time
and frequency, we find an L? local type uncertainty principle. Finally, we provide the analogue of Benedicks Amrein Berthier’s type
theorem in the case of CLWT.
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1 Introduction

The theory of wavelets and continuous wavelet transforms has garnered increased interest due to the limitations of Fourier
transform in providing complete information about a signal. In particular, Fourier transform can not be a suitable tool for
non stationary signals, in which frequency changes with respect to time. Hence appears the importance of the wavelet and
the continuous wavelet transform CWT. For an overview of CWT, we refer the reader to [5,27]. Motivated by the works
of [31,14,1], we consider in this paper, time-frequency localization problems in the case of continuous Laguerre wavelet
transform CLWT. The interest of studing Laguerre transform comes from Heisenberg group which replace the euclidean
space in quantium mechanics. Roughly speaking, Fourier Laguerre transform is non other than the Fourier transform of
radial functions in this occurence. Studying the uncertainty principle for .7} was subject of several works by the authors
and many more, one can cite for instance [9,10,20,22,26]. However studying the uncertainty principle for CLWT still
less aborded. Note that the harmonic analysis associated to CLWT was initiated in [23], where the Plancherel and the
inversion formulas were established for CLWT. Recently Mejjaoli and Trimeche in [16, 15] considered such problems in
the case of two-wavelets in Laguerre occurence. In this paper, we improve the litterature by giving uncertainty inequalities
for CLWT.

The uncertainty principle is one of the most interesting result which gives us an overview on the positioning of a
function and its Fourier transform. This principle states, in quantum mechanics, that an observer cannot determine
simultaneously the values of position and momentum of a quantum particule with precision. A precise quantitative
formulation of the uncertainty principle, usually called Heisenberg inequality [11,30] is stated for f € L?(R), as follows:

[Rlrwpka . [ &|fe)] e = %(/RIJ”(x)Izd)C)z’ m

where fis the Fourier transform, given for suitable functions by

-~

_ L x) e S¥dx
&)= = [ e Sax
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Another version of the uncertainty principle concems with concentration of f and its Fourier transform. We reference
two results: the first one was studied by Faris [17] and Price [18,19] in the classical Fourier setting, known as the local
uncertainty principle. The second one goes to Benedicks and Amrein-Berthier. Benedicks [3] first introduced this theorem,
stating that if a function f has a subset S of finite measure as its support, and its Fourier transform £ has a subset X of finite
measure as its support, then f must be the null function. A stronger formulation of this principle was provided by Amrein
and Berthier in [2] for the classical Fourier occurence. In this paper we prove the analogue of all previous uncertainty
principle theorems when considering the CLWT.
Our paper is structured as follows.

In section 2, we start by giving some useful background evoking Laguerre hypergroup K and Fourier Laguerre transform
Z1. Section 3 summarizes key facts about basic Laguerre wavelet theory. Section 4 is devoted to our main results. First,
we prove Heisenberg-type uncertainty inequalities, analogous of inequality (1), considering the product of dispersions
with both position and scale as variables, for the CLWT. Second, we prove two theorems dealing with concentration
in the support of a given function and its CLWT. The first is a local uncertainty principle and the second deals with a
Benedicks-Amrein-Berthier’s uncertainty principle.

2 Laguerre hypergroup and Fourier Laguerre transform

Laguerre hypergroup emerges as the fundamental manifold of the radial function space in the (2n + 1)-dimensional
Heisenberg group H", where the multiplication operator is given by

(z1,01)(z22,82) = (z1 + 22, 11 + 12 — Im(z122)).

A function f on H" is considered radial if it remains invariant under the action of the unitary group % (n) via u.(z,t) =
(u.z,t). For additional details we refere the reader to [6,28,29]. Let oo > 0. The Laguerre hypergroup K = [0, +o0) x R is
equiped with the convolution product *. This product is defined for two bounded Radon measures p; and y, on K as:

<u1*all2,f>=/ THf(y,s)dpdps,
KxK

where 7,7 is the generalized translation operator on K given, for & = 0, by

1 2T
T;O;f(y,s)zﬁ/ F(V/x2 42+ 2xycos 6,1+ s+ xysin0) dO )
’ 0

and, for o > 0, by
TG f(y,s) =

o [2r rl
;/ / F(Vx2 432+ 2xyrcos 0,1 + s+ xyrsin0)r(1 — )% 'drd6. 3)
o Jo
Remark that if y; and p, are equal to Dirac measure at (x,¢) and (y,s) € K then
(5(x,l) *o 5(),s))(f) = E%f()’as)-
We find in [23] that (KK, *) has a commutative hypergroup structure in the sense of Jewett. The involution is defined by
the homeomorphism i(x,7) = (x,—t) and the Haar measure is given by
20

dma(x,t) = dedt- 4

e =(0,0) is the unit element of (K, *¢) since &, ;) *a 6(0,0) = 0(0,0) *a O(xr) = S(x)- In the case of Laguerre hypergroup,

the dual space, the space of all bounded functions  : K — C satisfying for (x,t) € K, ¥(x,7) = x(x,—t) = x(x,1), is
described by
{@am> (A,m) e R xN}U{@p; p >0},

where @
. [ o
®p = ja(px) and ®r.m(x,1) =t 2, (|l|x2). (&)
Note that j is the normalized Bessel function of order o and .,s,ﬂ,,ﬁ"‘) is the Laguerre function given on R by
« L%(x)
L (x) = e T ©)
" L(0)
©2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 303-316 (2024 ) / 305

where L% is the Laguerre polynomial of order o and degree m,

arn vyl (m+a+1) 1 k
L’”(x)_,;)( Ve a1y Kim i1 7

Topologically, the dual space can be identified to the Heisenberg fan, the set

U () € B2 = [A]@m+ a+ DI J{(0,1) € B:p1 > 0},

meN

The subset {(0, 1) € R?;u >0} is usually disregarded since it has zero Plancherel measure. Therefore, it is natural to
concentrate on the characters @, ,,. For (A,m) € R x N, ¢, ,, is the unique solution to the problem

Diu=ilAu,
Dau=—afa|im+ 5y ®)

with the initial condition

)
u(0,0) =1, a—Z(O,I) =0 forallr € R,

where, for all oo > 0,

d
Dy = =
7,

b a1 L ©)
27 ox2 x Odx xaﬂ'

For (A,m) € K =R x N, the function @) satisfies, for all (x,7), (y,s) € K,

(P),,m(xat) (pl,m(yas) :73((3; (pl,m(yvs)' (10)

Furthermore, the Laguerre kernel is bounded function, and we have

V(l,m) GKa sup |(P)L.m(xvt)|:1'
(xp)ekK

Denote L?(K) = LP(K,dmy) the space of measurable functions f satisfying

1
i p
1Nl pona = (/K |f(x,t)|”dma(x,t)) < oo,
The Fourier Laguerre transform of a function f in L' (K) is defined by

Fif(Aym) = /K F) g6, 1)dmg (x,1). (11)

The %, is bounded operator from L!(K) to L*(K) and it satisfies ||.ZLf||« < || f|l1.mq- Moreover, the Fourier Laguerre
transform can be inverted by

F et = [ F0m) @y 1)V (Rm), (12

where dy, is the unique positive Radon measure on K for which the Fourier Laguerre transform becomes an L2-isometry.
This measure is given by

dYa(A,m) = L%(0)5, @ |A|*TdA. (13)
To simplify we will denote, when needed, d ¥y, to state dyy (A, m). Fy, transform satisfies the following Plancherel Formula
1L f 2.0 = 1f|2mas (14)

where

1
P
e = ([ lehmlParetam ) < v

gl
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By Riesz Thorin interpolation, we can expand the definition of .%, f on L?(K) for 1 < p < 2. Consequently, we obtain the

Hausdorff-Young inequality, for % + i, =1,

IZLf | pt g < (15)
If f € LP(K) then, for all (x,7) € K, 7,7 f € LP(K) and verifies
TSl pma < (16)
Moreover
FLUTL)(Asm) = @ (x,0) FLf(A,m). (17)
The generalized convolution product of two functions f and g in L' (K) is defined by
f*ag X, t / lf y7 —s)dma(y,s), (X,f) € K. (18)
Young’s inequality allows to extend the definition of x4 to LP(K) x L(K), where p,q,r > 1 and % = % + é — 1. For
f€LP(K)and g € L1(K), where 1 < p,q,r <2 with 1 = %+§— 1, we get
[1f *a gllrmq < 19)
and
FL(f*ag) = FL()TL(8)- (20)

3 Basic Laguerre wavelet theory

In this section, we gather some background related to CLWT. First and foremost, we shall adapt the definition of the
dilation operator in order to get formulas that can be compared to the classical Fourier Wavelets. We consider as in [21,
22] the dilated of (x,7) € K defined by &, (x,z) = (rx,r%t). For f,(x,t) = r~2%t4) £(§; (x,1)), we have

/K Fo(x,1) dme(x,1) = /K F61) dme(x,1). @1
We define, for a > 0, the dilation operator A, by
1 x t 1
Aay(x,1) = WW(Z’ ;) = WW((S% (x,2)). (22)

We can easily deduce the following properties.

Proposition 1.Let a > 0, we have

LForallap>0  AuAp=Ag,.
2.For all y € L*(K), the function A,(y) belongs to L*(K) and satisfies

[Aa¥ll2.me = W ll2mq- (23)
3.For all y € L*(K), the Fourier Laguerre of A,() is well defined and we have
FLday =417y, 24)

where

Aaf(A,m) = a~ @D f(8] (A,m)),

and 8!(A,m) = (r*A,m) is the dilated of (A,m) € R x N.
4.Let h,g € L*(K), we have
< Agh,g >L2(K):< hAig >L2(]K) .
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S.Forall a >0 and (x,t) € K A TS = Ty, (x,t)Aq, where T is the translation operator associated to Laguerre
hypergroup given by (2) and (3).

Proof.1. For all a,b > 0,

1 x t 1 x t
AaApy(x,1) = Aq (WW(E’ ﬁ)) = WV’ (E’(aT)Z) =AY (x,1).

2. The result is obvious by considering the substitutions y = 7 and u = al_2
3. Considering y = 7 and u = al_2 in (11), we get

FrAnf (Ae,m) = /K FOv0) @ (ay,a?ia) a2 dimeg(y, ).

Now using (5), we observe that a®*2¢_; ,(ay,a*u) = @_2; ,,(v,u), which gives the wanted result.
4. By the same change of variables, we obtain

< Aahig >= a2 [ hy)g(ay.au)dmaln).

Hence, the result holds from (22).
5. The last point follows by remarking, in (2) and (3), that

2 21,2 2 :
f <\/x2+ (X) +2XXI‘COSG,L2+S+XXI‘Sin9> =f <\/(ax) Ty +2(ax)yrcos(97t+a s+(ax)yrsm9> .
a a a a

a a?

Definition 1.Let y € L*(K). We say that ¥ is an admissible Laguerre wavelet on K if there exists a constant cy satisfying,
forallm € Nand A € R,

oo
0<cy :/0 |<?Ll/l(5;(l,m)|2% < oo 25

According to [23], such admissible wavelet in Laguerre hypergroup exists. For instance, we cite the following function in
L*(K): y = %, (), where

V(h,m) €R, OA,m)=A(m+ O‘T“)e-ﬂm%“ﬂ (26)

Now, let W be a Laguerre wavelet on K in L?(K). We consider the family y**/, of Laguerre wavelets on K, defined by
VX', ) ek, wH (X)) = T:;(Aal//(x', —t"). (27)
By virtue of (16) and (23), we get immediately, for all a > 0 and (x,?) € K,

W 2me < [1Wll2ma- (28)

Definition 2.7he continuous Laguerre wavelet transform CLWT, WVL, is defined for a regular function f on K by

V(ant) € (0499) x K, WEf(ant) = [ (W00 dma (4 o). 29)
K
We can also write
WJ;f(CL.x,t) =< f, V’a7x7[ >L2(K):< f’7 E?;Aaw >L2(K) . (30)
Moreover, relation (29) can be written as:
Wy f(a,x,t) = fxq AaW(x,1). (31)
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By Young’s inequality, the CLWT can be defined for a function f € L?(K), where p € [1, 400, and an admissible wavelet
v e LY (K), where p/ = %. Consequently, for all (a,x,t) € (0,+) x K,

—(a+2)

Wy f(a,x,1) s 1 e 32)
Let U = (0,+) x K. For p > 1, we equiped this space by the “affine” measure
dadmgy(x,t
dva(awnr)::——;;g%%——l (33)
Denote by L?(U) the space of measurable functions f on U that satisfies
1
+oo 7
s = ([ [ 1Ftaxnpavatans) <-+e. G4

According to (31) we assert that if ¥ is an admissible Laguerre wavelet on K, and f € L?(K) then the following
Plancherel’s formula for CLWT holds.

IWgA113 v, = £ m- (35)
Furthermore, we can deduce the following Parseval’s relation for f and g in L?(K),
~+oo
cy <f,8>px / / faxt Wg(axt)dva(axt) (36)

According to (32) and (35), we derive from Riesz Thorin interpolation theorem that the definition of CLWT can be
extended to L?(K) when 1 < p < 2. We get that W‘ﬁf belongs to L (U), where % + ﬁ =1, and

i =5
W lpve < ¢ (@@ 2N lema) 7 1l (37)

4 Main results : CLWT uncertainty inequalities
We shall introduce the following notations. For all (x,#) € K, the homogeneous norm on K is given by
1
(o) = (1)l = (x* +4r%) . (38)
R x N is equiped with the quasinorm defined, for all (1,m) € R x N, by

a+1
[(em)| = 4f2 |+ 222), (39)
4.1 Heisenberg type inequalites for CLWT
From [9,26], the Heinsenberg inequality for .%#| states that forb > 1 and f € LZ(K),

GO fll2amg (A m)

In the case of CLWT, Heisenberg type inequality dealing with dispersion on position (x,t), is given by the following
theorem.

b
270 2y = CIF3 g (40)

Theorem 1.Let v be an admissible Laguerre Wavelet on K and b > 1. Then for all f € L*(K),

b
1) Wy 2wl (A, m) 12 ZLE |2 2 €/l 13 g (41)

where C is the same constant given in (40).
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Proof By virtue of relations (31) and (20), we have
| LWy fAem) P = | ZLf(Asm) [P | FLAy (A m) .
Relation (24) and the admissible condition (25) lead to

da

too
/0 Py (m)P e =y, 42)

Therefore, using Fubini’s theorem, we get

L L 1Gm L Zw s m e —gies = ey [ 1Gom)"\Z Goom) P

On the other hand, since f belongs to L*(K) then we deduce that the function Wy, f(a,.,.) belongs to L*(K). Applying
Heinsenberg type inequality (40) to W‘ﬁ fl(a,.,.), we get, for all a € (0,+o0),

</ |Gt PEWE f(a,x,0)] dmaxt) (/ |2y m) P|ZLWES (A m) Py (A m) >c/| L f(ax,1) Pdma (x,1).
K

d
Integrating with respect to , the left hand side is given by

ver ([, |(x,r>|2b|w$f<a,x,t>|2dva<a,x,r>>% (/,

and the right hand side is written as multiple of

/ /| faxt|dma(xt) f;is.

Using Plancherel formula, this integral equals to

1

(/1,m)IbI%f(lvm)ldea(l,mO g

oo d
X = / /m L) Py (hm) s,

Therefore, relation (42) leads to

e da
X = [ [ IZLrmPFiaay (hm)Paya(hm) s

— ¢y /]K \ZLf (Am)2dye(A,m)
= eyl F1Z -

Consequently

1

vew ([ 10 P werannPavatann ) ( [1Gam |2 Par) > Coy 111,

which allows to deduce inequality (41).

As an application, we proceed in similar way as in [1], we deduce the following result:

Corollary 1.For all s, > 1 and for all f € L*(K), we have

s E K — 5S— S
Gt PWELS A m)| T FLfNS 4 > Clye) P58 (43)
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ProofLet s, 8 > 1. For f € L>(K), assume that

[Spes)

G WA oo 111 m)
Applying Holder’s inequality, we have

FLL 3,5 < oo

s 1/s 1/s
Gt ) W Fllave < G0 W FI1S W £113,

2,Vq 2,Vq
and
1 Am)| ZL g < M) = ZL A5 | 2L p)E
Therefore
) FWE £y > DV,
IWE I3,
and

1
(A, m)? %fnéim

B
(A, m)[2 ZLf |2, >

[El%
Using Theorem 1, we derive that
2Bs
(eI LA ILE Ty p——" 1 i, —
IWE LI5S, V17115,
Plancherel formula and relation (37) allow to deduce the wanted result.
Lemma 1.Let B € R. We consider v, an admissible Laguerre wavelet, satisfying
V(hm) €K, Fry(h.m) = (Al). (44)

If f belongs to L>(K) then

laP Wy f13.v, = A(GP)2P)-NA1E Zif 1By, 45)

where §(A) = ¢(A?) and M is the Mellin transform defined by

i@ = [

t

Proof.

da
W s 1B, = /0 a2 [0S Rom) Pl LAy ()P pm) s

=M§OL32 L1711 m) P () dya (2 m)

where e p
va) = [ mEymP
0

Making a change of variable, we have
T . du -
l1"(/1):|/1|3/0 u2ﬁ|¢)(u)|27:|/'L|3///(|¢)|2)(2ﬁ).
Thus
la P WEfI3 , =4 (16)(28) ZL“ LA 17 )P ,m).

This gives the wanted result.

Theorem 2.Let s, 3 > 1 and h an admissible Laguerre wavelet verifying (44). Then, for all f belonging to L*(K), we have

s s e B
HaPWE 1S o || )W £1B > Cey tt (1612)@B)-NA 2 ZLE (3 £ B (46)

Proof Theorem 2 holds from Lemma 1 and Corollary 1.
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4.2 LP Local uncertainty principles for CLWT

This section is devoted to uncertainty principles of concentration type for CLWT in the L? theory.

Theorem 3.If | < p <2, g = -5 and, then for all nonzero f € LP(K) and for all measurable subset T C U such that
0 < vo(T) < +oo, we have
(a)If0<s < 20‘—;4

s

1 .
Wil < Cils.a,0) ey ™ val(T) 55 [[[) £l g » 47)

where C|(s,q, ) is a constant that depends on s, q and .
(b) If s > 222,

. L. 2as+4 (2f1+4)
I Wirl),.. < Cals.q.0) Vel 7l I 1) , @)
where Cy(s,q, Q) is a constant that depends on s, q and o.
(C) IfS 206+4
4~ T @ 2t G
Wyl ,, < C3(a,@)ey V(1) T | 150 || )| b (49)

where C3(¢,0) = C (2,q,a)(a+2) (a+ )72,

Proof.(a) For all r > 0, we define B, = {(x t) €K ; |(x,r)| <r}.Denote by xp, and xpc the characteristic functions.

Let f € L5(K),1 < p <2 and g = -Z. It follows using Minkowski’s inequality,
\!er$f e < Wy (12, o, + ler Wy (P2,
Therefore :
2 Wyt < Va(T)e [Wy(rxs )., ,, + IWeFas)l, ., (50)

Using relation (32), we get

Wyl ., < Va(T) 10 2 Y | £ 28, |1 e + |WEF ) e 51)

Let0<s < Zo‘fq‘”. By Holder’s inequality, we obtain

25, @O Pl | 160128, - (52)
Considering (38), let’s examine polar coordinates in the Laguerre hypergroup structure:
1
x= pcos(9)7
, wherep =|(x,1)|k.
{ o) p=1(x0)
The Jacobian is given by:
1 . 2
[ st psin6) £ cos(6)
—5sin(0)cos(8)72 5-cos(0)
and
1 rrs
t s - —sq+2a+3 0 ocd do = A q.
H | )C | xBr qma 27[1"((1_’_1)/(; ‘/7%p COS( ) p (sﬂQﬂa)
Therefore, we have
2044
1528 1 < Als gy 0) 77T LD g (53)
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B(L 1) q
where A(s,q,0t) = AT (et 1 )2(2’ 2+ s ) B is the beta function.
2)

On the other hand, by relation (32), we obtain

1 1-2
W), <t (a2 N lome)
1 5 175
<cf (@D NWloma ) EOE Ly |10
Hence
. 1, 1-2 . ,
Wg (sl ,, <cb (a ) IEOF Pl (54)
Combining the relations (51),(53) and (54), we deduce that
2 Wy £l < gas(r) IO Flp g (55)

where gq sis the function defined on (0, +eo) by

200+4

1-2 1
we) T A0 0) @D vl

1
gaslr) =y (a

By minimization of the right-hand side of the relation (55) over r > 0, we get

| Wi f|| Ci(s,9, )cfy By (T) 25 || ()

q.Vo — pime?

59
20+4 2a+4 Yot
1 (
Gils.q.@) = <206+4—SC1)< 5q >

where

=%+ oaa sq
o+ L -
ma) T A, @)%,

(b) The inequality (48) holds if [|[(x,2)[* f] , ,,,, = +oo. Assume that |||(x,2)[* f],, ., < +oo-
From the hypothesis s > 3@ + 2, we derive that the function
1
(x,1) = (14 [(x, 1)) >
belongs to L9(K). Holder’s inequality leads to
(TS (T (e Lo Ly I (RN L (56)
P 4ma
Since R
[ 1oz gl|) =11 g+ DI £,
then 1
1l <NGss0) (171 1D 75, ) (57
where
Ns,q.0) = |1+ ol 7|
q,Mq
Using polar coordinates in the Laguerre hypergroup structure, we obtain
1
+1 1 2(a+2) 2(a+2) q
o 2w spl(a+1)
For r > 0, we consider f,(x,t) = r~(2#*4) f(% L) Then we have
Hfr”l,ma = Hf“l,ma’ (58)
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Hfr”pma - pma (59)
and
GO fell g = 1" ) Fl1 g - (60)
Considering f, in relation (57), we conclude that for all r > 0, we get
q
20+4 P
1y <G50 (75 Uy 7 1008 11, )
By minimizing the right-hand side of this inequality, we deduce
sq 2044 sq atd) pled)
a)? -1) s« | ——— " H|* . 61
OV B e ers ) L 4 M [ 01 1)
Then, according to relation (61), the function f belongs to L! (K), and we have
L
lerWirl?, < ver) W fnw N
svam( ) 1A g
Using the relation (61), we get
(2a+4)

Wy}, < va(T) Ci(s.q, @) Hprm; " I

Y

where
20+4

q sq 5 sq
N o)? -1 — .
) (s,4.00) (2a+4 sq(2a+4))

(c) Consider s = %(a +2). Using the fact that for € > 0,

Cl(s,q,00) = (cf

2(o+2)
(G0 @
2(a+2) ’
E 4

(6,0

5

~

<1+

ENIS]

it follows that 5 ) 2 2 2
H |(xt 5 fH < gq Hf||p,oc+8§_a(a+2)H |(x’t)|§(oc+2) f‘

Optimizing in €, we get:

1
20+4 o2

[Cen)] 7 f

H |(x,t)|% prya < (+2) (a+ )a+2 ||f||p T

P
Together with (47) for s = = < 2‘”4 , we get the wanted result.

Theorem 4.Let s, p be two real numbers such that 0 < s < 20t +4 and p > 1. Then, for every function f € LP(K) and for
every measurable subset T C U such that 0 < vy (T) < +oo, we have

K

WS C Vo(T) 77T

(T (6

2,Va

1
_ t .YwL
oDl WS

Pva_

2Q2a+4)—s

(p+1)(2a+4)
Note here that

where K = and C is a constant that depends on s, p and .

‘ 1

1
(;wxat) = (F +X4+4t2)‘l‘.
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Proof.One can assume that ||f||,,, =1, and ||y]|,,, = 1. The general formula follows by making the substitution
f v

fi=r—and y:= —/———

Hf”Z,ma

For all r > 0, we put V, = {(a,x,1) € (0,+)xK ; |($,x,t)| <r}.Let 0 <s <20 +4. By Holder’s inequality, we
obtain

Wyt o, < lrw Wl o, + lroveWirl,,,,

Let 0 < s < 2a + 4. Using Holder’s inequality and relation (32), we obtain

1

[xrov, Wy, < Wy (/) x&/mammem mmm%wg”

< Va1 |, W ]

1,V
L
L 1 s L 1 B Pl
< v (T) P |l|(=x 1) 'W, |(=x0) 2,
a 2. Va a 2, Vg
y= 1
Making the change of variables < y = x2 , we get
w=2t
2 ot

1
—x.t)* = 2 2 4 ——dudvdw.
W%wﬁlmjv [0+ )y v

1V

Applying polar coordinates in R?, we find

p2cos(@)dp dOde.

Lo P 7 (peos(8)cos(9))*H! (psin(8) cos(¢))
e I L A PN

By a simple calculation, we get

1 B —
x0Tl = A (5,002,

. Thus we obtain

where A (s, o) = <

1
a2t 20+4—s
Lell™ ertts™or, (63)

2,V

|, 1
HmeVrWV%pryva < Va(T)7P (%, W

On the other hand, using Holder’s inequality and relation (32), we conclude that

1
p+l 1724{_1 ’
f XTnVC a,x,t)|W, f(a,x,t)| dvg(a,x,t)

°°Va

| 2rewe Wy f||

PVa — H

1
1 pam)
< v (T)?etD (/ xvrc(a,x,t)|W$f(a,x,t)|2dva(a,x,t))1
U

R
< v (T) Pt |[[(=,x,1)|'W, rpet,
a 2,Vq
Hence
1
L A1 surL gl 7!
[2rWy £l < Pocs(r) Va(T) 00 N[ ) Wy f| (64)
’ 2,Va
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where hgq 4 is the function defined on (0, +o0) by

4—s 1
hs(r) = A (s, )P s P++1 H|(—ax7f)|SWLf
’ a

T
yp+l,

2,Va

By minimizing the right-hand side of the inequality (64) with respect to r > 0, we obtain

1 1 oo L % - (p+l)(SZot+4)
lerWirll,, < Clovp@) Va(T)FT || ) Wi ,
2,V
where
20+4 20+4 — s s
Cls,p,a) = (5ot 2y (FEE2 8 s g (5, 00) ),

20+4—s K

4.3 Benedicks-Amrein-Berthier’s uncertainty principle for CLWT

A strong formulation of Benedicks-Amrein-Berthier’s result for the Laguerre Fourier transform was established by the
second author in [20]. This result asserts that, for § C K, X C K a pair of measurable subsets of finite measures
Uee(S), flg(X) < +oo, we can find a constant C(S, X) such that, for all f € L?>(K),

1, <€6.2) ([ nPamaten) + [ 150 Pdnam). 3

The constant C(S,X) is called the annihilating constant, and (S, X) is termed a strong annihilating pair. In the context of
CLWT, we obtain the following result.

Theorem 5.Consider two measurable subsets S C K, £ C K with finite measures Uy (S), fla(E) < +oo. Let W be a
Laguerre wavelet on K in L*(KK). For an arbitrary function f € L*(K),the following uncertainty inequality holds.

CWWHZW /M/K\ WEf(a,x,1)]*dve(a,x r)+cw/ | ZLf(Am) P d Ve, (66)

where C(S,X) is the annihilating constant given in (65).

Proof.-We have, for all a > 0, WVL,f(a, .,+) € L*(K) whenever f € L?(K). This allows using (65) to get
W, < €. 2) ([ s Pamatun) + [ 15 Parahm)) .

Integrating both sides with respect to
using relations (35) and (42).

Tis’ we proceed similarly to the proof of Theorem 1. Consequently, (66) holds
a
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