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Abstract: This paper investigates a coupled system of nonlinear multi-term Katugampola fractional differential equations. Under

sufficient conditions, it establishes the existence and uniqueness results of the solution by using standard fixed point theorems.

Additionally, the paper includes some illustrative examples to strengthen the presented main results.

Keywords: Coupled system; Katugampola fractional derivative; Existence and uniqueness; Integral conditions; Fixed point theorems.

2010 Mathematics Subject Classification. 26A33; 34A08; 34A12; 34A34; 47N20.

1 Introduction

We consider the following coupled system of nonlinear multi-term fractional differential equations:







ρD
α1

0+
ϕ (t) = f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

,

ρD
α2

0+
ψ (t) = f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

,
t ∈ [0, ℓ] , (1)

with the integral conditions
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

=
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

= 0, (2)

where ρ , ℓ > 0, 0 < βi j < αi < 1 and fi : [0, ℓ]×R4 → R are continuous functions for every i, j ∈ {1,2}. The operator
ρDα

0+
and ρI

1−α
0+

represents the Katugampola fractional derivative and integral of order α > 0, respectively.
The initial value problems are a vast and significant area of research, as these problems have applications in various

scientific fields. Recently, so-called fractional initial value problems have appeared and become widespread, allowing the
modeling of many real-world phenomena, as well as giving an understanding of some mathematical problems such as the
Abel equation [22],

∫ t

a
y(s) (t − s)α−1

ds = f (t) , 0 < α < 1.

Recently, the resolvability of fractional differential equations with different kinds of initial or boundary conditions has
witnessed a remarkable trend, which has led to the publication of many works in this regard, for example, but not limited
to, see [2,4,5,6,7,8,9,10,11,12,13,14,16,21,23] and references cited therein.

The existence and uniqueness result of the coupled system of fractional differential equations (1) with integral
boundary condition has been investigated in [3], but the functions f1 dependent on time t, unknown functions ϕ and

∗ Corresponding author e-mail: bilalbasti@gmail.com; b.basti@univ-djelfa.dz
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D
β12

0+
ψ while f2 dependent on time t, unknown functions ψ and D

β21

0+
ϕ . The authors in [20], studied the existence and

uniqueness of the solution for system (1) with integral conditions where the functions f1 and f2 dependent only on time t

and unknown functions ϕ and ψ . A similar result was found in [23], where the function f1 dependent only on time t and
unknown function ϕ and f2 dependent only on time t and unknown function ψ .

The main contribution of this paper can be summarized in obtaining the existence and uniqueness result of a coupled
system, with some conditions on the functions of second member f1 and f2.

The organization of this paper is as follows: In Section 2, we describe some preliminary concepts related to the
proposed study; in Section 3, we give some existence and uniqueness results for the problem (1)–(2). The results are
based on Schauder’s and contraction mapping principle fixed point theorems in a special Banach space. In Section 4, two
examples are presented to explain the application of our main results. Finally, we present some conclusions in Section 5.

2 Preliminaries

Here, as in [19], we will look at the Katugampola’s fractional integral, derivative and some of their properties. Let
r ∈R, p ∈ [1,∞] and

X p
r ([0, ℓ] ,R) =

{

ϕ : [0, ℓ]−→R Lebesgue measurable and ‖ϕ‖X
p
r
< ∞

}

,

with the norm

‖ϕ‖X
p
r
=











(

∫ ℓ
0

|trϕ(t)|p
t

dt
)1/p

, for 1 ≤ p < ∞,

ess sup
0≤t≤ℓ

{tr |ϕ (t)|} , for p = ∞.

Let C ([0, ℓ] ,R) be the collection of continuous functions from [0, ℓ] into R with the norm

‖ϕ‖∞ = sup
0≤t≤ℓ

|ϕ (t)| .

Then C ([0, ℓ] ,R) is Banach space.

Definition 1([17]). The Katugampola’s fractional integral of order α ∈R+ of a function g ∈ X
p
r ([0, ℓ] ,R) is defined as

ρ
I

α
0+g(t) =

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1

g(s)ds, t ∈ [0, ℓ] , (3)

for ρ > 0. This is a left-sided integral.

Similarly, for the right-sided integrals definition. From Definition 1 we can infer

(

t1−ρ d

dt

)

ρ
I

α+1
0+

g(t) = ρ
I

α
0+g(t) . (4)

Definition 2([18]). The generalized fractional derivative of order α ∈R+, corresponding to the Katugampola’s fractional

integral (3) is defined for any t ∈ [0, ℓ] as

ρ
D

α
0+g(t) =

(

t1−ρ d

dt

)n
(

ρ
I

n−α
0+

g
)

(t)

ρα−n+1

Γ (n−α)

(

t1−ρ d

dt

)n ∫ t

0
sρ−1 (tρ − sρ)n−α−1

g(s)ds, (5)

if the integral exists. Here ρ > 0 and n = [α]+ 1, with [·] denotes the integer part.

Lemma 1([7]). Let α,ρ > 0 and g ∈C ([0, ℓ] ,R) . Then:

1. The equation ρDα
0+

g(t) = 0 has a unique solution

g(t) =
n

∑
i=1

cit
ρ(α−n), n = [α]+ 1, ci ∈ R+.

© 2024 YU
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2. If ρDα
0+

g(t) ∈C ([0, ℓ] ,R) and 0 < α ≤ 1, then

ρ
I

α
0+

ρ
D

α
0+g(t) = g(t)+ ctρ(α−1), (6)

for some constant c ∈ R+.
3. Let 0 < β < α ≤ 1 be such that ρDα

0+
g(t) ∈C ([0, ℓ] ,R) then

ρ
I

α−β
0+

ρ
D

α
0+g(t) = ρ

D
β
0+

g(t) −
ρ1−α+β

(

ρI
1−α

0+
g
)

(0+)

Γ (α −β )
tρ(α−β−1). (7)

Moreover, if
(

ρI
1−α

0+
g
)

(0+) = 0, we have

∣

∣

∣

ρ
D

β
0+

g(t)
∣

∣

∣
≤ λ

ρ
α−β

∥

∥

ρ
D

α
0+g(t)

∥

∥

∞
, (8)

where λ
ρ
α−β

= ℓρ(α−β)

ρα−β Γ (1+α−β )
.

3 Main results

Below, we prepare some important lemmas to illustrate our main results.

Lemma 2. Let (ϕ ,ψ) ,
(

ρD
α1

0+
ϕ , ρD

α2

0+
ψ
)

∈ C ([0, ℓ] ,R)×C ([0, ℓ] ,R) . Then the problem (1)–(2) is equivalent to the

fractional integral equations:







ϕ (t) =
∫ t

0 Gα1
(t,s) f1

(

s,ϕ (s) ,ψ (s) , ρD
β11

0+
ϕ (s) , ρD

β12

0+
ψ (s)

)

ds,

ψ (t) =
∫ t

0 Gα2
(t,s) f2

(

s,ϕ (s) ,ψ (s) , ρD
β21

0+
ϕ (s) , ρD

β22

0+
ψ (s)

)

ds,
(9)

where Gαi
(t,s) = ρ1−αi sρ−1

Γ (αi)
(tρ − sρ)αi−1 .

Proof. Applying ρI
α1

0+
and ρI

α2

0+
to the first and second equations in (1), respectively, we get







ρI
α1

0+
ρD

α1

0+
ϕ (t) = ρI

α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

,

ρI
α2

0+
ρD

α2

0+
ψ (t) = ρI

α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

.
(10)

By using the relation (6), we obtain







ϕ (t) = ρI
α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

− c1tρ(α1−1),

ψ (t) = ρI
α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

− c2tρ(α2−1),
(11)

for some c1,c2 ∈R. Taking into account the condition (2) and the fact that

ρ
I

α
0+tρ(α−1) = ρα−1Γ (α) ,

we find

0 =
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

=−c1ρα1−1Γ (α1) =⇒ c1 = 0 (12)

and

0 =
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

=−c2ρα2−1Γ (α2) =⇒ c2 = 0. (13)

Combining the results (11), (12) and (13), we obtain (9).
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Let us define the following Banach spaces [7],

E =
{

ϕ ∈C ([0, ℓ] ,R)/
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

= 0
}

,

with the norm
‖ϕ‖E = sup

0≤t≤ℓ
|ϕ (t)|

and

F =
{

ψ ∈C ([0, ℓ] ,R)/
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

= 0
}

,

with the norm
‖ψ‖F = sup

0≤t≤ℓ
|ψ (t)| .

Again the product space (Ω ,‖·‖Ω ) is a Banach space with norm ‖(ϕ ,ψ)‖Ω = ‖ϕ‖E +‖ψ‖F for any (ϕ ,ψ) ∈ Ω = E ×F.
Now, we define an operator T : Ω →C ([0, ℓ] ,R)×C ([0, ℓ] ,R) by

T (ϕ ,ψ) (t) =
(

Tϕ (ϕ ,ψ) (t) ,Tψ (ϕ ,ψ)(t)
)

, (14)

where

Tϕ (ϕ ,ψ) (t) =

∫ t

0
Gα1

(t,s) f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)

ds,

Tψ (ϕ ,ψ) (t) =

∫ t

0
Gα2

(t,s) f2

(

s,ϕ (s) ,ψ (s) , ρ
D

β21

0+
ϕ (s) , ρ

D
β22

0+
ψ (s)

)

ds,

and Gαi
(t,s) = ρ1−αi sρ−1

Γ (αi)
(tρ − sρ)αi−1 .

Lemma 3. Let the integral operator T : Ω →C ([0, ℓ] ,R)×C ([0, ℓ] ,R) given in (14), equipped with the norm

‖T (ϕ ,ψ)‖∞ = sup
0≤t≤ℓ

∣

∣Tϕ (ϕ ,ψ)
∣

∣+ sup
0≤t≤ℓ

∣

∣Tψ (ϕ ,ψ)
∣

∣ .

Then T (Ω)⊂ Ω .

Proof. Let (ϕ ,ψ) ∈ Ω . From (14), we have

(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(t) = ρ
I

1−α1

0+
ρ
I

α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)

= ρ
I

1
0+ f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)

and
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(t) =ρ
I

1−α2

0+
ρ
I

α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)

=ρ
I

1
0+ f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)

.

Using Definition 2 and relation (4), we get

(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(t) = ρ
I

1
0+

ρ
D

α1

0+
ϕ (t) = ρ

I
1

0+

(

t1−ρ d

dt

)

ρ
I

1−α1

0+
ϕ (t) = ρ

I
1−α1

0+
ϕ (t)

and
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(t) = ρ
I

1
0+

ρ
D

α2

0+
ψ (t) = ρ

I
1

0+

(

t1−ρ d

dt

)

ρ
I

1−α2

0+
ψ (t) = ρ

I
1−α2

0+
ψ (t) .

Thus
(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(

0+
)

=
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(

0+
)

= 0.

As a result T (Ω)⊂ Ω .
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Getting ready to present our results, we propose the following hypotheses:

Hyp.1. Let f1, f2 : [0, ℓ]×R4 → R are continuous functions and there are two strictly positive constants k1 and k2 such
that

| fi (t,ϕ1,ϕ2,ϕ3,ϕ4)− fi (t,ψ1,ψ2,ψ3,ψ4)| ≤ ki

4

∑
j=1

∣

∣ϕ j −ψ j

∣

∣ , i = 1,2,

for all t ∈ [0, ℓ] and ϕi,ψi ∈ R, i = 1,2,3,4.
Hyp.2. There exist a positive functions ai,bi ∈C ([0, ℓ] ,R) , i = 1,2, . . . ,5 such that

| f1 (t,ϕ1,ϕ2,ϕ3,ϕ4)| ≤ a1 (t)+
5

∑
i=2

ai (t) |ϕi|

and

| f2 (t,ϕ1,ϕ2,ϕ3,ϕ4)| ≤ b1 (t)+
5

∑
i=2

bi (t) |ϕi| ,

for any ϕi ∈ R, i = 1,2,3,4 and t ∈ [0, ℓ].

To simplify the computation, we adopt the notation:

λ
ρ
i j = λ

ρ
αi−β ji

=
ℓρ(αi−β ji)

ρα−β Γ (1+αi−β ji)
, i, j = 1,2,

āi = max
0≤t≤ℓ

|ai (t)| , b̄i = max
0≤t≤ℓ

|bi (t)| , i = 1,2, . . . ,5,

Ḡα =
ρ−αℓρα

Γ (α + 1)
, Ḡ = max

{

Ḡα1
, Ḡα2

}

,

d1 =
ā1 + b̄1

min
{

1− ā4λ
ρ
11 − b̄4λ

ρ
12,1− ā5λ

ρ
21 − b̄5λ

ρ
22

} ,

d2 =
max

{

ā2 + b̄2, ā3 + b̄3

}

min
{

1− ā4λ
ρ
11 − b̄4λ

ρ
12,1− ā5λ

ρ
21 − b̄5λ

ρ
22

} ,

with

max
i∈{1,2}

{

ā3+iλ
ρ
i1 + b̄3+iλ

ρ
i2,k1λ

ρ
i1 + k2λ

ρ
i2,

Ḡα1
k1λ

ρ
i1 + Ḡα2

k2λ
ρ
i2

Ḡαi

}

< 1. (15)

Now, we present the principal theorems

Theorem 1. Assume (Hyp.1) holds. If

kG =

(

k1Ḡα1
+ k2Ḡα2

)

Ḡ

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} < 1, (16)

then the problem (1)–(2) has a unique solution on [0, ℓ] .

Proof. First, we define the fixed point problem, which is equivalent to the one problem (1)–(2) by

T (ϕ ,ψ) (t) = (ϕ ,ψ) (t) . (17)

Let (ϕ ,ψ) ,(ϕ̄ , ψ̄) ∈ Ω , then we have
∣

∣Tϕ (ϕ ,ψ)(t)−Tϕ (ϕ̄ , ψ̄) (t)
∣

∣

=

∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)

− f1

(

s, ϕ̄ (s) , ψ̄ (s) , ρ
D

β11

0+
ϕ̄ (s) , ρ

D
β12

0+
ψ̄ (s)

)]

ds

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

ρ
D

α1

0+
ϕ (s)− ρ

D
α1

0+
ϕ̄ (s)

]

ds

∣

∣

∣

∣

≤
∫ t

0
Gα1

(t,s)
∣

∣

ρ
D

α1

0+
ϕ (s)− ρ

D
α1

0+
ϕ̄ (s)

∣

∣ds
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Using Hölder inequality and the fact that

sup
0≤t≤ℓ

∫ t

0
Gα1

(t,s)ds =
ρ−α1ℓρα1

Γ (α1 + 1)
,

we get

∥

∥Tϕ (ϕ ,ψ)(t)−Tϕ (ϕ̄ , ψ̄)(t)
∥

∥

∞
≤
∫ t

0
Gα1

(t,s)ds
∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

≤ ρ−α1ℓρα1

Γ (α1 + 1)

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
. (18)

And in the same way, we obtain

∥

∥Tψ (ϕ ,ψ)(t)−Tψ (ϕ̄ , ψ̄) (t)
∥

∥

∞
≤ ρ−α2ℓρα2

Γ (α2 + 1)

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (19)

Also, we have

‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄)(t)‖∞ ≤ Ḡα1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+ Ḡα2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤ Ḡ
(

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

)

. (20)

By taking into account the hypothesis (Hyp.1), we obtain

1

k1

∣

∣

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∣

∣≤ |ϕ (t)− ϕ̄ (t)|+ |ψ (t)− ψ̄ (t)|+
∣

∣

∣

ρ
D

β11

0+
ϕ (t)− ρ

D
β11

0+
ϕ̄ (t)

∣

∣

∣

+
∣

∣

∣

ρ
D

β12

0+
ψ (t)− ρ

D
β12

0+
ψ̄ (t)

∣

∣

∣
.

Using the equality (8), we get

1

k1

∣

∣

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∣

∣ ≤ |ϕ (t)− ϕ̄ (t)|+λ
ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ |ψ (t)− ψ̄ (t)|+λ
ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
,

Consequently

1

k1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
≤ ‖ϕ (t)− ϕ̄ (t)‖∞ +λ

ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ ‖ψ (t)− ψ̄ (t)‖∞ +λ
ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (21)

In the same way, we can get

1

k2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
≤ ‖ϕ (t)− ϕ̄ (t)‖∞ +λ

ρ
12

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ ‖ψ (t)− ψ̄ (t)‖∞ +λ
ρ
22

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (22)

Multiplying (21) by k1Ḡα1
and (22) by k2Ḡα2

, then take the sum, we obtain

Ḡα1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+ Ḡα2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤
(

k1Ḡα1
+ k2Ḡα2

)

{‖ϕ (t)− ϕ̄ (t)‖∞ + ‖ψ (t)− ψ̄ (t)‖∞}
+
(

k1Ḡα1
λ

ρ
11 + k2Ḡα2

λ
ρ
12

)∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+
(

k1Ḡα1
λ

ρ
21 + k2Ḡα2

λ
ρ
22

)∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
, (23)
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thus

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)}

[

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

]

≤ Ḡα1
−
(

k1Ḡα1
λ

ρ
11 + k2Ḡα2

λ
ρ
12

)
∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ Ḡα2
−
(

k1Ḡα1
λ

ρ
21 + k2Ḡα2

λ
ρ
22

)∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤
(

k1Ḡα1
+ k2Ḡα2

)

‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω , (24)

relation (15) guarantees that min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)}

> 0, then

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤ k1Ḡα1
+ k2Ḡα2

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} ‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω . (25)

Combining (20) and (25), we get

‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄) (t)‖Ω ≤ kG ‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω ,

where

kG =

(

k1Ḡα1
+ k2Ḡα2

)

Ḡ

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} .

Since kG < 1 according to (16), then T is a contraction operator and has unique fixed point following the Banach’s
contraction principle [15]. Which means that the problem (1)–(2) has a unique solution on [0, ℓ] .

Theorem 2. Assume that hypotheses (Hyp.1) and (Hyp.2) hold. If we put

Ḡd2 < 1, (26)

then the problem (1)–(2) has at least one solution on [0, ℓ] .

Proof. As in the previous proof, we will prove that the operator (17) has a fixed point using Schauder’s theorem [15]. This
is done through three steps:

Step 1: A is a continuous operator. Let (ϕn,ψn)n∈N be real sequences such that (ϕn,ψn)→ (ϕ ,ψ) in Ω .
Using the same techniques used to prove theorem 1, then by replacing (ϕ̄ , ψ̄) by (ϕn,ψn), the relations (21) and (22)
became

1

k1

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞
≤ ‖ϕn (t)−ϕ (t)‖∞ +λ

ρ
11

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞

+ ‖ψn (t)−ψ (t)‖∞ +λ
ρ
21

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
(27)

and

1

k2

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
≤ ‖ϕn (t)−ϕ (t)‖∞ +λ

ρ
12

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞

+ ‖ψn (t)−ψ (t)‖∞ +λ
ρ
22

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
. (28)

By combining (27) and (28), we obtain
∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞

≤ (k1 + k2)

min
i∈{1,2}

{

1− k1λ
ρ
i1 − k2λ

ρ
i2

} ‖(ϕn (t) ,ψn (t))− (ϕ (t) ,ψ (t))‖Ω ,

and from (15), we answer that min
i∈{1,2}

{

1− k1λ
ρ
i1 − k2λ

ρ
i2

}

> 0. As (ϕn,ψn) −→
n→∞

(ϕ ,ψ) in Ω , then

(

ρD
α1

0+
ϕn,

ρD
α2

0+
ψn

)

−→
n→∞

(

ρD
α1

0+
ϕ , ρD

α2

0+
ψ
)

, for all t ∈ [0, ℓ] .
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Now, let δ > 0 be such that for each t ∈ [0, ℓ] , we have

sup
{∣

∣

ρ
D

α1

0+
ϕn (t)

∣

∣ ,
∣

∣

ρ
D

α2

0+
ψn (t)

∣

∣ ,
∣

∣

ρ
D

α1

0+
ϕ (t)

∣

∣ ,
∣

∣

ρ
D

α2

0+
ψ (t)

∣

∣

}

≤ δ .

Then, we have
∣

∣

∣
Gα1

(t,s)
[

f1

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]∣

∣

∣

=
∣

∣Gα1
(t,s)

(

ρ
D

α1

0+
ϕn (s)− ρ

D
α1

0+
ϕ (s)

)∣

∣

≤ Gα1
(t,s)

∣

∣

ρ
D

α1

0+
ϕn (s)− ρ

D
α1

0+
ϕ (s)

∣

∣

≤ Gα1
(t,s)

(∣

∣

ρ
D

α1

0+
ϕn (s)

∣

∣+
∣

∣

ρ
D

α1

0+
ϕ (s)

∣

∣

)

≤ 2δGα1
(t,s)

and in the same way we find

Gα2
(t,s)

(∣

∣

ρ
D

α2

0+
ψn (s)− ρ

D
α2

0+
ψ (s)

∣

∣

)

≤ 2δGα2
(t,s)ds.

Which means that the functions s → δGαi
(t,s) , i = 1,2 are integrable for all t ∈ [0, ℓ] .

Then Lebesgue dominated convergence theorem is applicable to the following
∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

f1

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]

ds

∣

∣

∣

=
∣

∣Tϕ (ϕn,ψn)(t)−Tϕ (ϕ ,ψ) (t)
∣

∣ −→
n→∞

0

and
∣

∣

∣

∣

∫ t

0
Gα2

(t,s)
[

f2

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f2

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]

ds

∣

∣

∣

=
∣

∣Tψ (ϕn,ψn)(t)−Tψ (ϕ ,ψ)(t)
∣

∣ −→
n→∞

0.

Therefore
‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄) (t)‖Ω −→

n→∞
0.

Hence the continuity of the operator T .
Step 2: A(Bτ)⊂ Bτ . Let Bτ be bounded, closed and convex subset of Ω , define by

Bτ = {(ϕ ,ψ) ∈ Ω / ‖(ϕ ,ψ)‖Ω ≤ τ} ,

where τ ≥ d1

(1/Ḡ−d2)
.

Let T : Bτ → Ω be the operator defined in (14). Then by applying the inequality (8) and hypothses (Hyp.2) for all
t ∈ [0, ℓ] , we have

∣

∣

ρ
D

α1

0+
ϕ (t)

∣

∣=
∣

∣

∣
f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)∣

∣

∣
(29)

≤a1 (t)+ a2 (t) |ϕ (t)|+ a3 (t) |ψ (t)|+ a4 (t)
∣

∣

∣

ρ
D

β11

0+
ϕ (t)

∣

∣

∣
+ a5 (t)

∣

∣

∣

ρ
D

β12

0+
ψ (t)

∣

∣

∣

≤ā1 + ā2‖ϕ (t)‖∞ + ā3‖ψ (t)‖∞ + ā4λ
ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)

∥

∥

∞
+ ā5λ

ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)

∥

∥

∞

and
∣

∣

ρ
D

α2

0+
ϕ (t)

∣

∣ =
∣

∣

∣
f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)∣

∣

∣
(30)

≤b1 (t)+ b2 (t) |ϕ (t)|+ b3 (t) |ψ (t)|+ b4 (t)
∣

∣

∣

ρ
D

β21

0+
ϕ (t)

∣

∣

∣
+ b5 (t)

∣

∣

∣

ρ
D

β22

0+
ψ (t)

∣

∣

∣

≤b̄1 + b̄2‖ϕ (t)‖∞ + b̄3‖ψ (t)‖∞ + b̄4λ
ρ
12

∥

∥

ρ
D

α1

0+
ϕ (t)

∥

∥

∞
+ b̄5λ

ρ
22

∥

∥

ρ
D

α2

0+
ψ (t)

∥

∥

∞
,
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Combining the results (29) and (30). Similarly to (20), for all (ϕ ,ψ) ∈ Bτ we get

‖T (ϕ ,ψ)(t)‖Ω ≤ Ḡd1 + Ḡd2τ

= Ḡ

[

(

1/Ḡ− d2

) d1
(

1/Ḡ− d2

) + d2τ

]

≤ τ.

Then, we conclude that T (Bτ)⊂ Bτ .
Step 3: A(Bτ) is relatively compact. Let t1, t2 ∈ [0, ℓ] , t1 < t2 and (ϕ ,ψ) ∈ Bτ . Then, we get

∣

∣Tϕ (ϕ ,ψ)(t2)−Tϕ (ϕ ,ψ)(t1)
∣

∣+
∣

∣Tψ (ϕ ,ψ) (t2)−Tψ (ϕ ,ψ) (t1)
∣

∣

≤(d1 + d2τ)

[

max
i∈{1,2}

∫ t1

0
|Gαi

(t2,s)−Gαi
(t1,s)|ds+ max

i∈{1,2}

∫ t2

t1

Gαi
(t2,s)ds

]

. (31)

On the other hand

∫ t1

0
|Gαi

(t2,s)−Gαi
(t1,s)|ds =

ρ1−αi

Γ (αi)

∫ t1

0
sρ−1

∣

∣

∣

(

t
ρ
2 − sρ

)αi−1 −
(

t
ρ
1 − sρ

)αi−1
∣

∣

∣
ds

≤ 1

αiραiΓ (αi)

[

(

t
ρ
2 − t

ρ
1

)αi +
(

t
ραi

2 − t
ραi

1

)

]

(32)

and

∫ t2

t1

|Gαi
(t2,s)|ds =

ρ1−αi

Γ (αi)

∫ t2

t1

sρ−1
(

t
ρ
2 − sρ

)αi−1
ds

=
1

αiραiΓ (αi)

(

t
ρ
2 − t

ρ
1

)αi . (33)

Applying (32) and (33), then (31) becomes

∣

∣Tϕ (ϕ ,ψ)(t2)−Tϕ (ϕ ,ψ)(t1)
∣

∣+
∣

∣Tψ (ϕ ,ψ) (t2)−Tψ (ϕ ,ψ) (t1)
∣

∣

≤(d1 + d2τ)

[

max
i∈{1,2}

{

1

αiραiΓ (αi)

[

(

t
ρ
2 − t

ρ
1

)αi +
(

t
ραi

2 − t
ραi

1

)

]

}

+ max
i∈{1,2}

{

1

αiραiΓ (αi)

(

t
ρ
2 − t

ρ
1

)αi

}]

.

Hence, we conclude that for all (ϕ ,ψ) ∈ Bτ , ‖T (ϕ ,ψ)(t2)−T (ϕ ,ψ)(t1)‖Ω −→
t1→t2

0.

From step 1-3 and Ascoli-Arzelà Theorem [1], we show that T : Bτ →Bτ is continuous, compact and so by Schauder’s
fixed point, the operator T has at least one fixed point which corresponds to the solution of the problem (1)–(2) on [0, ℓ] .

4 Examples

Example 1. Consider the following problem











































ρD
1
2

0+
ϕ (t) = 1/2√

2cos( πt
4 )+|ϕ(t)|+|ψ(t)| +

1/11

cosht+

∣

∣

∣

∣

∣

ρ D

1
4

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
8

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,1] ,

ρD
2
3

0+
ψ (t) = 1/4

1+t+|ϕ(t)|+|ψ(t)|+
∣

∣

∣

∣

∣

ρ D

1
2

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
3

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,1] ,

(

ρI
1
2

0+
ϕ

)

(0+) =

(

ρI
1
3

0+
ψ

)

(0+) = 0.

(34)

Obviously, the condition (Hyp.1) is satisfied with k1 = 1/11 and k2 = 1/4. Then;
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ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kG 10.76 3.917 2.050 1.458 1.148 0.963 0.838 0.745 0.674 0.628

Theorem 1 is not applicable in from Theorem 1, the problem (34)
this example. has a unique solution.

Example 2. Consider the following problem











































ρD
1
4

0+
ϕ (t) = 10−2 sin t

1+|ϕ(t)|+|ψ(t)|+
∣

∣

∣

∣

∣

ρD

1
9

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
7

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,2] ,

ρD
4
5

0+
ψ (t) = 3et−2

5

|ϕ(t)|
1+|ϕ(t)| +

10−2 cost

1+t+|ψ(t)|+
∣

∣

∣

∣

∣

ρ D

1
5

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

2
9

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,2] ,

(

ρI
3
4

0+
ϕ

)

(0+) =

(

ρI
1
5

0+
ψ

)

(0+) = 0.

(35)

Obviously, the hypotheses (Hyp.1) and (Hyp.2) are satisfied with k1 = 10−2, k2 = 3/5, ā1 = b̄1 = 1, ā2 = 0, b̄2 = 3/5 and
āi = b̄i = 0 for i = 2,3,4,5. Then, d1 = 2, d2 = 0.6; Thus

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ḡd2 4.065 2.334 1.688 1.341 1.122 0.969 0.857 0.770 0.701 0.662

Theorem 2 is not applicable in from Theorem 2, the problem (35)
this example. has at least a solution.

5 Conclusion

Using the Banach contraction principle and Schauder’s fixed point theorem, this paper explores the existence and main
properties of at least one solution and its uniqueness for a class of new coupled systems of nonlinear multi-term fractional
differential equations with integral conditions. Katugampola’s fractional derivative is used as the differential operator,
which is crucial to generalizing Hadamard and Riemann-Liouville’s fractional derivatives into a single form.

Declarations

Competing interests: The authors declare no competing interests.
Authors’ contributions:
Billal Lekdim: Formal analysis; Investigation; Resources; Software; Visualization; Writing-original draft.
Bilal Basti: Methodology; Supervision; Validation; Writing-review and editing; Project administration.
All authors have read and agreed to the published version of the manuscript.
Funding: The General Direction of Scientific Research and Technological Development (DGRSTD).
Availability of data and materials: Not applicable.
Acknowledgments: The authors are deeply grateful to the reviewers and editors for their insightful comments that helped
to improve the quality of this research.

References

[1] R. P. Agarwal, M. Meehan, and D. O’ Regan, Fixed Point Theory and Applications, Vol. 141, Cambridge Univ. Press, (2001).

[2] B. Ahmad, M. Alghanmi, A. Alsaedi, and J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving

Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 107018.

[3] B. Ahmad, S. K. Ntouyas, and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and

integral boundary conditions, Chaos Solit. Fractals, 83 (2016), 234–241.

[4] Y. Arioua, B. Basti, and N. Benhamidouche, Initial value problem for nonlinear implicit fractional differential equations with

Katugampola derivative, Appl. Math. E-Notes, 19 (2019), 397–412.

[5] B. Basti and Y. Arioua, Existence study of solutions for a system of n-nonlinear fractional differential equations with integral

conditions, J. Math. Phys. Anal. Geom., 18(3) (2022), 350–367.

[6] B. Basti, Y. Arioua, and N. Benhamidouche, Existence and uniqueness of solutions for nonlinear Katugampola fractional

differential equations, J. Math. Appl., 42 (2019), 35–61.

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 17, No. 2, 199-209 (2024 ) / 209

[7] B. Basti, Y. Arioua, and N. Benhamidouche, Existence results for nonlinear Katugampola fractional differential equations with an

integral condition, Acta Math. Univ. Comenian., 89(2) (2020), 243–260.

[8] B. Basti and N. Benhamidouche, Global existence and blow-up of generalized self-similar solutions to nonlinear degenerate

diffusion equation not in divergence form, Appl. Math. E-Notes, 20 (2020), 367–387.

[9] B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-type’s space-fractional heat equation,

Surv. Math. Appl., 15 (2020), 153–168.

[10] B. Basti, R. Djemiat, and N. Benhamidouche, Theoretical studies on the existence and uniqueness of solutions for a

multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation, Mem. Differ. Equ. Math. Phys., 89 (2023),

1–16.

[11] B. Basti, N. Hammami, I. Berrabah, F. Nouioua, R. Djemiat, and N. Benhamidouche, Stability analysis and existence of solutions

for a modified SIRD model of COVID-19 with fractional derivatives, Symmetry, 13(8) (2021), 1431.

[12] Q. Dai, Y. Zhang, Stability of Nonlinear Implicit Differential Equations with Caputo-Katugampola Fractional Derivative,

Mathematics, 11(14) (2023), 3082.

[13] R. Djemiat, B. Basti, and N. Benhamidouche, Analytical studies on the global existence and blow-up of solutions for a free

boundary problem of two-dimensional diffusion equations of moving fractional order, Adv. Theory Nonlinear Anal. Appl. 6(8)

(2022), 287–299.

[14] R. Djemiat, B. Basti, and N. Benhamidouche, Existence of traveling wave solutions for a free boundary problem of a higher-order

space-fractional wave equation, Appl. Math. E-Notes, 22 (2022), 427–436.

[15] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[16] F. Nouioua and B. Basti, Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion

equation with mixed conditions, Ann. Univ. Paedag. Crac. Stud. Math. 20 (2021), 43–56.

[17] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218(3) (2011), 860–865.

[18] U. N. Katugampola, A new approach to generalized fractional derivatives, B. Math. Anal. App., 6(4) (2014), 1–15.

[19] A. A. Kilbas, H. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science

B.V, Amsterdam, (2006).

[20] S. K. Ntouyas and M. Obaid, Coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv.

Differ. Equ. 130 (2012).

[21] H. J. A. Salman, M. Awadalla, M. Subramanian, K. Abuasbeh, On a System of Coupled Langevin Equations in the Frame of

Generalized Liouville-Caputo Fractional Derivatives, Symmetry 15(1) (2023), 204.

[22] J. D. Tamarkin, On integrable solutions of Abel’s integral equation, Ann. Math., 31(2) (1930), 219–229.

[23] C. Zhai and R. Jiang, Unique solutions for a new coupled system of fractional differential equations, Adv. Difference Equ., 1

(2018), 1–12.

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.





JJMS 17, No. 2, 211-220 (2024 ) 211

Jordan Journal of Mathematics and Statistics.
Yarmouk University

DOI:https://doi.org/10.47013/17.2.2

Relations between (S
δ
2 T γS

δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2Sδ T

γ
2)

qγ
γ+δ

and their applications

M.H.M.Rashid

M.H.M.Rashid

Department of Mathematics

Faculty of Science P.O.Box(7), Mu’tah university

Al-Karak

Jordan

Received: Dec. 6, 2022 Accepted: Oct. 25, 2023

Abstract: Let B+(H ) represent the cone comprising all positive invertible operators on a complex separable Hilbert space H . When

T and S belong to B+(H ), it holds true that for any γ ≥ 0, δ ≥ 0, and 0 < q ≤ 1, the following two inequalities are equivalent:

(S
δ
2 T γ S

δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

In this article, we will explore the connections between these inequalities and provide some applications of this discovery to operator

class theory. Furthermore, we will provide a positive response to the question posed in [16].

Keywords: class p-wA(α,β ); Löwner-Heinz theorem; Normal operator; Aluthge transformation.
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1 Introduction

Let B(H ) denote the C∗-algebra encompassing all bounded linear operators acting on a complex, separable Hilbert space
referred to as H . Within this context, we use the symbol I to represent the identity operator. An operator, denoted as T , is
characterized as positive, denoted as T ≥ 0, if it satisfies the condition 〈T x,x〉 ≥ 0 for every vector x in the Hilbert space
H . Additionally, an operator T is regarded as strictly positive, symbolized as T > 0, if it fulfills two criteria: firstly, it must
be positive, and secondly, it must be invertible, meaning that 〈T x,x〉 > 0 for all nonzero vectors x within H . To clarify
further, when we express T ≥ S ≥ 0, it indicates that the operator T − S is positive, or in other words, 〈(T − S)x,x〉 ≥ 0
for all vectors x within the Hilbert space H .

The following result, which is crucial to understanding non-normal operators, is the first in this section.

Theorem 1(Furuta’s inequality[10]). If T ≥ S ≥ 0, then for each t ≥ 0,

(i)(S
t
2 T pS

t
2 )

1
q ≥ S

t+p
q and

(ii)T
t+p

q ≥ (T
p
2 StT

p
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1+ t)q ≥ p+ t.

It’s worth mentioning that if we substitute t = 0 into either condition (i) or (ii) from the previously mentioned theorems,
we obtain the well-known Löwener-Heinz theorem, which asserts that ”T ≥ S ≥ 0 guarantees T α ≥ Sα for any α ∈ [0,1].”
The subsequent results were established as applications of Theorem 1 in the references [7] and [11]. For positive invertible

operators T and S, the order relation logT ≥ logS (referred to as chaotic order) holds if and only if (S
r
2 T pS

r
2 )

r
p+r ≥ Sr

∗ Corresponding author e-mail: malik okasha@yahoo.com;mrash@mutah.edu.jo
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δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

for all p ≥ 0 and r ≥ 0, and this equivalence also extends to T p ≥ (T
p
2 SrT

p
2 )

p
p+r for all p ≥ 0 and r ≥ 0. It’s worth

noting that when p = r, this conclusion serves as an extension of the results presented in [2]. The following assertions are
well-established concerning these operator inequalities: Let T and S be strictly positive operators. Then, we have

(a)T ≥ S ⇒ logT ≥ logS.

(b)logT ≥ logS ⇒ (S
α
2 T β S

α
2 )

α
β+α ≥ Sα and T β ≥ (T

β
2 Sα T

β
2 )

β
β+α for all β ≥ 0 and α ≥ 0.

(c)For each β ≥ 0 and α ≥ 0, (S
α
2 T β S

α
2 )

α
β+α ≥ Sα ⇔ T β ≥ (T

β
2 Sα T

β
2 )

β
β+α [11].

Regarding these findings, the requirement for invertibility in conditions (a) and (b) can be substituted with the condition
ker(T ) = ker(S) = 0. This condition implies that (a) and (b) remain valid even for specific non-invertible operators T and
S, as established in [24]. The authors of [15] delved into the relationships between the following inequalities:

(S
α
2 T β S

α
2 )

α
β+α ≥ Sα and T β ≥ (T

β
2 Sα T

β
2 )

β
β+α

when it is not possible to invert operators T and S.
An operator T ∈ B(H ) is referred to as hyponormal when it satisfies the inequality T ∗T ≥ TT ∗. The Aluthge

transformation, denoted as T̃ = |T | 1
2 U |T | 1

2 , was introduced by Aluthge in [1]. It is a key component of the polar
decomposition of T ∈ B(H ), which can be represented as T = U |T |. Furthermore, the formula T̃s,t = |T |sU |T |t
describes the generalized Aluthge transformation T̃s,t with 0 < s, t. It’s important to note that an operator T ∈ B(H ) is

defined as p-hyponormal if (T ∗T )p ≥ (T T ∗)p. Additionally, it falls into class wA(s, t) if (|T ∗|t |T |2s|T ∗|t) t
s+t ≥ |T ∗|2t and

|T |2s ≥ (|T |s|T ∗|2t |T |s) s
s+t ([14]). The class A(k), which encompasses p-hyponormal and log-hyponormal operators, was

introduced by Furuta et al. in their study [9], where A(1) corresponds to the class A operator. Furthermore, if

(T ∗|T |2kT )
1

k+1 ≥ |T |2, we assert that an operator T belongs to class A(k), where k > 0. In this paper, we aim to establish
the relationships between the following inequalities:

(S
δ
2 T γS

δ
2 )

qδ
γ+δ ≥ Sδq and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ (1)

These relationships will be explored in cases where operators T and S are not invertible. We will also demonstrate the
normality of the class p-A(α,β ) for α > 0,β > 0, and 0 < p ≤ 1. Furthermore, we will prove that if either T or T belongs

to class p-A(α,β ) for some α > 0,β > 0, with 0 < p ≤ 1, and S is an operator such that 0 /∈W (S) and ST = T ∗S, then T

is a self-adjoint operator.

2 Relations between (S
δ
2 T γS

δ
2 )

qδ
γ+δ ≥ Sδq and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

In this section, we will present the following outcome:

Theorem 2.Let T,S ∈ B+(H ). Then for each γ ≥ 0, δ ≥ 0 and 0 < q ≤ 1, the following assertions hold:

(i)If (S
δ
2 T γS

δ
2 )

qδ
γ+δ ≥ Sδq, then T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ .

(ii)If T qγ ≥ (T
γ
2 Sδ T

γ
2 )

qγ
γ+δ and ker(T )⊂ ker(S), then (S

δ
2 T γ S

δ
2 )

qδ
γ+δ ≥ Sqδ .

We would like to note that Theorem 2 serves as an extension of Theorem 1 in [15]. The following results are organized to
provide a proof and illustration of Theorem 2.

Lemma 1.[13, Löwner-Heinz inequality] Let T,S ∈ B+(H ). If T ≥ S ≥ 0, then T γ ≥ Sγ for every γ ∈ [0,1].

Lemma 2.[8] Let T,S ∈ B(H ). Assume that T is positive (T > 0), and that S is an invertible operator. Under these

conditions, the following holds for any real number λ :

(STS∗)λ = ST
1
2 (T

1
2 S∗ST

1
2 )λ−1T

1
2 S∗.

Proof.For the sake of convenience, we provide a proof of this self-evident result. Let’s start with the polar decomposition

of the invertible operator ST
1
2 as ST

1
2 =UQ, where U is a unitary operator and Q = |ST

1
2 |. Then,

(STS∗)λ = (UQ2U)λ =UQ2λU∗

= ST
1
2 Q−1Q2λ Q−1T

1
2 S∗ = ST

1
2 (Q2)λ−1T

1
2 S∗

= ST
1
2 (T

1
2 S∗ST

1
2 )λ−1T

1
2 S∗.
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Proposition 1.[21] Let T,S ∈ B+(H ). Consequently, the following statements are true:

(i)If (S
δ0
2 T γ0S

δ0
2 )

δ0 p

γ0+δ0 ≥ Sδ0 p maintains for fixed γ0 > 0, δ0 > 0 and 0 < p ≤ 1, then

(S
δ
2 T γ0S

δ
2 )

δ p1
γ0+δ ≥ Sδ p1 (2)

holds for any δ ≥ δ0 and 0 < p1 ≤ p ≤ 1. Moreover, for each fixed γ ≥−γ0,

fγ0,γ(δ ) = (T
γ0
2 Sδ T

γ0
2 )

(γ0+γ)p1
γ0+δ

is a decreasing function for δ ≥ max{δ0,γ}. Hence the inequality

(T
γ0
2 Sδ1T

γ0
2 )p1 ≥ (T

γ0
2 Sδ2T

γ0
2 )

p1(γ0+δ1)
γ0+δ2 (3)

holds for any δ1 and δ2 such that δ2 ≥ δ1 ≥ δ0 and 0 < p1 ≤ p.

(ii)If T γ0 p ≥ (T
γ0
2 Sδ0T

γ0
2 )

γ0 p

γ0+δ0 holds for fixed γ0 > 0, δ0 > 0 and 0 < p ≤ 1, then

T γ p1 ≥ (T
γ
2 Sδ0T

γ
2 )

γ p1
γ+δ0 (4)

holds for any γ ≥ γ0 and 0 < p1 ≤ p ≤ 1. Furthermore, for each fixed δ ≥−δ0,

gδ0,δ (γ) = (S
δ0
2 T γS

δ0
2 )

(δ+δ0)p1
γ+δ0

is an increasing function for γ ≥ max{γ0,δ}. Therefore the inequality

(S
δ0
2 T γ2 S

δ0
2 )

p1(γ1+δ0)
γ2+δ0 ≥ (S

δ0
2 T γ1S

δ0
2 )p1 (5)

holds for any γ1 and γ2 such that γ2 ≥ γ1 ≥ γ0 and 0 < p1 ≤ p.

By applying the Furuta inequality, we derive Theorem 2. Our approach relies on the utilization of the subsequent
expression, which constitutes a pivotal element of the Furuta inequality presented in Theorem 1.

Lemma 3.Let T,S ∈ B(H ). If T ≥ S ≥ 0, then

(i)(Sx/2T ySx/2)
1+x
x+y ≥ S1+x and

(ii)T 1+x ≥ (T x/2SyT x/2)
1+x
x+y

hold for x ≥ 0 and y ≥ 1.

Proof(Proof of Theorem 2). (i) Suppose that the following relation

(Sδ0/2T γ0Sδ0/2)
qδ0

γ0+δ0 ≥ Sqδ0 (6)

holds for fixed γ0 > 0 and δ0 > 0 and 0 < q ≤ 1. Applying Lemma 3 to (6), we have

{S
qδ0r1

2 (Sδ0/2T γ0 Sδ0/2)
p1qδ0
γ0+δ0 S

qδ0r1
2 }

1+r1
p1+r1 ≥ Sqδ0(1+r1) (7)

for any p1 ≥ 1 and r1 ≥ 0. Putting p1 =
γ0+δ0

qδ0
in (7), we have

(S
δ0(1+qr1)

2 T γ0S
δ0(1+qr1)

2 )
qδ0(1+r1)

γ0+δ0+r1qδ0 ≥ Sqδ0(1+r1) (8)

for any r1 ≥ 0. Put δ = δ0(1+ qr1)≥ δ0 in (8). Then we have

(S
δ
2 T γ0 S

δ
2 )

δ−(1−q)δ0
γ0+δ ≥ Sδ−(1−q)δ0. (9)
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δ
2 T γ S

δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

Hence we have

(S
δ
2 T γ0S

δ
2 )

µ
γ0+δ ≥ Sµ for 0 < µ ≤ δ − (1− q)δ0. (10)

Next, we demonstrate f (δ ) = (T γ0/2Sδ T γ0/2)
qγ0

γ0+δ is decreasing for δ ≥ δ0. By Löwner-Heinz theorem, (10) ensures the
following (11)

(S
δ
2 T γ0S

δ
2 )

µ
γ0+δ ≥ Sµ for 0 < µ ≤ δ − (1− q)δ0. (11)

Next, we have

f (δ ) = (T γ0/2Sδ T γ0/2)
qγ0

γ0+δ

= {(T γ0/2Sδ T γ0/2)
γ0+δ+µ

γ0+δ }
qγ0

γ0+δ+µ

= {T γ0/2Sδ/2(Sδ/2T γ0Sδ/2)
µ

γ0+δ Sδ/2T γ0/2}
qγ0

γ0+δ+µ (by Lemma 2)

≥ (T γ0/2Sδ+µT γ0/2)
qγ0

γ0+δ+µ

= f (δ + µ).

Hence f (δ ) is decreasing for δ ≥ δ0. Consequently,

T qγ0 ≥ (T γ0/2Sδ T γ0/2)
qγ0

γ0+δ for δ ≥ δ0 (12)

holds since

T qγ0 ≥ (T γ0/2Sδ0T γ0/2)
qγ0

γ0+δ0 = f (δ0)≥ f (δ ) = (T γ0/2Sδ T γ0/2)
qγ0

γ0+δ .

Again applying Theorem 1 to (12), we have

T qγ0(1+r2) ≥ (T
qr2γ0

2 (T qr2γ0/2Sδ T γ0/2)
p2qγ0
γ0+δ T

qr2γ0
2 )

1+r2
p2+r2 (13)

for any p2 ≥ 1 and r2 ≥ 0. Putting p2 =
γ0+δ
qγ0

≥ 1 in (13), we have

T qγ0(1+r2) ≥ (T
γ0(1+qr2)

2 Sδ T
γ0(1+qr2)

2 )
qγ0(1+r2)

γ0+δ+qr2γ0 (14)

for any r2 ≥ 0. Put γ = γ0(1+ qr2)≥ γ0 in (14). Then we have

T γ+γ0(q−1) ≥ (T
γ
2 Sδ T

γ
2 )

γ+γ0(q−1)
δ+γ (15)

for all γ ≥ γ0 and δ ≥ δ0. Now, since 0 < q1γ
γ+γ0(q−1)

≤ 1, making use of Löwner-Heinz theorem to (15), we have

T q1γ ≥ (T
γ
2 Sδ T

γ
2 )

q1γ

δ+γ

for all γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q.
(ii) Suppose that ker(T )⊂ ker(S) and

T qγ0 ≥ (T γ0/2Sδ0T γ0/2)
qγ0

γ0+δ0 (16)

holds for fixed γ0 > 0 and δ0 > 0 and 0 < q ≤ 1. Applying Lemma 3 to (16), we have

T qγ0(1+r3) ≥ (T
qr3γ0

2 (T γ0/2Sδ0T γ0/2)
p3qγ0
γ0+δ0 T

qr3γ0
2 )

1+r3
p3+r3 (17)

for any p3 ≥ 1 and r3 ≥ 0. Putting p3 =
γ0+δ0

qγ0
≥ 1 in (17), we have

T qγ0(1+r3) ≥ (T
γ0(1+qr3)

2 Sδ0T
γ0(1+qr3)

2 )
qγ0(1+r3)

γ0+δ0+qr3γ0 (18)

for any r3 ≥ 0. Put γ = γ0(1+ qr3)≥ γ0 in (18). Then we have

T γ+γ0(q−1) ≥ (T
γ
2 Sδ0T

γ
2 )

γ+γ0(q−1)
δ0+γ for γ ≥ γ0. (19)
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Next we show that g(γ) = (Sδ0/2AγSδ0/2)
qδ0

γ0+δ0 is increasing for γ ≥ γ0. Löwner-Heinz theorem , when applied to (19),
guarantees the following:

T u ≥ (T
γ
2 Sδ0T

γ
2 )

u
δ0+γ for 0 ≤ u ≤ γ + γ0(q− 1). (20)

Then we have

g(γ) = (Sδ0/2T γ Sδ0/2)
qδ0

γ+δ0

= {(Sδ0/2T γSδ0/2)
γ+δ0+u

γ+δ0 }
qδ0

u+δ0+γ

= {Sδ0/2T γ/2(T γ/2Sδ0T γ/2)
u

γ+δ0 T γ/2Sδ0/2}
qδ0

u+δ0+γ

≤ (Sδ0/2T γ+uSδ0/2)
qδ0

u+δ0+γ

= g(γ + u).

Hence g(γ) is increasing for γ ≥ γ0. Therefore

(Sδ0/2T γSδ0/2)
qδ0

γ+δ0 ≥ Sqδ0 for γ ≥ γ0 (21)

holds since

(Sδ0/2T γSδ0/2)
qδ0

γ+δ0 = g(γ)≥ g(γ0) = (Sδ0/2T γ0 Sδ0/2)
qδ0

γ0+δ0 ≥ Sqδ0 .

Again applying Theorem 1 to (21), we have

{S
qr4δ0

2 (Sδ0/2T γSδ0/2)
p4qδ0
γ+δ0 S

qr4δ0
2 }

1+r4
p4+r4 ≥ Sqδ0(1+r4) (22)

for any p4 ≥ 1 and r4 ≥ 0. Putting p4 =
γ+δ0

qδ0
≥ 1 in (22), we have

(S
δ0(1+qr4)

2 T γ S
δ0(1+qr4)

2 )
qδ0(1+r4)

γ+δ0+qδ0r4 ≥ Sqδ0(1+r4) (23)

for any r4 ≥ 0. Put δ = δ0(1+ qr4)≥ δ0 in (23). Then we have

(S
δ
2 T γS

δ
2 )

δ+δ0(q−1)
γ+δ ≥ Sδ+δ0(q−1) for γ ≥ γ0 and δ ≥ δ0. (24)

Applying the Löwner-Heinz theorem to (24), we now obtain since 0 < q1δ
δ+δ0(q−1) ≤ 1,

(S
δ
2 T γ S

δ
2 )

q1δ

γ+δ ≥ Sq1δ

for all γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q, consequently, the proof is conclusive.

Proposition 2.Let T,S ∈ B+(H ) and let γ0 > 0, δ0 > 0 and 0 < q ≤ 1. Suppose that

(S
δ0
2 T γ0S

δ0
2 )

qδ0
γ0+δ0 ≥ Sqδ0 (25)

and

T qγ0 ≥ (T
γ0
2 Sδ0T

γ0
2 )

qγ0
γ0+δ0 . (26)

Consequently, the following statements are true:

(i)For every γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q

(S
δ
2 T γS

δ
2 )

q1δ
γ+δ ≥ Sq1δ .

Moreover, for each fixed γ ≥−γ0,

fγ0,γ(δ ) = (T
γ0
2 Sδ T

γ0
2 )

(γ0+γ)p1
γ0+δ

is a decreasing function for δ ≥ max{δ0,γ}. Hence the inequality

(T
γ0
2 Sδ1T

γ0
2 )p1 ≥ (T

γ0
2 Sδ2T

γ0
2 )

p1(γ0+δ1)
γ0+δ2 (27)

holds for any δ1 and δ2 such that δ2 ≥ δ1 ≥ δ0 and 0 < p1 ≤ p.
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δ
2 T γ S

δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

(ii)For each γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q

T qγ ≥ (T
γ
2 Sδ T

γ
2 )

qγ
γ+δ .

Additionally, for every fixed δ ≥−δ0,

gδ0,δ (γ) = (S
δ0
2 T γS

δ0
2 )

(δ+δ0)p1
γ+δ0

is an increasing function for γ ≥ max{γ0,δ}. Hence the inequality

(S
δ0
2 T γ2 S

δ0
2 )

p1(γ1+δ0)
γ2+δ0 ≥ (S

δ0
2 T γ1 S

δ0
2 )p1 (28)

holds for any γ1 and γ2 such that γ2 ≥ γ1 ≥ γ0 and 0 < p1 ≤ p.

Proof.We will provide the proof for part (ii), noting that the proof for part (i) follows a similar pattern. We begin by
observing that inequality (2) implies inequality (4), as established in Proposition 1. Therefore, we have:

T qγ0 ≥ (T
γ0
2 Sδ0T

γ0
2 )

qγ0
γ0+δ0 ≥ (T

γ0
2 Sδ T

γ0
2 )

qγ0
γ0+δ

This inequality holds for all β ≥ β0 based on inequality (4) and the Löwner-Heinz inequality. Consequently, we can
conclude part (ii) by invoking Proposition 1 (ii).

In Proposition 2, when considering γ > 0, δ > 0, and 0 < q ≤ 1, one might naturally anticipate that the inequality T qγ ≥
(

T
γ
2 Sδ T

γ
2

)

qγ
γ+δ

is equivalent to
(

S
δ
2 T γT

δ
2

)

qδ
γ+δ ≥ Sqδ , even in cases where T and S are not invertible. However, this

assumption is disproven by the following example.

Example 1.There exists positive bounded linear operators T and S such that T qγ ≥
(

T
γ
2 Sδ T

γ
2

)

qγ
γ+δ

and
(

S
δ
2 T γ T

δ
2

)

qδ
γ+δ

�

Sqδ . Let T =

(

1 0
0 0

)

and S =

(

0 0
0 1

)

. Then

T qγ −
(

T
γ
2 Sδ T

γ
2

)

qγ
γ+δ

=

(

1 0
0 0

)

−
(

0 0
0 0

)

=

(

1 0
0 0

)

≥ 0

and
(

S
δ
2 T γT

δ
2

)

qδ
γ+δ − Sqδ =

(

0 0
0 0

)

−
(

0 0
0 1

)

=

(

0 0
0 −1

)

� 0

for γ > 0, δ > 0, and 0 < q ≤ 1. Therefore T qγ ≥
(

T
γ
2 Sδ T

γ
2

)

qγ
γ+δ

and
(

S
δ
2 T γT

δ
2

)

qδ
γ+δ

� Sqδ for γ > 0, δ > 0, and

0 < q ≤ 1.

Corollary 1.Let T,S ∈ B+(H ) and let γ0 > 0, δ0 > 0. Then, the following claims are true:

(i)If 0 < q ≤ 1, then

(S
δ0
2 T γ0 S

δ0
2 )

qδ0
γ0+δ0 ≥ Sqδ0 =⇒ (S

δ
2 T γ S

δ
2 )

q1δ

γ+δ ≥ Sq1δ (29)

holds for any γ ≥ γ0 and δ ≥ δ0, thus T q1γ ≥ (T
γ
2 Sδ T

γ
2 )

q1γ

γ+δ holds for any γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q.

(ii)If 0 < q ≤ 1 and ker(T )⊂ ker(S), then

T qγ0 ≥ (T
γ0
2 Sδ0T

γ0
2 )

qγ0
γ0+δ0 =⇒ T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ (30)

holds for any γ ≥ γ0 and δ ≥ δ0, thus (S
δ
2 T γS

δ
2 )

q1δ
γ+δ ≥ Sq1δ holds for any γ ≥ γ0, δ ≥ δ0 and 0 < q1 ≤ q.

Proof.We present the proof for part (i), and it’s worth noting that the proof for part (ii) follows a similar line of reasoning.
Based on the provided hypothesis, the Löwner-Heinz theorem, and Proposition 2, we can establish the following

inequality for all δ ≥ δ0, γ ≥ γ0, and 0 < q ≤ 1:

(S
δ
2 T γS

δ
2 )

qδ
γ+δ ≥ Sqδ

This inequality, derived from the hypothesis and known theorems, validates Corollary 1 (i). The application of the Löwner-
Heinz theorem and Theorem 2 further supports this conclusion.
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Remark.We need to keep in mind the assumptions (i) and (ii) of Theorem 2. In the context of Theorem 2, we consider the
scenario where γ = δ = 1 and 0 < q ≤ 1. The following conditions are relevant:

(a)(S
1
2 T S

1
2 )

q
2 ≥ Sq.

(b)T q ≥ (T
1
2 ST

1
2 )

q
2 and ker(T )⊂ ker(S).

We have shown that in Theorem 2, condition (a) implies T q ≥ (T
1
2 ST

1
2 )

q
2 , and condition (b) ensures condition (a).

Consequently, one might expect that conditions (a) and (b) are analogous. However, we have a counterexample to
demonstrate otherwise.

Example 2.(S
1
2 T S

1
2 )

q
2 ≥ Sq and T q ≥ (T

1
2 ST

1
2 )

q
2 , but ker(T )* ker(S).

Let T =

(

2 4
4 8

)

,S =

(

1 0
0 0

)

. Then T
1
2 =

√

2
5

(

1 2
2 4

)

,S
1
2 =

(

1 0
0 0

)

= S. Hence

2
q
2

(

1 0
0 0

)

= (S
1
2 T S

1
2 )

q
2 ≥ Sq

and

T q =

(

2q · 5q−1 2q+1 · 5q−1

5q−1 · 2q+1 5q−1 · 2q+2

)

≥ (T
1
2 ST

1
2 )

q
2 =









2
q
2

5
2

q+2
2

5

2
q+2

2

5
2

q+4
2

5









.

But

(

−2
1

)

∈ ker(A) and

(

−2
1

)

/∈ ker(S), so that ker(T )* ker(S).

Moreover, we have the following example.

Example 3.We have T q ≥ (T
1
2 ST

1
2 )

q
2 , but (S

1
2 T S

1
2 )

q
2 � Sq and ker(T )* ker(S).

Set T =

(

1 0
0 0

)

and S =

(

0 0
0 1

)

. Then T q =

(

1 0
0 0

)

≥ (T
1
2 ST

1
2 )

q
2 =

(

0 0
0 0

)

, (S
1
2 T S

1
2 )

q
2 =

(

0 0
0 0

)

� Sq =

(

0 0
0 1

)

and

ker(T )* ker(S).

3 Applications

In this section, we will illustrate the application of Theorem 2 to various operator classes.

Definition 1.Consider the following operator classes defined in terms of α > 0, β > 0, 0< p≤ 1, the polar decomposition

of T as T =U |T |, and the generalized Aluthge transformation T̃α ,β = |T |αU |T |β :

(i)T is classified as belonging to the p-A(α,β ) class if it satisfies the inequality (|T ∗|β |T |2α |T ∗|β )
pβ

α+β ≥ |T ∗|2pβ [16].

(ii)T is categorized as part of the p-wA(α,β ) class if it meets the criteria:

(|T ∗|β |T |2α |T ∗|β )
pβ

α+β ≥ |T ∗|2pβ and |T |2pα ≥ (|T |α |T ∗|2β |T |α)
pα

α+β

or equivalently, |T̃α ,β |
2pβ
β+α ≥ |T |2pβ and |T |2pα ≥ |(T̃α ,β )

∗|
2pα
α+β as defined in [16].

(iii)T is classified as a member of the p-A class if |T 2|p ≥ |T |2p, which is equivalent to T being part of the p-A(1,1) class,

as stated in [16].

(iv)T is considered p-w-hyponormal if and only if it satisfies the inequalities: |T̃ | p
2 ≥ |T |p ≥ |(T̃ )∗| p

2 . This classification

corresponds to T belonging to the p-wA( 1
2
, 1

2
) class, where T̃ = |T | 1

2 U |T | 1
2 is the Aluthge transformation, as outlined

in [3].

(v)T is termed (α, p)-w-hyponormal if and only if it satisfies the following inequalities: |T̃α ,α |
p
2 ≥ |T |2pα ≥ |(T̃α ,α)

∗| p
2 .

This characterization corresponds to T belonging to the p-wA(α,α) class, where T̃α ,α = |T |αU |T |α is the generalized

Aluthge transformation, as discussed in [12] and [19].

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



218 M.H.M Rashid: Relations between (S
δ
2 T γ S

δ
2 )

qδ
γ+δ ≥ Sδ q and T qγ ≥ (T

γ
2 Sδ T

γ
2 )

qγ
γ+δ

Operators classified as p-wA(α,β ) exhibit several significant properties typical of hyponormal operators. These properties
encompass the Fuglede-Putnam type theorem, Weyl type theorem, subscalarity, and Putnam’s inequality, as documented
in [4], [5], [17], [18], and [23]. It’s important to note that the Aluthge transformation has garnered considerable attention
from various authors, including [1], [4], [6], and [25]. These classes are categorized as normaloid operators, denoted by
‖T‖ = r(T ), where r(T ) represents the spectral radius of T , as discussed in [17], [3], and [12]. For α , β , and 0 < p ≤ 1,
it has been established that class p-A(α,β ) includes class p-A(α,β ) based on the definition in 1 (i) and (ii). Furthermore,
as demonstrated in [16], both class p-wA(α,β ) and class p-wA(α,β ) are invertible for any α > 0, β > 0, and 0 < p ≤ 1.
Previous research has also provided more precise inclusion relations among class p-wA(α,β ).

Lemma 4.[4] If T ∈ B(H ) is class p-wA(s, t) and 0 < s ≤ γ,0 < t ≤ δ ,0 < p1 ≤ p ≤ 1, then T is class p1-wA(γ,δ ).

In their study [16], the authors posed the following question:
Question: Does the class p-A(s, t) imply p-wA(s, t) for 0 < p < 1?
The subsequent theorem provides an affirmative answer to this question.

Theorem 3.For each α > 0,β > 0 and 0 < p ≤ 1, the following assertions hold:

(i)class p-A(α,β ) and class p-wA(α,β ) are equivalent.

(ii)class p-A and class p-wA are equivalent.

(iii)class p-A( 1
2
, 1

2
) and the class of p-w-hyponormal operators are equivalent, i.e., class p-wA( 1

2
, 1

2
).

(iv)class p-A(α,α) and class (α, p)-w-hyponormal operators are equivalent, i.e., class p-wA(α,α).

Proof.We choose not to provide a proof here, as we can easily establish Theorem 3 by applying Theorem 2 to the
definitions of these classes.

Notice that Theorem 3 in reference [15] corresponds to a specific case where q = 1, and therefore, Theorem 3 can be seen
as an extension or generalization of it.

Remark.By (iv) of Theorem 3, we have

|T̃α ,α |
p
2 ≥ |T |2pα ⇔ (|T ∗|α |T |2α |T ∗|α)

p
2 ≥ |T ∗|2pα ⇔ T : class p−A(α,α)

⇔ T : (α, p)−w− hyponormal⇔ |T̃α ,α |
p
2 ≥ |T |2pα ≥ |(T̃α ,α)

∗|
p
2 .

Hence
|T̃α ,α |

p
2 ≥ |T |2pα ⇒ |T |2pα ≥ |(T̃α ,α)

∗|
p
2 ,

that is, we may as will define (α, p)-w-hyponormal by only |T̃α ,α |
p
2 ≥ |T |2pα .

Next, we shall show some properties of class p-A(s, t).

Theorem 4.If T ∈ B(H ) is class p-A(s, t) and 0 < s ≤ γ,0 < t ≤ δ ,0 < p1 ≤ p ≤ 1, then T is class p1-A(γ,δ ).

Proof.We skip the proof because it can be accomplished easily using (i) of Theorem 3 and Theorem 5.

We will show that certain non-normal operators can be proven to be normal. It is established that an operator T is normal
if both T and T ∗ belong to the class A. However, the situation becomes less clear when T and T ∗ belong to classes weaker
than class A. Thanks to the research efforts of various authors on this topic, the following results were previously unknown
until now.

Lemma 5.[21] Let αi,βi > 0 and 0 < pi ≤ 1, where i = 1,2. If T is a class p1-wA(α1,β1) operator and T ∗ is a class

p2-wA(α2,β2) operator, then T is normal.

Corollary 2.Let αi,βi > 0 and 0 < pi ≤ 1, where i = 1,2. If T is a class p1-A(α1,β1) operator and T ∗ is a class p2-

A(α2,β2) operator, then T is normal.

Proof.Theorem 3 and Lemma 5 lead directly to the proof.

Lemma 6.[21] Let p,r > 0, 0 < q ≤ 1, s ≥ p and t ≥ r. If T is a class q-wA(p,r) operator and T̃s,t is normal, then T is

normal.

Corollary 3.Let p,r > 0, 0 < q ≤ 1, s ≥ p and t ≥ r. If T is a class q-A(p,r) operator and T̃s,t is normal, then T is normal.

Proof.Theorem 3 and Lemma 6 are prerequisites for the proof.
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Remark.Please take note that Corollaries 2 and 3, along with Lemmas 5 and 6, offer generalizations of several findings
found in the existing literature. Notable examples include the extension of Theorem 6 in reference [15], as well as other
results in papers such as [19] and [3].

The numerical range of an operator M, represented as W (M), is defined as the set given by:

W (M) = {〈Mx,x〉 : ‖x‖= 1}.

In a general context, it’s important to note that neither the condition N−1MN =M∗ nor the statement 0 /∈W (M) guarantees
that the operator M is normal. This is exemplified when considering the case of M =NB, where N is positive and invertible,

B is self-adjoint, and N and B do not commute. In this scenario, N−1MN = M∗ and 0 /∈ W (N), but the operator M is not
normal. This naturally leads to the following question:

Question: Under what conditions does an operator M become normal when both N−1MN = M∗ and 0 /∈W (N) hold true?
In 1966, Sheth demonstrated in [22] that if M is a hyponormal operator and N−1MN = M∗ for certain operators N,

where 0 /∈ W (N), then M is self-adjoint. Rashid later extended Sheth’s result to encompass the class A(k) operators for
k > 0 in [20]. This work further expands upon Sheth’s result, demonstrating that it holds true for the class p-A(α,β )
operators, as detailed below.

Corollary 4.Let M ∈ B(H ). If M or M∗ belongs to class p-A(α,β ) for every α > 0,β > 0 and 0 < p ≤ 1 and N is an

operator for which 0 /∈W (N) and NM = M∗N, then M is self-adjoint.

Proof.The conclusion drawn is a result of Theorem 3 and the findings presented in [21, Theorem 2.14].
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1 Introduction

Researchers have mentioned various forms of generalized open sets; for instance α-open set, preopen set, semi open set,
b-open set, β -open set and somewhere dense set. The notion of somewhere dense set was due to Pugh [19], then in 2017
[1] Al-shami provided the topological properties of this class of sets, and he studied some operators as; somewhere dense
interior, somewhere dense closure and somewhere dense boundary and he used these notions to defined the axiom of
ST 1space, and with Noiri [2,3] they investigated some particular maps as; SD-irresolute maps and SD-continuous maps,
then they introduced the concepts of Lindelofness and compactness using somewhere dense sets, and recently, Arwini et
al. [4] stated that somewhere dense sets and open sets are coinciding if and only if a space is strongly hyperconnected,
moreover, Sarbout et al. [20] defined somewhere dense connected space, and they showed that this space is stronger than
hyperconnected space but weaker than strongly hyperconneted space.
In 1906 [15] Frechet defined separable space, which is a space that contains a countable dense subset, since then different
types of separability were defined, as d-separable space, D-separable space, weakly separable space, b-separable space,
dense-separable space, r-separable space, pre-separable space etc. Kurepa [17] in 1936 introduced a generalized form of
separable and metrizable spaces, namely d-separable space, and then in 1981 Arhangelskii [5] studied some properties
of d-separable spaces and proved that any product of d-separable spaces is d-separable. D-Separable spaces were due to
Bella et al. [8], and in 2012 Aurihi et al. [7] investigated the properties of D-separable space and showed their implication
with d-separable spaces. Weakly separable spaces were defined by Beshimov in 1994 [9] when he proved that any weakly
separable Hausdorff compact space is separable, moreover he studied its separable compactifications, see more in [10,11].
In 2013 Selvarani [21] defined b-dense sets and b-separable spaces using b-open sets, then in 2021 Arwini et al. [6,16]
introduced two different types of separability, the first type is called dense separable space, and they showed that dense
separable space, dense second countable space and separable space are equivalent, while in the second type they used
the notion of regular open sets to defined r-separable space, then they illustrated that r-separable space is weaker than
separable space, but they became equivalent in regular space. Recently, Elbhilil et al. [14] introduced pre-separable spaces

∗ Corresponding author e-mail: m−K.arwini@uot.edu.ly

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

DOI: https://doi.org/10.47013/17.1.3


222 Khadiga A. Arwini : SD-Separability in Topological Spaces

using pre-dense set notion, and they showed that pre-separable space is placed between b-separable space and separable
space, and in submaximal spaces, the axioms of separability and pre-separability became equivalent.
In this work we use the notion of somewhere dense set to introduce SD-dense set, which is a generalization of dense
set, we provide its behavior with some operations as union and intersection, then we discuss the characterization of this
class of sets in some particular spaces and study their images by some particular maps. After that, we define the axiom of
SD-separable space using the notion of SD-dense sets, then we illustrate the implication between this space and separable
space, and study their subspaces and images.
We divided this article into five sections; as follows: section two concludes the basic concepts concerning somewhere
dense sets, section three presents the definition of SD-dense set, including some of its union and intersection properties
and its behavior as a subspace, then we present its characterization in some spaces, after that we examine their images by
some particular maps, and section four includes the basic studies of SD-separable space, and finally section five gives an
overview of our results in the conclusion.
Throughout this paper, a topological space (Z,τ) denotes by Z and D(τ) denotes the collection of all dense sets in Z,
and if E and F are subsets of a space Z; E , E◦, P(E), Ec and E/F denote the closure of E , the interior of E , the power
set of E , the complement of E and the difference of E and F ; respectively. Additionally, R, Z, Q, K, R+, R− are the
sets of real numbers, integer numbers, rational numbers, irrational numbers, positive real numbers, negative real numbers;
respectively.

2 Preliminaries

In the present section, we provide the basic properties and characterizations of somewhere dense set, and their behavior
in subspaces and in strongly hyperconnected spaces.

Definition 1.[1] In a topological space (Z,τ), a subset A is called somewhere dense (namely s-dense) if A
◦ 6= φ . The

complement of s-dense set is called closed somewhere dense (namely cs-dense) set, and the collection of all s-dense sets

in Z is denoted by S(τ). Clearly any non-empty open (dense) set is s-dense.

Theorem 1.[1] If A is s-dense subset in a space Z and A ⊆ B, then B is s-dense.

Theorem 2.[1] Any subset of a space Z is s-dense or cs-dense.

Definition 2.[20] A subset B of a space Z is called SD-clopen if B is s-dense and cs-dense. Clearly any clopen set is

SD-clopen.

Definition 3.[20] In a space Z if any open set is closed, then Z is called partition space. Clearly any non-empty subset of

partition space is s-dense.

Definition 4.[14] A space (Z,τ) is called S-space if any subset of Z that contains a non-empty open set is also open.

Definition 5.[1,13,18] A space Z is called:

i. submaximal if any dense set is open.

ii. hyperconnected if any non-empty open set is dense.

iii. strongly hyperconnected if Z is submaximal and hyperconnected.

Theorem 3.[4] In a space Z, the following conditions are equivalent:

1. Z is strongly hyperconnected space.

2. dense sets are equivalent with non-empty open sets.

3 s-dense sets are equivalent with non-empty open sets; where Z is a non-discrete space.

Definition 6.[10] If Z is a space, then a subset B is called regular closed (namely r-closed) if B=B◦, while the complement

of regular closed set is called regular open (r-open). Clearly any r-closed set is closed.

Theorem 4.[20] Any proper non-empty r-closed set is SD-clopen.

Theorem 5.[4,12] Let Z be a space, W be a subspace of Z and B ⊆W then:

1) B
W
= B∩W, where B

W
is the closure of B with respect to the relative topology on W.

2) where W is r-closed in Z, then B is s-dense in W if and only if B is s-dense in Z.
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Definition 7.[1] Let Z be a space and B be a subset of Z, then:

i. the intersection of all cs-dense sets in Z containing B is denoted by B
S
. Clearly B

S
is cs-dense set.

ii. the union of all s-dense sets contained in B is denoted by B◦S. Clearly B◦S is s-dense set.

Theorem 6.[1] Let A and B be two subsets of a space Z, then:

1) A ⊆ A
S ⊆ A and A◦ ⊆ A◦S ⊆ A.

2) If A ⊆ B, then A
S ⊆ B

S
and A◦S ⊆ B◦S.

3) A is cs-dense if and only if A
S
= A, while A is s-dense if and only if A◦S = A.

Definition 8.[1] In a topological space (Z,τ), a subset A of Z is called:

i. α-open if A ⊆ A◦◦.

iii. pre-open if A ⊆ A
◦
.

iv. b-open if A ⊆ A◦∪A
◦
.

v. β -open if A ⊆ A
◦
.

Theorem 7.[1] The implications between the class of generalization open sets are given in the following diagram:

open set ⇒ α-open set ⇒ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense set

Definition 9.[2] A map f : (Z,τ) → (X ,σ) is called SD-irresolute if the inverse image of any s-dense in X is empty or

s-dense in Z, while f is called SD-continuous if the inverse image of any open set in X is empty or s-dense in Z.

Definition 10.[12] A space is called separable if it contains a countable dense set.

3 SD-Density

This section consists the definition of a new generalization of dense set using the concept of somewhere dense set,
namely SD-dense set. Union and intersection properties of SD-dense sets and their implication with dense sets are given,
additionally, the behavior of SD-dense sets as subspaces in particular conditions are shown, after that, we investigate the
characterization of SD-dense sets in some spaces. Finally, we study the images of SD-dense sets by some particular
maps; such as SD-continuous map and SD-irresolute map.

3.1 SD-Dense Sets

Here we provide some basic properties of the class of SD-dense sets.

Definition 11.A subset F of a space (Z,τ) is called SD-dense if F
S
= Z. The collection of all SD-dense sets in Z is denoted

by SD(τ).

Example 1.In a space (Z,τ) where Z = {1,2,3} and τ = {Z,φ ,{1,2}}, we have S(τ) = {Z,{1},{2},{1,2},{1,3},{2,3}}.
Therefore Z and {1,2} are the only SD-dense sets in Z.

Corollary 1.Any SD-dense set is dense.

Proof.Obvious, since E
S ⊆ E for any subset E of a space (Z,τ), i.e., SD(τ) ⊆ D(τ); where D(τ) is the collection of all

dense sets in Z.

SD-dense ⇒ dense ⇒ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense

Remark.No general relations between SD-dense set and open set, for instance:

1. In the usual topology, (0,1) is open (s-dense) set but not SD-dense nor dense, since (0,1)c is s-dense but disjoint from
(0,1). Moreover, the set Q is dense but not SD-dense, since the set K is also s-dense but disjoint from Q.

2. In the space (R,τ), where τ = P(K)∪R we have S(τ) = P(K)∪{A ⊆R : A∩Q,A∩K 6= φ}. Then the set K∪B where
B ⊆Q is SD-dense, so if B 6= φ the set K∪B is SD-dense but not open.
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Theorem 8.If E is a subset of a space Z, then these statements are equivalent:

1) E is SD-dense.

2) E intersects all s-dense sets in Z.

3) (Ec)oS = φ .

4) Ec is not s-dense.

5) Eo is dense.

6) E contains an open dense subset F in Z.

Proof.1)⇒ 2) Let F be a SD-dense in Z, and suppose that A is a s-dense set which is disjoint from F , then Ac is cs-dense

that contained F , hence F
S 6= Z, which is a contradiction.

2)⇒ 3) Suppose that (Ec)oS
is a non-empty set, then there exists a s-dense set A containing in Ec, hence a s-dense set A

does not intersect E , which is a contradiction.
3)⇒ 4) Suppose that (Ec)oS = φ , then from theorem (6) the set Ec is not s-dense.

4)⇒ 5) Suppose Ec is not s-dense, then Ec◦ = φ , i.e., Ec does not contains any non-empty open set, therefore (Ec)c = Eo

is dense.
5)⇒ 6) Direct since Eo is open dense set.

6)⇒ 1) Let F be an open dense subset in Z and F ⊆ E , and suppose that E
S 6= Z, then there exists a s-dense set A which

does not intersect E , and since Fc is closed set, then A ⊆ A ⊆ Ec ⊆ Fc, but A is a s-dense, then A contains a non-empty

open set which is disjoint from the dense set F , which is a contradiction, therefore E
S
= Z, thus E is SD-dense.

Corollary 2.In a space (Z,τ) we have τ ∩D(τ)⊆ SD(τ), moreover SD(τ) = {A ⊆ Z : B ⊆ A for some open dense set B }.

Proof.According to the previous theorem number (5) we obtain τ ∩D(τ) ⊆ SD(τ) , and by using number (6) clearly any
subset that contains an open dense set is SD-dense.

Remark.Let (Z,τ) be a space, then Z is the only SD-dense set if and only if Z is the only open dense set in Z.

Example 2.In the usual topology, the set Z of integer numbers is not s-dense set, hence R/Z is SD-dense. Note that R/Z
is open dense set.

3.2 Operation on SD-Dense Sets

Union and intersection operations of the class of SD-dense sets are investigated.

Corollary 3.1) Any set contains SD-dense set is SD-dense.

2) Union of SD-dense sets is SD-dense.

Proof.Obvious using theorem (8).

Theorem 9.Any two SD-dense sets have non-empty intersection.

Proof.Suppose E and F are two SD-dense sets in a space Z, then from corollary (1) we get E is s-dense and F is SD-dense,
and according to theorem (8) we obtain E ∩F 6= φ .

Remark.The infinite intersection of SD-dense sets can be empty set; for example in the usual topology, {{x}c}x∈R is a
collection of SD-dense sets in R, but ∩x∈R{x}c = φ .

Lemma 1.If A and B are not s-dense sets in a space Z, then A∪B is also not s-dense.

Proof.If at least one of the sets A and B are empty, then the prove is obvious. Now let A and B be non-empty not s-dense
sets, and suppose that A∪B is s-dense, so there exists a non-empty open set V such that V ⊆ A∪B = A∪B, since A is

not dense we have A
c

is a non-empty open set, and V ∩A
c ⊆ (A∪B)∩A

c ⊆ B, therefore V ∩A
c

is a non-empty open set

contained in B, so B
◦

is a non-empty set, hence B is s-dense, which contradicts the assumption. Therefore A∪B is not
s-dense.

Remark.Infinite union of non s-dense sets can be s-dense; for example in the usual topology any singleton is not s-dense
set, but ∪x∈R{x}= R is s-dense.

Theorem 10.The intersection of SD-dense sets is SD-dense.
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Proof.Suppose E and F are two SD-dense sets in a space Z, then from theorem (9) we have E ∩F 6= φ , and by theorem (8)
the sets Ec and Fc are not s-dense, and by the previous lemma we obtain Ec ∪Fc = (E ∩F)c is not s-dense, hence E ∩F

is SD-dense.

Corollary 4.Any finite intersection of SD-dense sets is SD-dense.

Proof.Direct from the mathematical induction.

3.3 SD-Dense Sets as Subspaces

Here we study the characterizations of SD-dense sets as subspaces, and states some conditions that make subspaces SD-
dense.

Theorem 11.In a space Z, if W is a subspace of Z and E ⊆W where E is SD-dense in Z, then E is SD-dense in W.

Proof.Since E is SD-dense Z, then E contains an open dense set F , then F is open dense set in W , therefore E is SD-dense
in W .

Example 3.Let (Z,τ) is a space, where Z = R and τ = {φ}∪{U ⊆ Z : 0 ∈U}, then S(Z) = τ/{φ}. If W = {0}c, then W

is SD-dense in W , but W is not SD-dense in Z.

Lemma 2.In a space Z, if W is an open (dense) subspace of Z and D ⊆ Z where D is an open dense in Z, then D∩W is

an open dense in W.

Theorem 12.In a space Z, if W is an open (dense) subspace of Z and E is SD-dense in Z, then E ∩W is SD-dense in W.

Proof.Suppose E is SD-dense in Z, then E contains an open dense subset F , and by the previous lemma we obtain F ∩W

is open dense subset in W , which contained in E ∩W , thus E ∩W is SD-dense in W .

Example 4.In the previous example if W = {0}c, then the singleton {0} is SD-dense in Z but does not intersect W ,
additionally, the set {0,1} is also SD-dense in Z, but {0,1}∩W = {1} is not SD-dense in W . Note that the subspace W is
closed but not open nor dense in Z.

Theorem 13.If Z is a space, W is an r-closed subspace of Z and E is SD-dense subset in Z, then E ∩W is SD-dense in W.

Proof.Suppose E is SD-dense in Z, then by theorem (4) the set W is s-dense in Z, hence we have E ∩W is non-empty set.
Now suppose A is s-dense subset in W , and by theorem (5) since W is r-closed we obtain A is s-dense in Z, so we have
A∩E 6= φ , therefore A∩ (E ∩W ) = A∩E 6= φ , thus E ∩W is SD-dense in W .

3.4 SD-Dense Sets in Some Special Spaces

In the present subsection, we study the characterizations of SD-dense sets in some spaces, as partition space, S-space,
submaximal space, hyperconnected space and strongly hyperconnected space

Theorem 14.A space (Z,τ) is partition if and only if the only SD-dense set is Z.

Proof.If a space Z is partition, then we have S(τ) = P(Z)/{φ}, therefore Z is the only SD-dense set. Conversely, suppose
Z is not partition space, then there is an open set V which is not closed, so V c is not open, hence V c◦ = φ or V c◦ 6= φ . In
the case where V c◦ = φ we obtain V is open dense set, hence it is SD-dense, while in the second case, we obtain V ∪V c◦

is open dense set, so it is SD-dense. Thus complete the prove.

Corollary 5.In S-space (Z,τ), we have SD(τ) = τ ∩D(τ).

Proof.Direct since any subset of Z that contains an open dense set is also open dense set, so it is SD-dense.

Example 5.A space (Z,τ) that satisfies SD(τ) = τ ∩D(τ) can be not S-space; for example the usual topological space
(R,τ) is not S-space but SD(τ) = τ ∩D(τ).

Theorem 15.If F is a subset of a submaximal space Z, then these statements are equivalents:
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1) F is dense in Z.

2) F is SD-dense in Z.

Proof.1) ⇒ 2) Let F be a dense set in Z, then F is open dense set, and by using theorem (8) the set F is SD-dense.
2) ⇒ 1) Obvious using corollary (1).

Remark.In submaximal space (Z,τ), we have SD(τ) = D(τ)⊆ τ .

SD-dense ≡ dense ⇒ open set ≡ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense

Example 6.A space (Z,τ) that satisfies SD(τ) =D(τ) may not be submaximal space; for example in (R,τ) given in remark
(3.1), we have SD(τ) = D(τ) = {K∪A ⊆ R : A∩Q 6= φ}∪{K}, but R is not submaximal, since K∪{0} is dense but not
open.

Theorem 16.A space (Z,τ) is hyperconnected if and only if τ/{φ} ⊆ SD(τ).

Proof.If V is a non-empty open set, then it is open dense, hence it is SD-dense. Conversely, suppose that V is a non-empty
open set, then V is SD-dense, i.e., V contains an open dense set, therefore it is dense, thus complete the prove.

Non-empty open set ⇒ SD-dense ⇒ dense open set ⇒ pre-open set ⇒ b-open set ⇒ α-open set ⇒ s-dense

Remark.In hyperconnected space (Z,τ), we have: SD(τ) = {A ⊆ Z : V ⊆ A for some non-empty open set V}.

Proof.Direct since any non-empty open set is dense, so it is SD-dense. Moreover, any set that contains a non-empty open
set is SD-dense.

Example 7.Hyperconnected space can contains a dense subset which is not SD-dense, for instance: If (Z,τ) is the trivial
space where Z has more than one element, then Z is hyperconnected space and S(τ) = P(Z)/{φ}, so any singleton {a} is
dense in Z but not SD-dense. Clearly, the only SD-dense in Z is Z.

Corollary 6.In hyperconnected S-space (Z,τ), non-empty open sets and SD-dense sets are equivalent, i.e., SD(τ) =
τ/{φ}.

Proof.Direct using the previous remark and definition (4).

Theorem 17.If F is a non-empty subset of a strongly hyperconnected space Z, then these statements are equivalents:

1) F is SD-dense in Z.

2) F is dense in Z.

3) F is s-dense set in Z.

4) F is open set in Z.

Proof.1) ⇒ 2) Obvious.
2) ⇒ 3) Obvious.
3) ⇒ 4) Obvious using theorem (3).
4) ⇒ 1) Obvious using the submaximality in theorem (15).

Remark.1. A space that satisfy any dense set is SD-dense may not by strongly hyperconnected space, for example, In a
space R with τ = {U ⊆R : 0 /∈U}∪{R}, we have S(τ) = P(R)/{φ ,{0}}, so SD(τ) = {R,{0}c}= D(τ). Therefore,
SD-dense set and dense set are coinciding, but the space (R,τ) is not strongly hyperconnected space since the singleton
{1} is open but not dense.

2. A space that satisfy any s-dense set is SD-dense may not by strongly hyperconnected space, for example, In a space
(Z,τ), where Z = {1,2,3}, with τ = {Z,φ ,{1},{1,2}} we have S(τ) = {Z,{1},{1,2},{1,3}}= SD(τ). Therefore,
SD-dense set and dense set are coinciding, but the space Z is not strongly hyperconnected space, since it is not
submaximal, since {1,3} is dense but not open.

3. A space that satisfy SD(τ) = τ/{φ} may not be strongly hyperconnected space, for example in the space (R,τ), where
τ = {φ}∪{U ⊆ R : {0}∪R+ ⊆U}, we obtain SD(τ) = τ/{φ}, but the singleton {0} is dense but not open, so R is
not submaximal, therefore is not strongly hyperconnected.

Corollary 7.In a strongly hyperconnected space Z if E ⊆ Z, these conditions are equivalents:

1) E is a non-empty open set.

2) E is a non-empty α-open set.
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3) E is a non-empty pre-open set.

5) E is a non-empty b-open set.

6) E is a non-empty β -open set.

7) E is a s-dense set.

8) E is a dense set.

9) E is a SD-dense set.

Proof.According to theorems (3,17).

3.5 Images of SD-Dense Sets

Here we show that SD-irresolute map preserves SD-dense sets, while SD-continuous map dose not, moreover, the image
of SD-dense set by SD-continuous map is dense.

Theorem 18.If f : (Z,τ) → (X ,σ) is surjective SD-irresolute map, then the image of any SD-dense set in Z is SD-dense

in X.

Proof.Suppose A is SD-dense in Z, but f (A) is not SD-dense in X , then there is a s-dense set B in X such that f (A)∩B = φ .
Since f is surjective and SD-irresolute, then A∩ f−1(B) = φ , where f−1(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 8.The image of SD-dense set in Z by SD-irresolute map need not be SD-dense set in X , for example: Let τ =
{U ⊆ R : 0 ∈ U}∪{φ} and σ = {U ⊆ R : 0 /∈ U}∪{R} be two topologies on R, then SD(τ) = τ/{φ} while SD(σ) =

{R,{0}c}= D(σ). Therefore the map f : (R,σ)→ (R,σ) which defined by: f (r) =

{

1, r ∈Q

0, r ∈K
is SD-irresolute map but

not surjective, while the singleton {0} is SD-dense in τ but f ({0}) = {1} is not SD-dense in σ .

Theorem 19.If f : (Z,τ)→ (X ,σ) is surjective SD-continuous map, then the image of any SD-dense set in Z is dense in

X.

Proof.Suppose A is SD-dense in Z but f (A) is not dense in X , so there exists an open set B in X such that f (A)∩B = φ .
Since f is surjective and SD-continuous, then A∩ f−1(B) = φ , where f−1(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 9.The image of SD-dense in Z by SD-continuous (continuous) map need not be SD-dense in X , for instance: If
τ = {U ⊆ R : 0 ∈ U}∪{φ} while σ is the trivial topology on R, hence the identity map I : (R,τ) → (R,σ) is surjective
SD-continuous (also is continuous) from; while the singleton {0} is SD-dense in τ but I{0}= {0} is not SD-dense in σ ,
since the only SD-dense in σ is R.

4 SD-Separability

In this section, we define SD-separable space, which is stronger than separable space and then we study its properties; as
subspaces and images.

4.1 SD-Separable Spaces

Definition 12.A space that contains a countable SD-dense set is called SD-separable space.

Corollary 8.Every SD-separable space is separable space.

Proof.Obvious since any SD-dense is dense.

Example 10.

1) If (Z,τ) is the trivial topological space where Z is uncountable set, then Z is separable space but not SD-separable,
because the only SD-dense set is Z.
2) If (R,µ) is the usual space, then R is separable but not SD-separable, because if F is a non-empty countable subset of
R then Fc is also s-dense and F ∩Fc = φ , so F is not SD-dense, i.e., any SD-dense in R is uncountable.
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3) If (R,τ) is a space where τ = P(Q)∪{R}, then S(τ) = P(Q)∪{A ⊆ R : A∩Q 6= φ ,A∩K 6= φ}. Hence the set Q∪B

where B ⊆K is SD-dense, so Q∪{
√

2} is a countable SD-dense in R, therefore (R,τ) is SD-separable space.

Definition 13.A space (Z,τ) is called SD-countable if the collection S(τ) is countable.

Corollary 9.Any SD-countable space is countable.

Proof.Obvious since τ/{φ} ⊆ S(τ).

Example 11.Countable space need not be SD-countable, for instance if (Z,τ) is the trivial space on infinite set Z, then τ
is countable space but not SD-countable, since S(τ) = P(Z)/{φ}.

Corollary 10.Every SD-countable space is SD-separable space.

Proof.Since the collection S(τ) is countable, now we can choose a point from each s-dense set from S(τ), the set F of all
such point is clearly countable and SD-dense, therefore Z is SD-separable.

Example 12.SD-separable space need not be SD-countable, for instance the space τ = {φ}∪{U ⊆ R : 0 ∈ U} on R, we
obtain S(τ) = τ/{φ}, then R is SD-separable space, since {0} is a countable SD-dense in R, but S(τ) is uncountable,
therefore τ is not SD-countable.

Corollary 11.If Z is a SD-separable space where Z is uncountable, then there exists an uncountable set which is not

s-dense.

Proof.Since Z contains a countable SD-dense subset E , then Ec is uncountable and not s-dense.

Remark.The inverse of the previous corollary is not true in general, for example: in the space (R,τ) given in remark (3.4)
number (1), the set of negative real numbers R− is uncountable and it is not s-dense, while R it is not SD-separable space,
since all SD-dense sets are uncountable.

Corollary 12.A space Z is SD-separable if and only if there exists a set A which is not s-dense, where A, Ac are uncountable

and countable sets; respectively.

Corollary 13.Submaximal separable space is SD-separable space.

Proof.Obvious since dense sets and SD-dense sets are equivalent from theorem (15).

4.2 Subspaces and Images of SD-Separable Spaces

Example 13.Subspace of SD-separable space need not SD-separable space in general, for instance: where Z is uncountable
set with topology τ = {U ⊆ Z : a ∈ U}∪{φ}, where a is a fixed point in Z, so S(τ) = τ/{φ}. The singleton {a} is SD-
dense, hence Z is SD-separable space but the subspace {a}c is not SD-separable space, since it is the discrete space. Note
that the subspace {a}c is not open subspace nor r-closed.

Corollary 14.Any open (dense or r-closed) subspace of SD-separable space is SD-separable space.

Proof.Direct using theorem (12) (theorem (13)).

Corollary 15.If a map f : (Z,τ) → (X ,σ) is surjective and SD-irresolute from SD-separable space Z, then X is SD-

separable.

Proof.Direct using theorem (18).

Example 14.The image of SD-separable space by SD-continuous map need not be SD-separable, for instance if (R,τ) a
space given in example (3) while (R,σ) is the trivial topological space, hence the identity map I : (R,τ) ⇒ (R,σ) is
SD-continuous (also is continuous) from SD-separable space (R,τ); since {0} is countable SD-dense in (R,τ), while the
space (R,σ) is not SD-separable, since the only SD-dense in (R,σ) is R.

Corollary 16.If a map f : (Z,τ)→ (X ,σ) is surjective SD-continuous from SD-separable space Z, then X is separable.

Proof.Suppose E is a countable SD-dense subset in Z, according to theorem (19) we obtain f (E) is a countable dense in
X , therefore X is separable space.
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5 Conclusion

Using the concept of somewhere dense closure operator, we define a generalization of dense set; namely SD-dense set,
then we introduce a new type of separability; namely SD-separable space. Here we outline the results that summarized
the properties of SD-dense sets and SD-separable space:

A. SD-Dense Set ⇒ Dense Set.
B. A subset F of a space Z is SD-dense if and only if F intersect all s-dense sets; equivalently if (Fc)oS = ϕ ; equivalently

if Fc is not s-dense; equivalently if Fo is open dense set; equivalently if F contains an open dense set.
C. The union of two non s-dense sets is also non s-dense.
D. The intersection of two SD-dense sets is SD-dense.
E. If W is open (dense or regular closed) subspace of a space Z, and F is SD-dense subset in Z, then F ∩W is SD-dense

in W .
F. A space is partition if and only if it has no proper SD-dense set.

G. SD-Dense Set
S-Space
====⇒ Open Dense Set.

H. SD-Dense Set
Submaximal Space⇐=========⇒ Dense Set.

I. Non-empty Open Set
Hyperconnected Space
============⇒ SD-Dense Set.

J. SD-Dense Set
Hyperconnected S-Space⇐============⇒ Non-empty Open Set

K. In strongly hyperconnected space, all these statements are equivalent: SD-dense set, dense set, s-dense set, β -open set,
b-open set, preopen set and open set.

L. SD-Separable Space ⇒ Separable Space.

M. SD-Separable Space
Submaximal Space⇐=========⇒ Separable Space.

N. SD-separable space satisfy the open (dense or regular closed) hereditary property.
O. SD-irresolute map preserves SD-separable space (SD-dense set).
P. SD-continuous map does not preserve SD-separable space (SD-dense set), but the image of SD-separable space (SD-

dense set) is separable space (dense set).

Note that some properties of SD-dense sets are different from dense sets, as in A, B (the third part), C and D.
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Abstract: In this work, a non-polynomial spline function is constructed to solve the Bagley-Torvik Fractional Differential Problems

involving derivatives in the Caputo sense. This method transforms the fractional differential equation into a system of linear equations

using a spline scheme. The conjugate gradient method is employed for the iterative solution of the linear system. To validate the accuracy

of the method, numerical examples with known analytical solutions are tested. The numerical experiments demonstrate satisfactory

agreement with the exact solution.
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1 Introduction

Fractional differential equations have received significant attention nowadays in several fields of science and
engineering due to its applications such as : electrical engineering[1],economic[2],Modelling of Viscoelastic
Systems[3],diffusion processes[4],medicine[5]. It is difficult to find an exact analytical solution of all fractional
differential equations therefore several methods and techniques have been invented to solve fractional differential
equation for instance: fractional finite difference method[6], Adomain decomposition method[7],spectral
method[8],Bessel collocation method[9].

Spline technique has been investigated by many researchers for solving fractional differential equations due to its
accurate and efficiency for example: W. K. ZAHRA and et al proposed cubic spline solution of fractional Bagley-Torvik
equation[10], semiorthogonal B-spline collection is applied for solving the fractional differential equations[11],
NonPolynomial Spline discussed by Faraidun K. Hamasalh and et al to solve FDE[12], Faraidun K. Hamasalh and
Karzan A. Hamza, used Quintic B-spline polynomial for Solving Bagely-Torvik Fractional Differential Problems[13],
fourth order homogeneous parabolic partial differential equations solved using non-polynomial cubic spline
technique[14].

Conjugate gradient method is an appropriate and efficient method for solving a system of equations. The linear
conjugate gradient method was proposed in the 1950s by Hestenes and Stiefel to solve a linear system of equations with
positive definite matrices as an alternative to Gauss elimination[15], Fletcher and Reeves were discussed the nonlinear
conjugate gradient method in 1964[16]. Presently, conjugate gradient (CG) techniques are considered as a popular and
efficient approach to solve engineering optimization problems. As recent examples, shape optimization with nonlinear
conjugate gradient method proposed in[17], application in signal processing of decent hybrid nonlinear conjugate
gradient method discussed by Zohre Aminifard and etal[18] Abubakar and et al investigated a modified a three-term
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conjugate gradient projection with application in signal recovery[19].
The rest of this paper is organized as follows: in section 2, we briefly review the main definitions of fractional

calculus, some definitions and properties of the matrix. Mathematical formulation of the nonpolynomial spline function
discussed in section 3. In section 4 numerical results are illustrated to present applicability of the method. Finally, the
conclusion is presented in section 5.

2 Some basic definitions

Definition 1.[20] The Riemann-Liouville fractional derivative of order λ > 0 is defined by

Dλ f (t) = 1
Γ (m−λ )

dm

dτm

∫ t
a (t − τ)m−λ−1 f (τ)dτ, m− 1 < λ < m ∈ N

Definition 2.[21] The Caputo fractional derivative of order λ > 0 is defined by

Dλ f (t) = 1
Γ (m−λ )

∫ t
a (t − τ)m−λ−1 dm

dτm f (τ)dτ, m− 1 < λ < m ∈ N

Definition 3.[20] The Riemann-Liouville fractional integral of order λ > 0 is defined by

Iλ f (t) = 1
Γ λ

∫ t
a (t − τ)λ−1 f (τ)dτ, m− 1 < λ < m ∈ N

Definition 4.[20] The Caputo derivative of order λ of a polynomial function xd is defined by Dλ xd = Γ (d+1)
Γ (d−λ+1)x

d−λ

Definition 5.[22] The Spectral radius µ(M) where M is an n× n matrix is given by µ(M) = max(|λ |) where λ is an

eigenvalue of M.

Definition 6.[23] A square matrix M is called diagonally dominate if |mi j|< Σi6= j|mi j|

Definition 7.[22] An n× n matrix M is converges if µ(M)< 1.

3 Mathematical Formulation

In this study we consider the fractional differential equation of the form

y(
3
2 )+φ(x)y′′+ψ(x)y = τ(x), x ∈ [a,b] (1)

with the boundary conditions

y(a) = B1, y(b) = B2 (2)

Where φ(x),ψ(x)andτ(x) are functions of x, B1 and B2 are constants.Then the interval [a,b] can be uniformly divide into

j subintervals the length of uniform subintervals can be define as:∆x = h = b−a
j
, n = j− 1. In this existing literature

we can modify the model of nonpolynomial spline and the factional continuity by using Caputo type as follows:

S(x) = Si(x),x ∈ [xi,xi+1], i = 0,1,2, ...,n (3)

Here the nonpolynomial spline function with fractional order defined by

Si(x) = ai + bi(x− xi)+ ci(x− xi)
2 + di(x− xi)

3 + eisin(k(x− xi))+ ficos(k(x− xi)) (4)

where ai,bi,ci,di,ei, fi are constants for i = 0,1,2, ...,n and k is a free parameter .The function Si(x) interpolates y(x) at
the points xi by depending on k. To find the value of constants in equation (4) we supposed the following conditions:

Si(xi) = yi,Si(xi+1) = yi+1,S
′′
i (xi) = y′′i ,

S
′′
i+1(xi+1) = y′′i+1,S

( 3
2 )

i (xi) = pi,S
( 3

2 )
i+1(xi+1) = pi+1.

(5)
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Applying the conditions in equation (5) the value of all constants in equation (4) obtained as follows:

ai = (1− 2
3A1

√

h
π )y

′′
i +

4
3

√

h
π y′′i+1 − 1

A1
pi+1 +

A2
A1

pi,

bi =
yi+1−yi

h
− 1

h
( θ 2

2A1
+ h3β

A1
+ sinθ+cosθ−1

A1
)pi+1 − 1

h
((1−θ 2)A2

A1
+ h3

A5

+sinθ ( 1
k

√

2
k
− A2

A1
)− A2cosθ

A1
)Pi − 1

h
( 4

3

√

h
π − 2

3
θ 2

√

h
π + h3A4 − 4

3

√

h
π sinθ

−
4
3

√

h
π cosθ

A1
)y′′i+1 +

1
h
( h2

2
+ θ 2A3

2A1
− h3(β A3

A1
− 1

6h
)+ (sinθ+cosθ)A3

A1
)y′′i ,

ci =
k2

2A1
Pi+1 − k2A2

2A1
pi − 2

3
k2
√

h
π yi+1 +( 1

2
−

1
3 k2

√

h
π

A1
)y′′i

di = ( 1
6h
− 4β

3A1

√

h
π )y

′′
i+1 − ( 2β

3A1

√

h
π + 1

6h
)y′′i +

β
A1

pi+1+

(
√

2k2sinθ

6hk
3
2

− β A2

A1
)pi,

ei = (
√

2

k
3
2

− A2
A1
)pi +

1
A1

pi+1 − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i ,

fi =
1

A1
pi+1 − A2

A1
pi − 4

3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i .

(6)

where β = k2(sinθ+cosθ−1)
6h

,A1 = 2k2
√

h
π + 8β h

√

h
π + k

3
2 (cos(θ + 3π

4
)+ sin(θ + 3π

4
)),

A2 =
4
√

2θsinθ
3
√

π
−
√

2sin(θ + 3π
4
),A3 =

−2
3

√

h
π ,A4 = 1

6h
− 4

3

√

h
π ,A5 =

√
2ksinθ
6h

− β A2
A1

,θ = kh, i = 0,1, ...,n. Therefore we

obtain the nonpolynomial spline function, it can be easily verified that the spline scheme approximation S(x), is
successfully uniquely determined using the equation (6) recurrence formula for all h which in the interval, see[24].
Substitute these values in equation (4) we obtain

S(x) = (1− 2
3A1

√

h
π )y

′′
i +

4
3

√

h
π y′′i+1 − 1

A1
pi+1 +

A2
A1

pi +(
yi+1−yi

h

− 1
h
( θ 2

2A1
+ h3β

A1
+ sinθ+cosθ−1

A1
)pi+1 − 1

h
((1−θ 2)A2

A1
+ h3

A5
+

sinθ ( 1
k

√

2
k
− A2

A1
)− A2cosθ

A1
)Pi − 1

h
( 4

3

√

h
π − 2

3
θ 2

√

h
π

+h3A4 − 4
3

√

h
π sinθ −

4
3

√

h
π cosθ

A1
)y′′i+1 +

1
h
( h2

2
+ θ 2A3

2A1
− h3(β A3

A1

− 1
6h
)+ (sinθ+cosθ)A3

A1
)y′′i )(x− xi)(

k2

2A1
Pi+1 − k2A2

2A1
pi − 2

3
k2
√

h
π yi+1+

( 1
2
−

1
3 k2

√

h
π

A1
)y′′i )(x− xi)

2 +(( 1
6h
− 4β

3A1

√

h
π )y

′′
i+1 − ( 2β

3A1

√

h
π + 1

6h
)y′′i +

β
A1

pi+1 +(
√

2k2sinθ

6hk
3
2

− β A2

A1
)pi)(x− xi)

3+

((
√

2

k
3
2

− A2
A1
)pi +

1
A1

pi+1 − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i )sin(k(x− xi))+

( 1
A1

pi+1 − A2
A1

pi − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i )cos(k(x− xi)).

(7)

Now apply the fractional continuity conditions of the spline function Si(x) where the splines Sm
i−1(x) = Sm

i (x),m = 1
2
,1

joined, we obtained the following equations:

S
( 1

2 )
i (xi) =

√
2k

A1
pi+1 +

√

k
2
(
√

2

k
3
2

− 2A2
A1

)pi − 4
√

θ
3
√

2π
(1+ 1

A1
)y′′i+1 − 4

√
θ

3
√

2πA1
y′′i (8)
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, And

S
( 1

2 )

i−1(xi) =
2√
hπ
(yi − yi−1)+ (

√
k(cos(θ+ π

4 )+sin(θ+ π
4 ))

A1
+ 42β h

5
2

15A1

√
π
+ 4k2h

3
2

3A1

√
π
−

2L1√
πh
)pi +(

√
ksin(θ + π

4
)(

√
2

k
3
2

− A2
A1
)−

√
kcos(θ+ π

4 )A2

A1

+ 42h
5
2

15
√

π
(
√

2ksinθ
6h

− A2β
A1

)− 4k2h
3
2

3
√

πA1
− 2L2√

hπ
)pi−1

+( 42β h
5
2

15A1

√
π
( 1

6h
− 4β

√
h

3A1

√
π
)− 4

√
θsin(θ+ π

4 )

3
√

π
− 4

√
θcos(θ+ π

4 )

3A1

√
π

− 16θ 2

9π −
2L3√

hπ
)y′′i +( 8h

3
2

3
√

π
( 1

2
− k2

√
h

3A1

√
π
)− 2L4√

πh
− 42h

5
2

15
√

π
( 2β

√
h

3A1

√
π
+ 1

6h
)−

2
√

θ(sin(θ+ π
4 )+cos(θ+ π

4 ))

3A1

√
π

)y′′i−1

(9)

Such that,

L1 =
θ 2

2A1
+ h3β+cosθ+sinθ−1

A1
,

L2 =
A2
A1
(1−θ 2− sinθ )+ h3A5 +(

√
2

k
3
2

− A2
A1
)

L3 = h3A4 +( 4
3
− 2θ 2

3
− 4sinθ

3
− 4cosθ

3A1
)
√

h
π ,

L4 =
h2

2
+ θ 2A3

2A1
+ h3(β A3

A1
− 1

6h
)+ A3

A1
(sinθ + cosθ )

Here by equating equation (8) and equation (9) we obtain
√

2
A1

pi+1 +C1 pi − 4
√

θ
3
√

2π
(1+ 1

A1
)y′′i+1 −C2y′′i − 2√

πh
(yi − yi−1)

+C3 pi−1 +C4y′′i−1 = 0
(10)

Where, C1 =
1
k
−

√
2kA2
A1

− 4k2h
3
2

3A1

√
π
− 42h

5
2 β

15
√

πA1
−

√
k(sin(θ+ π

4 )+cos(θ+ π
4 ))

A1

C2 =
4
√

θ
3
√

2πA1
− 2L3√

hπ
− 16θ 2

9π + 42h
5
2

15
√

π
( 1

6h
− 4β

√
h

3A1

√
π
)− 4

√
θsin(θ+ π

4 )

3
√

π
− 4

√
θcos(θ+ π

4 )

3
√

πA1
,

C3 =
2L2√

hπ
+ 4k2h

3
2

3A1

√
π
+ 42h

5
2

15
√

π
(
√

2ksinθ
6h

− A2β
A1

)−
√

ksin(θ + π
4
)(

√
2

k
3
2

− A2
A1
)+

√
kcos(θ + π

4
)A2

A1
,

C4 =
2L4√

hπ
− 8h

3
2

3
√

π
( 1

2
− k2

√
h

3A1

√
π
)+ 42h

5
2

15
√

π
( 1

6h
+ 2β

√
h

3A1

√
π
)+

√
2θ(cos(θ+ π

4 )+sin(θ+ π
4 ))

3A1

√
π

.

from equation (1), and using backward, central, and forward difference formula for y′′i+1,y
′′
i ,andy′′i−1 respectively we have

pi+1 =−φi+1(x)y
′′
i+1 −ψi+1(x)yi+1 + τi+1(x)

pi =−φi(x)y
′′
i −ψi(x)yi + τi(x),

pi−1 =−φi−1(x)y
′′
i−1 −ψi−1(x)yi−1 + τi−1(x)

y′′i+1 =
yi+1−2yi+yi−1

h2 ,y′′i =
yi+1−2yi+yi−1

h2 ,y′′i−1 =
yi+1−2yi+yi−1

h2

(11)

substitute equation (11) in equation (10) we obtain:

aiyi−1 + biyi + ciyi+1 = Fi (12)

Then, a system of linear equation is formulated using equation(12) as follows :

Ay = F (13)

such that

A=

















b1 c1

a2 b2 c2

a3 b3 c3

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn
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y = [y1 y2 y3 · · · yn−1 yn]
T , and F = [F1 − a1y0 F2 · · · Fn−1 Fn − cnyn+1]

Such that,

ai =
−
√

2kφi+1

h2A1
− 4

√
θ

3
√

2πh2 (1+
1

A1
)− C1φi

h2 − 1
h2 (C4 −C2)+

2√
hπ

− C3φi−1

h2 −C3ψi−1,

bi =
2
√

2kφi+1

h2A1
− 8

√
θ

3
√

2πh2
(1+ 1

A1
)+ 2C1φi

h2 − 2C3φi−1

h2 − 2
h2 (C4 −C2)−C1ψi − 2√

hπ
,

ci =
−
√

2kφi+1

h2A1
−

√
2kψi+1

A1
− 4

√
θ

3
√

2πh2
(1+ 1

A1
)− C1φi

h2 − C3φi−1

h2 + 1
h2 (C4 −C2)

Fi =
√

2k
A1

τi+1 −C1τi −C3τi−1, i = 1,2, · · · ,n.

4 Numerical experiments

In this section the method applied to several numerical examples of boundary fractional differential equations, the result
compared with the exact analytical solution to show the methods efficiency. The computational programs were written in
MatLab. Here the algorithms of the conjugate gradient method is presented.

Algorithm 1suppose that we have the linear system (13) where A is symmetric positive definite matrix The conjugate

gradient algorithm expressed as:

–chose y0 ∈ Rn, and put d0 = r0 = F −Ay0 for k = 0,1,2, · · ·
–If dk = 0, stop and yk is a solution of Ay = F.

otherwise compute

–αk =
rT
k rk

dT
k

Adk
,yk+1 = yk +αkdk,

–rk+1 = rk −αkAdk,βk =
rT
k+1rk+1

rT
k

rk

–dk+1 = rk+1 +βkdk.

Example 1.[20] Consider the fractional differential equation

D2y(x)+D( 3
2 )y(x)+ y(x) = 1+ x,x ∈ [0,1]. (14)

with the boundary conditions y(0) = 1,y(1) = 2
,The exact solution of (14) is given by y(x) = 1+ x.

The numerical results using conjugate gradient method with, h = 1
32

, and 31 iterations tabulated in Table1

x Exact solution proposed method Absolute error

0.125 1.125 1.125927 9.27×10−4

0.25 1.25 1.251416 1.41×10−3

0.375 1.375 1.376678 1.67×10−3

0.5 1.5 1.501712 1.71×10−3

0.625 1.625 1.626516 1.51×10−3

0.75 1.75 1.751092 1.09×10−3

0.875 1.875 1.875442 4.42×10−4

Table 1: Exact, approximation solution, absolute error of example 1
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Fig. 1: Exact and approximate solution of example 1 with h = 1
32

Example 2.[25] Consider the fractional differential equation

D( 3
2 )y(x) = cos(x+

π

4
),x ∈ [0,1]. (15)

with the boundary conditions y(0) = 1,y(1) = 1.84147
,The exact solution of (15) is given by y(x) = sin(x)+ 1.

The numerical results using conjugate gradient method with, h = 0.01, and 99 iterations tabulated in Table 2 with
comparison to reference [25].

x Exact solution proposed method Absolute error Absolute error [25]

0.1 1.09983 1.09051 9.32×10−3 2.29×10−3

0.2 1.19866 1.17982 1.884×10−2 9.97×10−2

0.3 1.29552 1.26783 2.768×10−2 1.03×10−1

0.4 1.38941 1.35445 3.496×10−2 8.901×10−2

0.5 1.47942 1.43959 3.982×10−2 1.995×10−2

0.6 1.56464 1.52320 4.144×10−2 9.144×10−2

0.7 1.64421 1.60521 3.900×10−2 8.577×10−2

0.8 1.71735 1.68560 3.174×10−2 9.177×10−2

0.9 1.7833 1.76435 1.896×10−2 7.467×10−2

Table 2: Exact, approximation solution, absolute error of example 2
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Fig. 2: Exact and approximate solution of example 2 with h = 0.01

Example 3.[26] Consider the fractional differential equation

D2y(x)+
√

πD( 3
2 )y(x)+ y(x) = 0,x ∈ [0,1]. (16)

with the boundary conditions y(0) = 1,y(1) = 0.775989.

The numerical results using conjugate gradient method with, h = 0.125, and 7 iterations tabulated in Table 3, with
comparison to reference [26]

x Exact solution proposed method Absolute error Absolute error[26]

0.125 0.99437 0.98819 6.17×10−3 1.24×10−3

0.25 0.979919 0.971592 8.32×10−3 5.11×10−3

0.375 0.958424 0.95024 8.17×10−3 1.387×10−2

0.5 0.930957 0.92424 6.71×10−3 2.614×10−2

0.625 0.898335 0.89367 4.65×10−3 4.039×10−2

0.75 0.861241 0.85868 2.56×10−3 5.579×10−2

0.875 0.820277 0.81939 8.8×10−4 7.148×10−2

Table 3: Exact, approximation solution, absolute error of example 3
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Fig. 3: Exact and approximate solution of example 3 with h = 0.125

5 Conclusion

This study constructs a non-polynomial spline function to approach the Bagley-Torvik Fractional Differential Problems
with the conjugate gradient method. The numerical examples demonstrate that the non-polynomial spline and conjugate
gradient techniques are more adaptable for approximating functions. The graphs of exact and approximate solutions for
numerical examples show the superiority of our approach.
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1 Introduction

Let H and K be two groups and φ : K −→Aut(H) be a group homomorphism, where Aut(H) is the group of automorphisms
of the group H. Then G = H ⋊φ K is called the external semidirect product of groups H and K. On the other hand, let

G = HK be a group, where H and K are subgroups of G and K acts on H by conjugation defined as hk = khk−1 for all
h ∈ H and k ∈ K. Then G = HK is called the internal semidirect product of subgroups H and K, where H is a normal
subgroup of G and K is a non-normal subgroup of G.

Bidwell et. al. [1] studied the structure of automorphism group of direct product of two groups as the matrices of maps
satisfying some certain conditions. The next interesting question was to study the structure of the automorphism group of
semidirect product of two groups. The automorphism group of semidirect product of two groups was studied by Bidwell
and Curran [2]. Later, M . J. Curran [5] and D. Jill [6] studied the automorphism group of the semidirect product of two
groups that fixes the normal subgroup. In this paper, we study the structure of the automorphism group of the semidirect
product of two groups that fixes the non-normal subgroup. We apply our main result to compute such automorphisms of
non-abelian metacyclic p-groups and non-abelian p-groups (p ≥ 5) of order p4, where p is a prime.

Let K be a non-normal subgroup of a group G. Let S be a right transversal to K in G with 1 ∈ S. Then the group operation
on G induces a binary operation on S with respect to it S becomes a right loop, a right action θ of K on S and two map
f : S×S −→ K and σ : S×K −→ K (see [8] for details) . Let AutK(G) = {Θ ∈ Aut(G) |Θ(K) = K}. In [8, Theorem 2.6,
p. 73], R. Lal obtained that Θ ∈ AutK(G) can be identified with the triple (α,γ,δ ), where α ∈ Map(S,S), γ ∈ Map(S,K)
and δ ∈ Aut(K) satisfying the conditions in [8, Definition 2.5, p. 73] given below,

(i)α(xy) = (α(x)θγ(y))α(y)
(ii)δ ( f (x,y))γ(xy) = γ(x)σα(x)(γ(y)) f (α(x)θγ(y),α(y))

(iii)α(xθk) = α(x)θδ (k)
(iv)δ (σx(k))γ(xθk) = γ(x)σα(x)(δ (k))

for all x,y ∈ S and k ∈ K. In the case when there is a right transversal H to K in G which is a normal subgroup of G, the
group G is the semidirect product of K and H. In this case, the conditions on α,γ and δ agree with the conditions given
in [7, Lemma 1.1, p. 1000]. These conditions are given as follows.
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(C1)α(hh′) = α(h)α(h′)γ(h),

(C2)γ(hk) = γ(h)δ (k),

(C3)α(hk) = α(h)δ (k),
(C4)For any h′k′ ∈ G, there exists a unique hk ∈ G such that α(h) = h′ and γ(h)δ (k) = k′.

Remark.In [8], the author put the non-normal subgroup in the left in the factorization of G. To match the terminology
with that in [5], we put the non-normal subgroup K in the right, that is G = HK. Through out the paper, we will use the
terminology used in [5]. We will identify the internal semidirect product G = HK with the external semidirect product
H ⋊φ K, where φ : K −→ Aut(H) is the corresponding homomorphism.

2 Structure of the automorphism group AutK(G)

In this section, we will give the structure of the group AutK(G).Consider a set

M̂K =

{(

α 0
γ δ

)

| α ∈ Map(H,H), γ ∈ Hom(H,K),
and δ ∈ Aut(K)

}

,

where the maps α,γ and δ satisfy the conditions (C1)− (C4). Let us define a binary operation on the set M̂K as,

(

α 0
γ δ

)(

α ′ 0
γ ′ δ ′

)

=

(

αα ′ 0
γα ′+ δγ ′ δδ ′

)

, (1)

where αα ′,δδ ′ are the usual composition of maps and (γα ′ + δγ ′)(h) = γ(α ′(h))δ (γ ′(h)), for all h ∈ H. Then using

(C1)− (C4), for all h, h′ ∈ H, we have (γα ′ + δγ ′)(hh′) = γ(α ′(hh′))δ (γ ′(hh′)) = γ(α ′(h)α ′(h′)γ ′(h))δ (γ ′(h)γ ′(h′)) =

γ(α ′(h))γ(α ′(h′)γ ′(h))δ (γ ′(h)) δ (γ ′(h′)) = γα ′(h)γ(α ′(h′))δ (γ ′(h))δ (γ ′(h))δ (γ ′(h′)) = γα ′(h)δ (γ ′(h))γα ′(h′)δ (γ ′(h′)) =
(γα ′ + δγ ′)(h)(γα ′ + δγ ′)(h′). Thus the map γα ′ + δγ ′ ∈ Hom(H,K). Since α , α ′ ∈ Map(H,H) and δ , δ ′ ∈ Aut(K),
αα ′ ∈ Map(H,H) and δδ ′ ∈ Aut(K).

Now, αα ′(hh′) = α(α ′(hh′)) = α(α ′(h)α ′(h′)γ ′(h)) = α(α ′(h))α(α ′(h′)γ ′(h))γ(α ′(h)) =

αα ′(h)(α(α ′(h′))δ (γ ′(h)))γα ′(h) = αα ′(h)αα ′(h′)(γα ′+δγ ′)(h). Also, (γα ′ + δγ ′)(hk) = γ(α ′(hk))δ (γ ′(hk)) =

γ(α ′(h)δ ′(k))δ (γ ′(h)δ ′(k)) = γ(α ′(h))δ (δ ′(k))δ (γ ′(h))δ (δ ′(k)) = (γ(α ′(h))δ (γ ′(h)))δ (δ ′(k)) = (γα ′+ δγ ′)(h)δδ ′(k). Clearly,

αα ′(hk) = α(α ′(h)δ ′(k)) = α(α ′(h))δ (δ ′(k)). Hence,

(

αα ′ 0
γα ′+ δγ ′ δδ ′

)

satisfies (C1)− (C4). The inverse of an arbitrary

element

(

α 0
γ δ

)

∈ M̂K is given as

(

α 0
γ δ

)−1

=

(

α−1 0

−δ−1γα−1 δ−1

)

and

(

1 0
0 1

)

is the identity element, where 1 denotes the identity group homomorphism and 0 denotes the trivial group

homomorphism. Hence M̂K is a group with the binary operation as given in the Equation (1).

Proposition 1.AutK(G) is a subgroup of Aut(G).

Proof.Let Θ1,Θ2 ∈ AutK(G). Then Θ1(K) = K and Θ2(K) = K. Then Θ1Θ2(K) =Θ1(Θ2(K)) =Θ1(K) = K. Also, since
Θ1,Θ2 ∈ Aut(G), Θ1Θ2 ∈ Aut(G). Hence, Θ1Θ2 ∈ AutK(G). Further, for all Θ ∈ AutK(G), Θ−1(K) = K. Thus, Θ−1 ∈
AutK(G). Hence, AutK(G) is a subgroup of Aut(G).

Proposition 2.Let G = H ⋊K be the semidirect product of groups H and K. Let M̂K be defined as above. Then the group

AutK(G) is isomorphic to the group M̂K .

Proof.Let Θ ∈ AutK(G). Then define the maps α,γ and δ by means of Θ(h) = α(h)γ(h) and Θ(k) = δ (k) for all h ∈ H

and k ∈ K. Now, for all h,h′ ∈ H,
α(hh′)γ(hh′) = Θ(hh′) =Θ(h)Θ(h′) = α(h)γ(h)α(h′)γ(h′) = α(h)α(h′)γ(h)γ(h)γ(h′). Therefore, by the uniqueness of
representation, γ ∈ Hom(H,K) and (C1) holds. Using a similar argument, we get δ ∈ Hom(K). Now,

α(hk)γ(hk)δ (k) = Θ(hkk) = Θ(khk−1k) = Θ(kh) = Θ(k)Θ(h) = δ (k)α(h)γ(h) = α(h)δ (k)δ (k)γ(h). Then, by the
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uniqueness of representation, (C2) and (C3) hold. Since Θ is a bijection, (C4) holds. As a result, we can assign to every

Θ ∈ AutK(G) a unique element

(

α 0
γ δ

)

∈ M̂K . This defines a map ψ : AutK(G)−→ M̂K given by Θ 7→
(

α 0
γ δ

)

.

On the other hand, let

(

α 0
γ δ

)

∈ M̂K . Then we define a map Θ : G −→ G by Θ(hk) =α(h)γ(h)δ (k). Now, for all h,h′ ∈ H

and k,k′ ∈ K, using (C1)− (C4), we get

Θ(hkh′k′) = Θ(h(h′)kkk′)

= α(h(h′)k)γ(h(h′)k)δ (kk′)

= α(h)α((h′)k)γ(h)γ(h)γ((h′)k)δ (k)δ (k′)

= α(h)γ(h)α(h′)δ (k)γ(h′)δ (k)δ (k)δ (k′)

= α(h)γ(h)δ (k)α(h′)γ(h′)δ (k′)

= Θ(hk)Θ(h′k′).

Thus Θ is a group homomorphism. Using (C4), it is clear that Θ is a bijection. Thus Θ ∈ Aut(G). Since Θ(K) = δ (K) and
δ ∈Aut(K), Θ(K) =K. Hence, Θ ∈AutK(G). This shows that the map ψ is a bijection. Now, let Θ ′(hk)=α ′(h)γ ′(h)δ ′(k).
Then we have

ΘΘ ′(hk) = Θ(Θ ′(hk))

= Θ(α ′(h)γ ′(h)δ ′(k))

= α(α ′(h))γ(α ′(h))δ (γ ′(h)δ ′(k))

= αα ′(h)γ(α ′(h))δ (γ ′(h))δ (δ ′(k))

= αα ′(h)(γα ′+ δγ ′)(h)δδ ′(k).

Write

(

h

k

)

for hk, then

(

α ′ 0
γ ′ δ ′

)(

h

k

)

=

(

α(h)
γ(h)δ (k)

)

and

(

α 0
γ δ

)(

α(h)
γ(h)δ (k)

)

=

(

αα ′ 0
γα ′+ δγ ′ δδ ′

)(

h

k

)

for all h ∈ H and k ∈ K. Therefore, ψ(ΘΘ ′) =

(

αα ′ 0
γα ′+ δγ ′ δδ ′

)

= ψ(Θ)ψ(Θ ′). Hence, ψ is an isomorphism of groups.

From now on we will identify automorphisms in AutK(G) with the matrices in M̂K . Now, we have the following remarks.

Remark.

(

α 0
0 1

)

∈ AutK(G) if and only if α ∈ Aut(H) and α(hk) = α(h)k
for all h ∈ H and k ∈ K.

Remark.

(

1 0
γ 1

)

∈ AutK(G) if and only if γ(H)⊆CK(H) and γ(hk) = γ(h)k
, for all h ∈ H and k ∈ K, where CK(H) = {k ∈

K | hk = h, ∀ h ∈ H} is the centralizer of H in K.

Remark.

(

1 0
0 δ

)

∈ AutK(G) if and only if k−1δ (k) ∈CK(H) for all k ∈ K.

Now, let us consider the following subsets of Aut(H),Aut(K) and Aut(H)×Aut(K),

U = {α ∈ Aut(H) | α(hk) = α(h)k,∀h ∈ H,k ∈ K},
V = {δ ∈ Aut(K) | k−1δ (k) ∈CK(H),∀k ∈ K},
W = {(α,δ ) ∈ Aut(H)×Aut(K) | α(hk) = α(h)δ (k),∀h ∈ H,k ∈ K}.
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Clearly, U , V and W are the subgroups of Aut(H), Aut(K), and Aut(H)× Aut(K), respectively. The corresponding
subgroups of the group AutK(G) are

A =

{(

α 0
0 1

)

| α ∈U

}

,D =

{(

1 0
0 δ

)

| δ ∈V

}

and E =

{(

α 0
0 δ

)

| (α,δ ) ∈W

}

.

Note that, if α ∈U and δ ∈V , then (α,δ ) ∈W . Therefore, U ×V ≤W .

Clearly, E is a subgroup of AutK(G). However, one can check that E need not be a normal subgroup of AutK(G). Let

C =

{(

1 0
γ 1

)

∈ AutK(G) | γ(H)⊆CK(H) and γ(hk) = γ(h)k,∀h ∈ H and k ∈ K

}

.

Then, for all

(

1 0
γ 1

)

∈C and

(

α 0
0 δ

)

∈ E , we have

(

α 0
0 δ

)(

1 0
γ 1

)(

α 0
0 δ

)−1

=

(

1 0

δγα−1 1

)

(2)

Now, for all h,h′ ∈ H and k ∈ K, we have hδγα−1(h′) = hδ (γα−1(h′)) = hγ(α−1(h′)) = h. This implies that δγα−1(h′) ∈
CK(H). Also, δγα−1(hk) = δγ(α−1(hk)) = δ (γ(α−1(h)δ−1(k))) = δ (γ(α−1(h))δ−1(k)) = δ (δ−1(k)γα−1(h)δ−1(k)−1) =

kδγα−1(h)k−1 = δγα−1(h)k. Thus

(

1 0

δγα−1 1

)

∈ C and so, C is a normal subgroup of the group AutK(G). Clearly,

E ∩C = {1}. Now, let

(

α 0
γ δ

)

∈ AutK(G). Then,

(

α 0
γ δ

)

=

(

1 0

γα−1 1

)(

α 0
0 δ

)

∈CE.

Hence, AutK(G) =CE . Thus, we have proved the following theorem,

Theorem 1.Let G = H ⋊K be the semidirect product. Then AutK(G)≃C⋊E.

3 Computation of AutK(G) for some groups

In this section, we will compute the automorphism group AutK(G) for non-abelian metacyclic p-groups and non-abelian
p-groups (p ≥ 5) of order p4, where p is a prime. The notation Zm will denote the cyclic group of order m.

Metacyclic p-groups

First, assume that p is odd. A non-abelian split metacyclic p-group G is of the form G = 〈a,b | apm
= 1 = bpn

,ab =

a1+pm−r〉, where m ≥ 2,n ≥ 1, and 1 ≤ r ≤ min{m− 1,n}. Let H = 〈a〉, K = 〈b〉 and φ : K −→ Aut(H) be defined by

φ(b)(a) = a1+pm−r
. Then G = H ⋊φ K.

Note that [H,K] = 〈apm−r〉 ≃ Zpr . Since K is abelian, by [2, Corollary 2.2, p. 490], γ(hk) = γ(h) is equivalent to γ ∈
Hom(H/[H,K],K). Define γi : H → K by γi(a) = bi,1 ≤ i ≤ pn when m− r ≥ n and by γi(a) = bipn−m+r

,1 ≤ i ≤ pm−r

when m−r< n. Since [H,K]⊆Kerγi, it will induce a homomorphism from H/[H,K] to K. Let γ̂1 =

(

1 0
γ1 1

)

. Then, one can

easily observe that γ1(H)⊆CK(H). Therefore, Hom(H/[H,K],K)≃C = 〈γ̂1〉 ≃Zpmin{m−r,n} . Also, CK(H) = 〈bpr〉 ≃Zpn−r

and for b ∈ K, b−1δ (b) ∈ CK(H). Therefore, there are pn−r choices for δ (b). If δ1(b) = b1+pr
, then V = 〈δ1〉 ≃ Zpn−r

and so, D ≃ Zpn−r . Now, for all α ∈ Aut(H), α(ab) = α(a1+pm−r
) = α(a)1+pm−r

= α(a)b. Therefore, U = Aut(H) ≃
Zpm−1(p−1) and so, A≃Zpm−1(p−1). Then, by Theorem [5, Theorem 2, p. 207], E = A×D. Now, by Theorem 1, AutK(G)≃
Zpmin{m−r,n} ⋊ (Zpm−1(p−1)×Zpn−r). Hence, AutK(G) is a subgroup of index pmin{m,n} in the group Aut(G).

Now, assume p = 2. Then, as given in [4], the non-abelian split metacyclic 2-group is one of the following three forms,

(i)G = 〈a,b | a2m
= 1 = b2n

,ab = a1+2m−r〉,1 ≤ r ≤ min{m− 2,n},m≥ 3,n ≥ 1.
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(ii)G = 〈a,b | a2m
= 1 = b2n

,ab = a−1+2m−r〉,1 ≤ r ≤ min{m− 2,n},m ≥ 3,n ≥ 1.

(iii)G = 〈a,b | a2m
= 1 = b2n

,ab = a−1〉,m ≥ 2,n ≥ 1.

Let H = 〈a〉 ≃ Z2m and K = 〈b〉 ≃ Z2n . We will compute the automorphism group, AutK(G) in the above three cases

(i)− (iii). Using the similar argument as for odd prime p above, in the case(i), [H,K] = 〈a2m−r〉 ≃ Z2r and CK(H) =
〈b2r〉 ≃Z2n−r . Then Hom(H/[H,K],K)≃Z2min{m−r,n} . Thus C ≃Z2min{m−r,n} , A≃Z2×Z2m−2 and D≃Z2×Z2n−r−1 . Hence,
AutK(G)≃ Z

2min{m−r,n} ⋊ (Z2 ×Z2m−2 ×Z2 ×Z2n−r−1).

In the case (ii), [H,K] = 〈a2〉 ≃ Z2m−1 and CK(H) = 〈b2r〉 ≃ Z2n−r . Thus, C ≃ Z2,A ≃ Z2 ×Z2m−2 and D ≃ Z2 ×Z2n−r−1 .

Hence, AutK(G) ≃ Z2 × (Z2 ×Z2m−2 ×Z2 ×Z2n−r−1). Similarly, in the case(iii), [H,K] = 〈a2〉 ≃ Z2m−r , and CK(H) =
〈b2〉 ≃ Z2n−1 . Thus, C ≃ Z2, A ≃ Z2 ×Z2m−2 and D ≃ Z2 ×Z2n−r−1 . Hence, AutK(G)≃ Z2 × (Z2 ×Z2m−2 ×Z2 ×Z2n−2).

Non-abelian p-groups of order p4 (p ≥ 5)

Burnside in [3] classified p-groups of order p4, where p is a prime. Below, we list 10 non-abelian p-groups (p ≥ 5) of
order p4 up to isomorphism.

(i)G1 = 〈a,b | ap3
= 1 = bp,ab = a1+p2〉,

(ii)G2 = 〈a,b | ap2
= 1 = bp2

,ab = a1+p〉,
(iii)G3 = 〈a,b,c | ap2

= 1 = bp = cp,cb = apbc,ab = ba,ac = ca〉,
(iv)G4 = 〈a,b,c | ap2

= 1 = bp = cp,ca = a1+pc,ab = ba,cb = bc〉,
(v)G5 = 〈a,b,c | ap2

= 1 = bp = cp,ca = abc,ab = ba,bc = cb〉,
(vi)G6 = 〈a,b,c | ap2

= 1 = bp = cp,ba = a1+pb,ca = abc,bc = cb〉,
(vii)G7 = 〈a,b,c | ap2

= 1 = bp = cp,ba = a1+pb,ca = a1+pbc,cb = apbc〉,
(viii)G8 = 〈a,b,c | ap2

= 1 = bp = cp,ba = a1+pb,ca = a1+d pbc,cb = ad pbc,d 6≡ 0,1 (mod p)〉,
(ix)G9 = 〈a,b,c,d | ap = bp = cp = d p = 1,dc = acd,bd = db,ad = da,bc = cb,ac = ca,ab = ba〉,
(x)G10 = 〈a,b,c,d | ap = bp = cp = d p = 1,dc = bcd,db = abd,ad = da,bc = cb,ac = ca,ab = ba〉.

Observe that G1 and G2 are metacyclic p-groups. AutK(G1) and AutK(G2) (for the corresponding K) can be calculated as
in the previous case.

The group G3. Let H = 〈a,b | ap2
= bp = 1,ab= ba〉 and K = 〈c | cp = 1〉. Then G3 ≃H⋊φ K, where φ : K −→Aut(H) is

given by φ(c)(a) = a and φ(c)(b) = apb. Note that [aubv,c] = (aubv)c(aubv)−1c−1 = aubv(au+pvbv)−1 = a−pv. Therefore,
[H,K] = 〈ap〉 ≃ Zp. Also, if cs ∈CK(H), then aib j = csaib jc−s = ai+p jsb j. Therefore, js ≡ 0 (mod p) for all j and hence,
CK(H) = {1}. This implies that Hom(H/[H,K],K) is the trivial group. Since K is abelian, by [2, Corollary 2.2, p. 490]
C is the trivial group. Note that, each α ∈ Aut(H) defined by α(a) = aib j and α(b) = apmbl can be expressed as a matrix
(

i j

m l

)

, where 0 ≤ i ≤ p2 −1,gcd(p, i) = 1, 0 ≤ m, j ≤ p−1 and 1 ≤ l ≤ p−1. Also, let δ ∈ Aut(K)≃ Zp−1 be defined

by δ (c) = cr, where 1≤ r ≤ p−1. Now, if (α,δ ) ∈W , then (i) α(ac) =α(a)δ (c) and (ii) α(bc) =α(b)δ (c). By (i), aib j =

α(a) =α(ac) =α(a)δ (c) =(aib j)cr
= aiapr jb j = ai+pr jb j. Thus, pr j ≡ 0 (mod p2) which implies that j = 0. Now, by (ii),

api+pmbl = α(apb) = α(bc) = α(b)δ (c) = (apmbl)cr
= apm(bl)cr

= apmaprlbl = apm+prlbl . Thus, i ≡ rl (mod p). Let t be

a primitive root of 1 (mod p) and x =

((

t + p 0
0 t

)

,δ1

)

,y =

((

1 0
1 1

)

,δ1

)

and z =

((

t + p 0
0 1

)

,δt

)

, where δρ(c) = cρ .

Then W ≃ 〈x,y,z | xp(p−1) = 1 = yp = zp(p−1),xz = zx,xy = yx,zyz−1 = yt−1〉. Therefore, W ≃ (Zp ×Zp(p−1))⋊Zp(p−1)

and so, E ≃ (Zp ×Zp(p−1))⋊Zp(p−1). Hence, by Theorem 1, AutK(G3)≃ (Zp ×Zp(p−1))⋊Zp(p−1).

The group G4. Let H = 〈a,b | ap2
= bp = 1,ab= ba〉 and K = 〈c | cp = 1〉. Then G4 ≃H⋊φ K, where φ : K −→Aut(H) is

given by φ(c)(a) = a1+p and φ(c)(b) = b. Note that [H,K] = 〈ap〉 ≃Zp. By the similar argument as in the case G3 above,
CK(H) = {1}. Since K is abelian, by [2, Corollary 2.2, p. 490] C is the trivial group. Note that, any α ∈ Aut(H) defined by,

α(a) = aib j and α(b) = apmbl can be expressed as a matrix

(

i j

m l

)

, where 0 ≤ i ≤ p2 −1,gcd(p, i) = 1, 0 ≤ m, j ≤ p−1

and 1 ≤ l ≤ p− 1. Also, let δ ∈ Aut(K)≃ Zp−1 be defined by δ (c) = cr, where 1 ≤ r ≤ p− 1. Now, if (α,δ ) ∈W , then

(i) α(ac) = α(a)δ (c) and (ii) α(bc) = α(b)δ (c). Note that α(bc) = α(b) = apmbl and α(b)δ (c) = (apmbl)cr
= (apm)cr

bl =

apm(1+p)r
bl = apmbl . Therefore, each α ∈ Aut(H) satisfies (ii). Now, by (i), (aib j)1+p = α(a1+p) = α(ac) = α(a)δ (c) =

(aib j)cr
= (ai)cr

b j = ai(1+p)r
b j. Thus, i(p+1)≡ i(1+ p)r (mod p2) which implies that r = 1. Therefore, W ≃ Aut(H)≃
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Zp−1 × (((Zp ×Zp)⋊Zp)⋊Zp−1). Hence, E ≃ Zp−1 × (((Zp ×Zp)⋊Zp)⋊Zp−1). Thus, AutK(G4)≃ Zp−1 × (((Zp ×
Zp)⋊Zp)⋊Zp−1).

The group G5. Let H = 〈b,c | bp = cp = 1,bc = cb〉 and K = 〈a | ap2
= 1〉. Then G5 ≃ H ⋊φ K, where φ : K −→ Aut(H)

is given by φ(a)(b) = b and φ(a)(c) = b−1c. Note that [H,K] = 〈b〉 ≃ Zp. Also, if as ∈CK(H), then bic j = asbic ja−s =

bi− jsc j. Therefore, s ≡ 0 (mod p) and CK(H) = 〈ap〉. Since K is abelian, by [2, Corollary 2.2, p. 490], γ(hk) = γ(h) is
equivalent to γ ∈ Hom(H/[H,K],K). Define γk ∈ Hom(H/[H,K],K) by γk(b) = 1 and γk(c) = apk for all 0 ≤ k ≤ p− 1.

Since [H,K]⊆ Kerγk, it will induce a homomorphism from H/[H,K] to K. Let γ̂1 =

(

1 0
γ1 1

)

. Then, one can easily observe

that γ1(H)⊆CK(H). Therefore, Hom(H/[H,K],K)≃C = 〈γ̂1〉 ≃ Zp. Note that, any α ∈ Aut(H)≃ GL(2, p) defined as,

α(b) = bic j and α(c) = blcm can be represented as a matrix,

(

i j

l m

)

, where 0 ≤ l, j ≤ p− 1 and 1 ≤ i,m ≤ p− 1. Also,

let δ ∈ Aut(K) ≃ Zp(p−1) be defined by δ (a) = ar, where r ∈ Zp2 ,gcd(p,r) = 1. Now, if (α,δ ) ∈ W , then (i) α(ba) =

α(b)δ (a) and (ii) α(ca) = α(c)δ (a). By (i), bic j = α(b) = α(ba) = α(b)δ (a) = (bic j)ar
= bib−r jc j = bi−r jc j. Thus, r j ≡

0 (mod p) which implies that j = 0. Now, by (ii), b−i+lcm = α(b−1c) = α(ca) = α(c)δ (a) = (blcm)ar
= bl(cm)ar

=

blb−rmcm = bl−rmcm. Thus, i ≡ rm (mod p). Let t be a primitive root of 1 (mod p) and x =

((

t 0
1 t

)

,δ1

)

, and y =
((

t + p 0
0 1

)

,δt

)

, where δρ(a) = aρ . Then W ≃ 〈x,y | xp(p−1) = 1,yp(p−1) = 1,yxy−1 = xλ 〉, where xλ =

(

t 0

(t + p)−1 t

)

.

Then W ≃ Zp(p−1)⋊Zp(p−1) and so, E ≃ Zp(p−1)⋊Zp(p−1). Hence, AutK(G5)≃ Zp ⋊ (Zp(p−1)⋊Zp(p−1)).

The group G6. Let H = 〈a,b | ap2
= bp = 1,ba= a1+pb〉 and K = 〈c | cp = 1〉. Then G6 ≃H⋊φ K, where φ : K −→Aut(H)

is given by φ(c)(a) = ab and φ(c)(b) = b. Note that [H,K] = 〈b−1,ap〉 ≃ Zp ×Zp. By the similar argument as in the case
G3 above, CK(H) = {1} and hence C is the trivial group. Now, α ∈ Aut(H) as given in [2] can be expressed as a matrix
(

η β
ξ 1

)

, where η(a) = ai,0 ≤ i ≤ p2−1,gcd(p, i) = 1, β (b) = ap j,0 ≤ j ≤ p−1, ξ (a) = bk, 0≤ k ≤ p−1, and 1(b) = b.

Also, δ ∈ Aut(K) is given by δ (c) = cr,1 ≤ r ≤ p− 1. Now, if (α,δ ) ∈ W , then (i) α(ac) = α(a)δ (c) and (ii) α(bc) =

α(b)δ (c). Note that α(bc) =α(b) = ap jb and α(b)δ (c) =(ap jb)cr
=(crac−r)p jb=(abr)p jb= ap j+rp

p j(p j−1)
2 bp jr+1 = ap jb.

Therefore, each α ∈ Aut(H) satisfies (ii). Now, by (i), ai+p jbk+1 =α(ab) = α(ac) =α(a)δ (c) = (aibk)cr
= (crac−r)ibk =

(abr)ibk = ai+rp
i(i−1)

2 bri+k. Thus, ri ≡ 1 (mod p) which gives that i ≡ 2 j+1 (mod p). Therefore, i ∈ {(2 j+1)+λ p | λ ∈
Zp}. Let t be a primitive root of 1 (mod p) and x=

((

t + p 0
0 1

)

,δt

)

,y=

((

1 0
1 1

)

,δ1

)

, and z=

((

1+ p 0
0 1

)

,δ1

)

, where

δρ(c) = cρ . Then W ≃ 〈x,y,z | xp(p−1) = 1 = yp = zp,xyx−1 = ye,xz = zx,yz = zy〉, where ye =

(

1 0

(t + p)−1 1

)

. Hence,

W ≃ Zp × ((Zp ×Zp)⋊Zp−1) and so, E ≃ Zp × ((Zp ×Zp)⋊Zp−1). Thus, AutK(G6)≃ Zp × ((Zp ×Zp)⋊Zp−1).

The group G7. Let H = 〈a,b | ap2
= bp = 1,ba = a1+pb〉 and K = 〈c | cp = 1〉. Then, G7 ≃ H ⋊φ K, where φ : K −→

Aut(H) is given by φ(c)(a) = a1+pb and φ(c)(b) = apb. Note that [H,K] = 〈b,ap〉 ≃ Zp ×Zp. By the similar argument
as in the case G3 above, CK(H) = {1} and hence C is the trivial group. Each α ∈ Aut(H) can be expressed as a matrix
(

η β
ξ 1

)

, where η(a) = ai,0 ≤ i ≤ p2 − 1,gcd(i, p) = 1, β (b) = ap j,ξ (a) = bk,0 ≤ j,k ≤ p− 1, and 1(b) = b. Also,

δ ∈ Aut(K) is given by δ (c) = cr,1 ≤ r ≤ p−1. Now, if (α,δ ) ∈W , then (i) α(ac) = α(a)δ (c) and (ii)α(bc) = α(b)δ (c).

By (ii), api+p jb = α(apb) = α(bc) = α(b)δ (c) = (ap jb)cr
= (crac−r)p j(crbc−r) = (a1+p

r(r+1)
2 br)p j(arpb) =

ap2 j
r(r+1)

2 (abr)p jarpb = ap j+prb. Thus i ≡ r (mod p). Now, by (i), ai(1+p)+p jbk+1 = α(a1+pb) = α(ac) = α(a)δ (c) =

(aibk)cr
= (crac−r)i(crbc−r)k = ai+pri r+i

2 bri(arpb)k = ai+rpi( r+i
2 )+rpkbri+k. Thus, ri ≡ 1 (mod p) and

ip+ p j ≡ pri( r+i
2
)+ rpk (mod p2) implies that i+ j ≡ r + rk (mod p). So, j ≡ rk (mod p). Using r ≡ i (mod p) and

ri ≡ 1 (mod p), we get i2 ≡ 1 (mod p2). Let t be a primitive root of 1 (mod p) and

x =

((

1 1
0 1

)

,δ1

)

,y =

((

−1 0
0 1

)

,δ1

)

and z =

((

t + p 0
0 1

)

,δt

)

, where δρ(c) = cρ . Then

W ≃ 〈x,y,z | xp = 1 = y2 = zp(p−1),xy = yx−1,zxz−1 = xt ,yz = zy〉 ≃ Zp(p−1) × (Zp ⋊ Z2) and so,

E ≃ Zp(p−1)× (Zp ⋊Z2). Hence, AutK(G7)≃ Zp(p−1)× (Zp ⋊Z2)≃ D2p ×Zp(p−1), where D2p is the dihedral group of
order 2p.
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The group G8. Let H = 〈a,b | ap2
= bp = 1,ba= a1+pb〉 and K = 〈c | cp = 1〉. Then G8 ≃H⋊φ K, where φ : K −→Aut(H)

is given by φ(c)(a) = a1+d pb and φ(c)(b) = ad pb, d 6≡ 0,1 (mod p). By the similar argument as for the group G7, we get,
C is the trivial group and E ≃ Zp(p−1)× (Zp ⋊Z2). Hence, AutK(G8)≃ D2p ×Zp(p−1).

The group G9. Let H = 〈a,b,c | ap = bp = cp = 1,ab = ba,bc = cb,ac = ca〉, and K = 〈d | d p = 1〉. Then G9 ≃ H ⋊φ K,
where φ : K −→ Aut(H) is given by φ(d)(a) = a,φ(d)(b) = b, and φ(d)(c) = ac.

Note that [H,K] = 〈a〉 ≃ Zp. By the similar argument as in the case G3 above, CK(H) = {1} and hence C is the trivial
group. Note that, Aut(H) ≃ GL(3, p) and Aut(K) ≃ Zp−1. So, any automorphism α ∈ Aut(H) can be identified as an

element





i j k

l m n

λ µ ρ



 in GL(3, p). Let α ∈ Aut(H) and δ ∈ Aut(K) be defined as, α(a) = aib jck,α(b) = albmcn,α(c) =

aλ bµcρ , and δ (d) = dr, where 1 ≤ i,m,ρ ,r ≤ p− 1 and 0 ≤ j,k, l,n,λ ,µ ≤ p− 1. Now, if (α,δ ) ∈W , then (i) α(ad) =

α(a)δ (d), (ii) α(bd) = α(b)δ (d) and (iii) α(cd) = α(c)δ (d).

Note that, drcd−r = arc. By (i),

aib jck = α(a) = α(ad) = α(a)δ (d) = (aib jck)dr
= aib j(drcd−r)k = aib j(arc)k = ai+rkb jck. Therefore, rk ≡ 0( mod p)

which implies that k = 0. Now, by (ii), albmcn = α(b) = α(bd) = α(b)δ (d) = (albmcn)dr
= al+rnbmcn. Therefore,

rn ≡ 0( mod p) which implies that n = 0. By (iii),

ai+λ b j+µcρ = α(ac) = α(cd) = α(c)δ (d) = (aλ bµcρ)dr
= aλ+rρbµcρ . Thus, i = rρ and j = 0. So, we have,

α =





rρ 0 0
l m 0
λ µ ρ



. Let t be a primitive root of 1 (mod p) and u =









t 0 0
0 1 0
0 0 t



 ,δ1



, v =









1 0 0
0 t 0
0 0 1



 ,δ1



,

w =









t 0 0
0 1 0
0 0 1



 ,δt



, x =









1 0 0
1 1 0
0 0 1



 ,δ1



, y =









1 0 0
0 1 0
1 0 1



 ,δ1



, z =









1 0 0
0 1 0
0 1 1



 ,δ1



, where δs(d) = ds. Then

W ≃ 〈u,v,w,x,y,z | up−1 = 1 = vp−1 = wp−1 = xp = yp = zp,uv = vu,uw = wu,uy = yu,vw = wv,vy = yv,wz = zw,xy =

yx,yz = zy,uxu−1 = xt−1
,uzu−1 = zt ,vxv−1 = xt ,vzv−1 = zt−1

,wxw−1 = xt−1
,wyw−1 = yt−1

,zx = xyz〉 ≃
(((Zp × Zp) ⋊ Zp) × Zp−1) ⋊ (Zp−1 × Zp−1) and so, E ≃ (((Zp × Zp) ⋊ Zp) × Zp−1) ⋊ (Zp−1 × Zp−1). Hence,
AutK(G9)≃ (((Zp ×Zp)⋊Zp)×Zp−1)⋊ (Zp−1 ×Zp−1).

The group G10. Let H = 〈a,b,c | ap = bp = cp = 1,ab= ba,bc= cb,ac= ca〉 and K = 〈d | d p = 1〉. Then, G10 ≃H⋊φ K,
where φ : K −→ Aut(H) is given by φ(d)(a) = a,φ(d)(b) = ab, and φ(d)(c) = bc.

Note that [H,K] = 〈a,b〉 ≃ Zp ×Zp. By the similar argument as above, C is the trivial group. Note that, Aut(H) ≃

GL(3, p) and Aut(K)≃ Zp−1. So, any automorphism α ∈ Aut(H) can be identified as an element





i j k

l m n

λ µ ρ



 in GL(3, p).

Let α ∈ Aut(H) and δ ∈ Aut(K) be defined as, α(a) = aib jck,α(b) = albmcn,α(c) = aλ bµcρ , and δ (d) = dr, where

1 ≤ i,m,ρ ,r ≤ p−1 and 0 ≤ j,k, l,n,λ ,µ ≤ p−1. Now, if (α,δ ) ∈W , then (i) α(ad) = α(a)δ (d), (ii) α(bd) = α(b)δ (d)

and (iii) α(cd) = α(c)δ (d).

Note that, drbd−r = arb and drcd−r = a
r(r−1)

2 brc. By (i),

aib jck = α(a) = α(ad) = α(a)δ (d) = (aib jck)dr
= ai(drbd−r) j(drcd−r)k = ai(arb) j

(a
r(r−1)

2 brc)k = ai+r j+k
r(r−1)

2 b j+rkck. Thus k = 0 and j = 0. Now, by (ii),

ai+lbmcn = α(ab) = α(bd) = α(b)δ (d) = (albmcn)dr
= al+rm+n

r(r−1)
2 bm+rncn. Thus, n = 0 and i = rm. By (iii),

al+λ bm+µcρ = α(bc) = α(cd) = α(c)δ (d) = (aλ bµcρ)dr
= aλ+rµ+ρ

r(r−1)
2 bµ+rρ cρ . Thus, m = rρ and

l = rµ +ρ
r(r−1)

2
(mod p). So, we have, α =





r2ρ 0 0
l rρ 0
λ µ ρ



, where l = rµ +ρ
r(r−1)

2
(mod p). Let t be a primitive root of

1 (mod p) and x =









t 0 0
0 t 0
0 0 t



 ,δ1



, y =









t2 0 0
0 t 0
0 0 1



 ,δt



 and z =









1 0 0
1 1 0
1 1 1



 ,δ1



, where δs(d) = ds. Note that,
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〈z〉 = 〈





1 0 0
1 1 0
0 1 1



 ,





1 0 0
0 1 0
1 0 1



〉 is an abelian group of order p2. Therefore,

W ≃ 〈x,y,z | xp−1 = yp−1 = zp,xy = yx,xz = zx,yzy−1 = zu〉, where zu =





1 0 0

t−1 1 0

t−2 t−1 1



. Thus

W ≃ (Zp × Zp) ⋊ (Zp−1 × Zp−1) and so, E ≃ (Zp × Zp) ⋊ (Zp−1 × Zp−1). Hence,
AutK(G10)≃ Zp−1 × ((Zp ×Zp)⋊Zp−1).
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1 Introduction

The Fibonacci sequence and its generalizations offer a variety of intriguing features and uses in science and art (see, e.g.,
[9,10]). The Fibonacci and Lucas numbers { fh} and {lh} are expressed as the recurrence relations, respectively, for h ≥ 0

fh+2 = fh+1 + fh with initial conditions f0 = 0 and f1 = 1,

lh+2 = lh+1 + lh with initial conditions l0 = 2 and l1 = 1

Filipponi [5] introduced the incomplete Fibonacci and Lucas numbers. The incomplete Fibonacci numbers Fh(u) and
Lucas numbers Lh(v) are expressed, respectively, by

Fh(u) =
u

∑
i=0

(

h− 1− i

i

)

,

(

⌊h− 1

2
⌋ ≤ u ≤ h− 1

)

and

Lh(v) =
v

∑
i=0

h

h− i

(

h− i

i

)

,

(

⌊h

2
⌋ ≤ v ≤ h− 1

)

where ⌊x⌋ is the largest integer less than or equal to x and
(

n
k

)

=
n!

k!(n− k)!
. It is obvious that

Fh(⌊
h− 1

2
⌋) = fh and Lh(⌊

h

2
⌋) = lh

where the h−th Fibonacci and Lucas numbers are denoted by fh and lh, respectively.
The generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers were examined by
Djordjevic [3]. The incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers were defined and studied by
Djordjevic and Srivastava [4]. The generating functions of the incomplete Fibonacci and Lucas numbers were discovered
by Pintr and Srivastava [18]. Ramrez [14] presented the bi-periodic incomplete Fibonacci sequences, the incomplete
k−Fibonacci and k−Lucas numbers [15]. The incomplete Tribonacci numbers and polynomials were introduced by

∗ Corresponding author e-mail: hmenken@mersin.edu.tr
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Ramirez and Sirvent [16]. The incomplete Fibonacci and Lucas p−numbers were defined by Tasci and Firengiz [26].
The incomplete bivariate Fibonacci and Lucas p−polynomials were defined by Tasci et al. [27]. We refer to other studies
on incompletes of some impressive numbers and polynomials [2,11,12,13,17,20,25].
In [6,22,23,28], the (p,q)−Fibonacci and (p,q)− Lucas sequences are defined, respectively, by

F
(p,q)
h = pF

(p,q)
h−1 + qF

(p,q)
h−2 , F

(p,q)
0 = 0, F

(p,q)
1 = 1, (1)

and

L
(p,q)
h = pL

(p,q)
h−1 + qL

(p,q)
h−2 , L

(p,q)
0 = 2, L

(p,q)
1 = p.

where p and q are real coefficients.
In [8,19,24], the (p,q)−Fibonacci and (p,q)− Lucas sequences are also given by the well-known formulas

F
(p,q)
h =

⌊
h− 1

2
⌋

∑
j=0

(

h− j− 1

j

)

ph−2 j−1q j, h ≥ 1

and

L
(p,q)
h =

⌊
h

2
⌋

∑
j=0

h

h− j

(

h− j

j

)

ph−2 jq j, h ≥ 1.

Note that F
(p,q)
h and L

(p,q)
h reduce to the Fibonacci and Lucas sequences Fh and Lh, respectively, when p = q = 1; see,

respectively, sequences A000045 and A000032 in [29].
According to Filipponi, the specific use of well-known combinatorial expressions for Fibonacci and Lucas numbers yields
two interesting classes of integers (specifically, Fn(k) and Ln(k)) ruled by the integral parameters n and k [5]. In this paper,
we examine how the specific application of combinatorial phrases for (p,q)−Fibonacci and (p,q)−Lucas numbers yields
to two interesting classes of integers governed by the integral parameters n and k. Moreover, we derive some identities
and the generating functions of the incomplete (p,q)−Fibonacci and (p,q)−Lucas numbers.

2 The Incomplete (p,q)−Fibonacci Numbers

Definition 1.The incomplete (p,q)−Fibonacci numbers F
(p,q)
(h,k)

are defined as

F
(p,q)
(h,k) =

k

∑
j=0

(

h− j− 1

j

)

ph−2 j−1q j,

(

1 ≤ h;0 ≤ k ≤ ⌊h− 1

2
⌋= ĥ

)

. (2)

The numbers F
(p,q)
(h,k)

are displayed in Table 1. It shows the first few h values and the corresponding permissible k values:

Table 1: The first few values of the incomplete (p,q)−Fibonacci Numbers

h\k 0 1 2 3

1 1

2 p

3 p2 p2 +q

4 p3 p3 +2pq

5 p4 p4 +3p2q p4 +3p2q+q2

6 p5 p5 +4p3q p5 +4p3q+3pq2

7 p6 p6 +5p4q p6 +5p4q+6p2q2 p6 +5p4q+6p2q2 +q3

8 p7 p7 +6p5q p7 +6p5q+10p3q2 p7 +6p5q+10p3q2 +4pq3

9 p8 p8 +7p6q p8 +7p6q+15p4q2 p8 +7p6q+15p4q2 +10p2q3

10 p9 p9 +8p7q p9 +8p7q+21p5q2 p9 +8p7q+21p5q2 +20p3q3

The relation (2) has some special cases as follows:
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1. F
(p,q)
(h,0)

= ph−1, (h ≥ 1)

2. F
(p,q)
(h,1)

= ph−1 +(h− 2)ph−3q, (h ≥ 3)

3. F
(p,q)
(h,2)

= ph−1 +(h− 2)ph−3q+
(h− 4)(h− 3)

2
ph−5q2, (h ≥ 5)

4. F
(p,q)

(h,ĥ)
= F

(p,q)
h , (h ≥ 1)

5. F
(p,q)

(h,ĥ−1)
=







F
(p,q)
h − h

2
pq(

h
2−1) (h even)

F
(p,q)
h − q(

h−1
2 ) (h odd)

, (h ≥ 3)

2.1 Some identities of the numbers F
(p,q)
(n,k)

Proposition 1.The incomplete (p,q)−Fibonacci numbers F
(p,q)
(h,k)

can be given by the recurrence relation

F
(p,q)
(h+2,k+1)

= pF
(p,q)
(h+1,k+1)

+ qF
(p,q)
(h,k)

, 0 ≤ k ≤ ĥ. (3)

Proof.Using Definition (3), we obtain the desired equality as follows:

pF
(p,q)
(h+1,k+1)

+ qF
(p,q)
(h,k)

=
k+1

∑
j=0

(

h− j

j

)

ph−2 j+1q j +
k

∑
j=0

(

h− j− 1

j

)

ph−2 j−1q j+1

=
k+1

∑
j=0

(

h− j

j

)

ph−2 j+1q j +
k+1

∑
j=1

(

h− j

j− 1

)

ph−2 j+1q j

=
k+1

∑
j=0

[(

h− j

j

)

+

(

h− j

j− 1

)]

ph−2 j+1q j −
(

h

−1

)

=
k+1

∑
j=0

(

h− j+ 1

j

)

ph−2 j+1q j − 0

= F
(p,q)
(h+2,k+1)

Proposition 2.The following identity holds:

F
(p,q)
(h+2,k)

= pF
(p,q)
(h+1,k)

+ qF
(p,q)
(h,k)

−
(

h− k− 1

k

)

ph−2k−1qk+1 (4)

Proof.it is clear that

F
(p,q)
(h+2,k)

=
k

∑
j=0

(

h− j+ 1

j

)

ph−2 j+1q j

=
k

∑
j=0

[(

h− j

j

)

+

(

h− j

j− 1

)]

ph−2 j+1q j

=
k

∑
j=0

(

h− j

j

)

ph−2 j+1q j +
k

∑
j=0

(

h− j

j− 1

)

ph−2 j+1q j

= pF
(p,q)
(h+1,k)

+
k−1

∑
j=−1

(

h− j− 1

j

)

ph−2 j−1q j+1

= pF
(p,q)
(h+1,k)

+

(

h

−1

)

ph+1 + q
k

∑
j=0

(

h− j− 1

j

)

ph−2 j−1q j −
(

h− k− 1

k

)

ph−2k−1qk+1

= pF
(p,q)
(h+1,k)

+ qF
(p,q)
(h,k)

−
(

h− k− 1

k

)

ph−2k−1qk+1
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Proposition 3.The following identity holds:

r

∑
j=0

(

r

j

)

p jqr− jF
(p,q)
(h+ j,k+ j)

= F
(p,q)
(h+2r,k+r)

, 0 ≤ k ≤ h− r− 1

2
(5)

Proof.We use induction on r. The sum (5) is plainly valid for r = 1; Assume it is true for a specific case r > 1. In order to
perform the inductive step r → r+ 1, we get

F
(p,q)
(h+2(r+1),k+(r+1))

=
r+1

∑
j=0

[(

r

j

)

+

(

r

j− 1

)]

p jqr− j+1F
(p,q)
(h+ j,k+ j)

= q
r

∑
j=0

(

r

j

)

p jqr− jF
(p,q)
(h+ j,k+ j)

+

(

r

r+ 1

)

pr+1q2F
(p,q)
(h+r+1,k+r+1)

+
r+1

∑
j=0

(

r

j− 1

)

p jqr− j+1F
(p,q)
(h+ j,k+ j)

= qF
(p,q)
(h+2r,k+r)+ 0+

r

∑
j=−1

(

r

j

)

p j+1qr− jF
(p,q)
(h+ j+1,k+ j+1)

= qF
(p,q)
(h+2r,k+r)

+ p
r

∑
j=0

(

r

j

)

p jqr− jF
(p,q)
(h+ j+1,k+ j+1)

+

(

r

−1

)

p−1qr+1F
(p,q)
(h,k)

= qF
(p,q)
(h+2r,k+r)

+ pF
(p,q)
(h+2r+1,k+r+1)

+ 0

Proposition 4.For n ≥ 2k+ 2, we have

r−1

∑
j=0

pr− j−1q j+2F
(p,q)
(h+ j,k)

= qr+1F
(p,q)
(h+r+1,k+1)

− prF
(p,q)
(h+1,k+1)

. (6)

Proof.We use induction on r. The sum (5) is plainly valid for r = 1; Assume it is true for a specific case r > 1. In order to
perform the inductive step r → r+ 1, we obtain

r

∑
j=0

pr− jq j+2F
(p,q)
(h+ j,k)

= p
r−1

∑
j=0

pr− j−1q j+2F
(p,q)
(h+ j,k)

+ qr+2F
(p,q)
(h+r,k)

= p
(

qr+1F
(p,q)
(h+r+1,k+1)

− prF
(p,q)
(h+1,k+1)

)

+ qr+2F
(p,q)
(h+r,k)

= qr+1
(

pF
(p,q)
(h+r+1,k+1)

+ qF
(p,q)
(h+r,k)

)

− pr+1F
(p,q)
(h+1,k+1)

= qr+1F
(p,q)
(h+r+1,k+1)

− pr+1F
(p,q)
(h+1,k+1)

In [24,1], note that if p and q in (1) are real variables, then F
(p,q)
h = Fh(x,y) and hence they correspond to the bivariate

Fibonacci polynomials expressed as

Fh(x,y) = xFh−1(x,y)+ yFh−2(x,y), F0(x,y) = 0, F1(x,y) = 1, h ≥ 2.

Lemma 1.In [1], the following relation holds:

∂F
(p,q)
h

∂ p
=

hF
(p,q)
h + q(h− 2)F

(p,q)
h−2 − 2pF

(p,q)
h−1

p2 + 4q
.

Lemma 2.For h ∈ Z+, the following equality is true:

ĥ

∑
j=0

j

(

h− j− 1

j

)

ph−2 j−1q j =
((h− 1)(p2+ 4q)− hp)F

(p,q)
h − pq(h− 2)F

(p,q)
h−2 + 2p2F

(p,q)
h−1

2(p2 + 4q)
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Proof.We are aware that

pF
(p,q)
h =

ĥ

∑
j=0

(

h− j− 1

j

)

ph−2 jq j

By derivating into the previous equation with respect to p, we get

F
(p,q)
h + p

∂F
(p,q)
h

∂ p
=

ĥ

∑
j=0

(h− 2 j)

(

h− j− 1

j

)

ph−2 j−1q j

= hF
(p,q)
h − 2

ĥ

∑
j=0

j

(

h− j− 1

j

)

ph−2 j−1q j

From Lemma 1, the proof is completed.

Proposition 5.For h ∈ Z+, the following equality is true:

ĥ

∑
k=0

F
(p,q)
(h,k) =

((2ĥ− h+ 3)(p2+ 4q)+ hp)F
(p,q)
h + pq(h− 2)F

(p,q)
h−2 − 2p2F

(p,q)
h−1

2(p2 + 4q)

Proof.From Lemma 1, we obtain

ĥ

∑
k=0

F
(p,q)
(h,k) = F

(p,q)
(h,0) +F

(p,q)
(h,1) + · · ·+F

(p,q)

(h,ĥ)

=

(

h− 1

0

)

ph−1 +

[(

h− 1

0

)

ph−1 +

(

h− 2

1

)

ph−3q

]

+ · · ·+
[

(

h− 1

0

)

ph−1 +

(

h− 2

1

)

ph−3q+ · · ·+
(

h− ĥ− 1

ĥ

)

ph−2ĥ−1qĥ

]

= (ĥ+ 1)

(

h− 1

0

)

ph−1 + ĥ

(

h− 3

1

)

ph−3q+ · · ·+
(

h− ĥ− 1

ĥ

)

ph−2ĥ−1qĥ

=
ĥ

∑
j=0

(ĥ− j+ 1)

(

h− j− 1

j

)

ph−2 j−1q j

= (ĥ+ 1)
ĥ

∑
j=0

(

h− j− 1

j

)

ph−2 j−1q j −
ĥ

∑
j=0

j

(

h− j− 1

j

)

ph−2 j−1q j

= (hath+ 1)F
(p,q)
h −

((h− 1)(p2+ 4q)− hp)F
(p,q)
h − pq(h− 2)F

(p,q)
h−2 + 2p2F

(p,q)
h−1

2(p2 + 4q)

=
((2ĥ− h+ 3)(p2+ 4q)+ hp)F

(p,q)
h + pq(h− 2)F

(p,q)
h−2 − 2p2F

(p,q)
h−1

2(p2 + 4q)

3 The Incomplete (p,q)−Lucas Numbers

Definition 2.The incomplete (p,q)−Lucas numbers L
(p,q)
(h,k)

are defined by

L
(p,q)
(h,k) =

k

∑
j=0

h

h− j

(

h− j

j

)

ph−2 jq j,

(

1 ≤ h;0 ≤ k ≤ ⌊h

2
⌋= h̃

)

. (7)

The numbers L
(p,q)
(h,k)

are displayed in Table 2. It shows the first few h values and the corresponding permissible k values:
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Table 2: The first few values of the incomplete (p,q)−Lucas Numbers

n\k 0 1 2 3

1 p

2 p2 p2 +2q

3 p3 p3 +3pq

4 p4 p4 +4p2q p4 +4p2q+2q2

5 p5 p5 +5p3q p5 +5p3q+5pq2

6 p6 p6 +6p4q p6 +6p4q+9p2q2 p6 +6p4q+9p2q2 +2q3

7 p7 p7 +7p5q p7 +7p5q+14p3q2 p7 +7p5q+14p3q2 +7pq3

8 p8 p8 +8p6q p8 +8p6q+20p4q2 p8 +8p6q+20p4q2 +16p2q3

9 p9 p9 +9p7q p9 +9p7q+27p5q2 p9 +9p7q+27p5q2 +30p3q3

10 p10 p10 +10p8q p10 +10p8q+35p6q2 p10 +10p8q+35p6q2 +50p4q3

The relation (7) has some special cases as follows:

–L
(p,q)
(h,0)

= ph, (h ≥ 1)

–L
(p,q)
(h,1)

= ph + hph−2q, (h ≥ 2)

–L
(p,q)
(h,2)

= ph + hph−2q+
h(h− 3)

2
ph−4q2, (h ≥ 5)

–L
(p,q)

(h,h̃)
= L

(p,q)
h , (h ≥ 1)

–L
(p,q)

(h,h̃−1)
=

{

L
(p,q)
h − 2q(

h
2 ) (h even)

L
(p,q)
h − hpq(

h−1
2 ) (h odd)

, (h ≥ 2)

3.1 Some identities of the numbers L
(p,q)
(h,k)

Proposition 6.The following identity holds:

L
(p,q)
(h,k)

= qF
(p,q)
(h−1,k−1)

+F
(p,q)
(h+1,k)

, 0 ≤ k ≤ h̃. (8)

Proof.Using Definition (2), we obtain the desired equality as follows:

qF
(p,q)
(h−1,k−1)

+F
(p,q)
(h+1,k)

= q
k−1

∑
j=0

(

h− j− 2

j

)

ph−2 j−2q j +
k

∑
j=0

(

h− j

j

)

ph−2 jq j

= q
k

∑
j=1

(

h− j− 1

j− 1

)

ph−2 jq j−1 +
k

∑
j=0

(

h− j

j

)

ph−2 jq j

=
k

∑
j=0

[(

h− j− 1

j− 1

)

+

(

h− j

j

)]

ph−2 jq j −
(

h− 1

−1

)

ph

=
k

∑
j=0

h

h− j

(

h− j

j

)

ph−2 jq j − 0 = L
(p,q)
(h,k)

Proposition 7.The incomplete (p,q)−Lucas numbers L
(p,q)
(h,k)

can be given by the recurrence relation

L
(p,q)
(h+2,k+1)

= pL
(p,q)
(h+1,k+1)

+ qL
(p,q)
(h,k)

, 0 ≤ k ≤ h̃. (9)

Proof.Relation (9) can be proved by using (8).

Proposition 8.The following identity holds:

L
(p,q)
(h+2,k)

= pL
(p,q)
(h+1,k)

+ qL
(p,q)
(h,k)

− h

h− k

(

h− k

k

)

ph−2kqk+1 (10)
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Proof.Relation (10) can be proved by using (4) and (8).

Proposition 9.The following identity holds:

r

∑
j=0

(

r

j

)

qr− j p jL
(p,q)
(h+ j,k+ j)

= L
(p,q)
(h+2r,k+r)

, 0 ≤ k ≤ h− r

2
(11)

Proof.Relation (11) can be proved by using (5) and (8).

4 Generating Functions of the Incomplete (p,q)−Fibonacci and (p,q)−Lucas Numbers

The generating functions of the incomplete (p,q)−Fibonacci and (p,q)−Lucas numbers are given in this section.

Lemma 3.Assume {Th}∞
h=0 is a complex sequence that obeys the non-homogeneous second-order recurrence relation:

Th = αTh−1 +β Th−2+Rh, h > 1,

where α,β ∈ C (the field of complex numbers) and Rh : N→ C is a sequence. Then the generating function U(t) of Th is

U(t) =
G(t)+T0 −R0 +(T1 −αS0 −R1)t

1−αt−β t2

where the generating function of {Rh} is denoted by G(t) (See [18]).

Theorem 1.The generating function of the incomplete (p,q)−Fibonacci numbers F
(p,q)
(h,k)

is

GF
p,q,k(x) =

x2qk+1

(1−px)k+1
+F

(p,q)
2k+1 + qF

(p,q)
2k x

1− px− qx2

Proof.Assume k is a fixed positive integer. Using (2) and (4), F
(p,q)
(h,k)

= 0 for 0 ≤ h < 2k+ 1, F
(p,q)
(2k+1,k)

= Fp,q,2k+1, and

F
(p,q)
(2k+2,k) = F

(p,q)
2k+2 ,

F
(p,q)
(h,k)

= pF
(p,q)
(h−1,k)

+ qF
(p,q)
(h−2,k)

−
(

h− k− 3

k

)

ph−2k−3qk+1

Now consider T0 = F
(p,q)
(2k+1,k), T1 = F

(p,q)
(2k+2,k) and Th = F

(p,q)
(h+2k+1,k).

Also, consider R0 = R1 = 0,

Rh =

(

h+ k− 2

h− 2

)

ph−2qk+1.

Here,

G(x) =
x2qk+1

(1− px)k+1

is the generating function of the sequence {Rh} (see [21]). As a result of Lemma 3, we obtain the generating function
GF

p,q,k(x) of the sequence {Th}.

Theorem 2.The generating function of the incomplete (p,q)−Lucas numbers F
(p,q)
(h,k)

is

GL
p,q,k(x) =

x2(2−px)qk+1

(1−px)k+1 +L
(p,q)
2k + qL

(p,q)
2k−1x

1− px− qx2
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Proof.Assume k is a fixed positive integer. Using (2) and (4), L
(p,q)
(h,k)

= 0 for 0 ≤ h < 2k, L
(p,q)
(2k,k)

= L
(p,q)
2k , and L

(p,q)
(2k+1,k)

=

L
(p,q)
2k+1,

L
(p,q)
(h,k) = pL

(p,q)
(h−1,k)+ qL

(p,q)
(h−2,k)−

h− 2

h− k− 2

(

h− k− 2

h− 2k− 2

)

ph−2k−2qk+1

Now consider T0 = L
(p,q)
(2k,k)

, T1 = L
(p,q)
(2k+1,k)

and Tn = L
(p,q)
(n+2k,k)

.

Also, consider R0 = R1 = 0,

Rh =
n+ 2k− 2

h+ k− 2

(

h+ k− 2

h− 2

)

ph−2qk+1

Here,

G(x) =
x2(2− px)qk+1

(1− px)k+1

is the generating function of the sequence {Rh} (see [21]). As a result of Lemma 3, we get the generating function GL
p,q,k(x)

of the sequence {Th}.

5 Conclusion

In this paper, the incomplete (p,q)−Fibonacci and (p,q)−Lucas numbers are defined. Some properties and identities for
them are given. The generating functions are derived. From these results, we can reach familiar results for some special
numbers, such as Fibonacci, Lucas, Pell, and Jacobsall, as special cases
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1 Introduction

A single combined method for random variables arranged in increasing order is known as the generalized order statistics
(gos). This method is proposed by [1] and provides certain other methods for ordered data as special case. The density
function of all of the variables in a gos is given by [1] as

g1,...,n:n,t,κ (y1, . . . ,yn) = κ
(

∏
n−1

j=1
γ j

)

[1−G(yn)]
κ−1

g(yn)

×∏
n−1

j=1

[

{

1−G(y j)
}t

g(y j)
]

, (1)

where the quantities n, t and κ are the parameters of the density function such that γh = κ +(n− h)(t + 1). The gos

produces different other methods for ordered data for different values of the parameters. The most popular of these are
ordinary order statistics, kth record values; by [2]; and simple record values by [3].

The probability density function of a single gos is

gp:n,t,κ (y) =
Cp−1

(p− 1)!
g(y) [1−G(y)]γp−1

f
p−1

t [G(y)] , (2)

where Cp−1 = ∏
p
j=1 γ j and

ft (u) = ht (u)− ht (0) =

{
[

1− (1− u)t+1
]/

(t + 1) ; t 6=−1

− ln(1− u) ; t =−1.

∗ Corresponding author e-mail: mkmohamad@kau.edu.sa
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The probability density of any two gos is given as

gp,q:n,t,κ (y1,y2) =
Cq−1

(p− 1)!(q− p− 1)!
g(y1)g(y2) [1−G(y1)]

t
f

p−1
t [G(y1)]

× [1−G(y2)]
γq−1 [ht {G(y2)}− ht {G(y1)}]q−p−1 , (3)

for −∞ < y1 < y2 < ∞ and

ht (u) =

{

−(1− u)t+1
/

(t + 1) ; t 6=−1

− ln(1− u) ; t =−1.

The gos is a single general method to model the data arranged in increasing order. Different simple methods are the special
cases of this method for specific values of the parameters. The simple order statistics is obtained from gos if t = 0 and
κ = 1. The model reduces to kth record values of [2] for t = −1. The simple upper record values; [3]; are obtained from
gos for t =−1 and κ = 1. Some more details can be found in [4] and [5].

Several authors have used different distributions to study their properties in context of the gos. A lot of work has been
done in obtaining expressions to compute moments of gos recursively for specific distributions. A general expression for
relations between moments of gos for any parent distribution has been obtained by [6] and [7]. Pareto and related
distributions have attracted several authors to obtained the recurrence relations for moments of gos and its special cases.
The relations for moments of generalized Pareto distribution were obtained by [8]. The expressions for recursive
computation of moments of record values for Pareto and generalized Pareto distribution were obtained by [9] and [10].
The recursive expression for moments of gos for Pareto distribution are developed by [10]. The relations for recursive
computation of moments of gos for Kumaraswamy Pareto distribution are developed by [11]. Some characterizations for
the distributions using gos have been given by [12].

The area of recursive computation of moments for transmuted distributions is yet to be explored. This paper deals with
developing some recursive methods to compute moments of gos for a transmuted Pareto distribution. A brief about the
distribution is first given in the following section.

2 The Transmuted Pareto Distribution

The Pareto distribution; [13]; has tremendous applications in economics and finance. The distribution has been proposed
as a suitable distribution for modeling income. The distribution has following density and distribution function

f (y;k,α) =
αcα

yα+1
; y ≥ c , (α,c)> 0

and

F (y;k;α) = 1−
(

c

y

)α

; y ≥ c , (α,c)> 0.

The distribution is studied extensively by several authors. Various authors has given different modifications of the
distribution. A modification of the Pareto distribution has been given by [14] by using the technique of [15] and is
referred to as the transmuted Pareto distribution. The density and distribution functions of this transmuted Pareto
distribution are

g(y) =
αcα

yα+1

[

1+λ − 2λ

{

1−
(

c

y

)α}]

; y ≥ c , (α,c)> 0, (4)

and

G(y) =

[

1−
(

c

y

)α]

+λ

(

c

y

)α [

1−
(

c

y

)α]

; y ≥ c , (α,c)> 0, (5)

where λ is the transmutation parameter such that −1 ≤ λ ≤ 1. The transmuted Pareto distribution has wide spread
applications in modeling of financial and geological data. It is easy to see that (4) and (5) are related as

1−G(y) =
y

α
g(y)−λ

(

c

y

)2α

. (6)

This paper deals with obtaining recursive expressions to compute moments of gos for the transmuted Pareto distribution.
The distribution has also been characterized on the basis of these recursive expressions of single and joint moments. The
recursive expressions are obtained in Sections 3 and 4 below.
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3 Relations for Simple and Reciprocal Moments

This section deals with obtaining recursive expressions to compute simple and reciprocal moments of gos for a transmuted
Pareto distribution are given. These recursive expressions are obtained in the Theorem and the resulting corollaries, below.

Theorem 1.The simple moments of gos for transmuted Pareto distribution can be recursively computed as

µ r
p:n,t,κ =

αγp

αγp − r

[

µ r−1
p:n,t,κ −

λ c2α r

(r− 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

{

µ r−2α
p:n,t,κ−1 − µ r−2α

p−1:n,t,κ−1

}

]

, (7)

where γh(κ−1) = (κ − 1)+ (n− h)(t + 1) and Cp−1(κ−1) = ∏
p
h=1 γh(κ−1).

Proof.It is shown by [7] that the recursive expression for moments of gos for any distribution can be obtained by using

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
rCp−1

γp (p− 1)!

∫ ∞

−∞
yr−1 [1−G(y)]γp f

p−1
t [G(y)]dy, (8)

where µ r
p:n,t,κ = E

(

Y r
p:n,t,κ

)

and Y r
p:n,t,κ is the pth gos. The relation (8) can be written as

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
rCp−1

γp (p− 1)!

∫ ∞

−∞
yr−1 [1−G(y)] [1−G(y)]γp−1

× f
p−1

t [G(y)]dy.

Now, using (6) in above equation, we have

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
rCp−1

γp (p− 1)!

∫ ∞

c
yr−1

[

y

α
g(y)−λ

(

c

y

)2α
]

× [1−G(y)]γp−1
f

p−1
t [G(y)]dy.

=
rCp−1

γp (p− 1)!

∫ ∞

c
yrg(y) [1−G(y)]γp−1

f
p−1

t [G(y)]dy

−λ c2αrCp−1

γp (p− 1)!

∫ ∞

c
yr−2α−1 [1−G(y)]γp−1

f
p−1

t [G(y)]dy,

or

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
r

αγp

µ r
p:n,t,κ −

λ c2αr

(r− 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

(r− 2α)Cp−1(κ−1)

γp(κ−1) (p− 1)!

×
∫ ∞

c
yr−2α−1 [1−G(y)]γp(k−1) f

p−1
t [G(y)]dy,

where γh(κ−1) = (κ − 1)+ (n− h)(t + 1) and Cp−1(κ−1) = ∏
p
h=1 γh(κ−1). Now, again using (6), we have

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
r

αγp

µ r
p:n,t,κ −

λ c2αr

(r− 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

[

µ r−2α
p:n,t,κ−1 − µ r−2α

p−1:n,t,κ−1

]

or

µ r
p:n,t,κ =

αγp

αγp − r

[

µ r
p−1:n,t,κ −

λ c2α r

(r− 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

{

µ r−2α
p:n,t,κ−1 − µ r−2α

p−1:n,t,κ−1

}

]

,

which is (7) and the proof is complete.

The recursive expression for simple moments of gos for Pareto distribution, given by [10], is readily obtained from
(7) by using λ = 0.

Following corollaries are immediately obtained from Theorem 1.

Corollary 1.Using −r instead of r in (7), we have following recursive expression for the reciprocal moments of gos for

the transmuted Pareto distribution

µ−r
p:n,t,κ =

αγp

αγp + r

[

µ−r
p−1:n,t,κ −

λ c2α r

(r+ 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

{

µ
−(r+2α)
p:n,t,κ−1 − µ

−(r+2α)
p−1:n,t,κ−1

}

]

. (9)
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Corollary 2.Using t = −1 in (7), following relation for moments of kth upper record value for transmuted Pareto

distribution is obtained

µ r
K(p) =

ακ

ακ − r

[

µ r
K(p−1)−

κ p−1λ c2αr

(κ − 1)p−1 (r− 2α)

{

µ r−2α
K−1(p)− µ r−2α

K−1(p−1)

}

]

. (10)

The recursive expression for moments of kth record value for Pareto distribution; given by [9]; is obtained as a special

case of (10) by using λ = 0.

Corollary 3.The recursive expression for simple moments of order statistics is derived by using t = 0 and κ = 1 in (7)

and is

µ r
p:n =

α (n− p+ 1)

α (n− p+ 1)− p

[

µ r
p−1:n −

nλ c2αr

(r− 2α)(n− p+ 1)

{

µ r−2α
p:n − µ r−2α

p−1:n

}

]

. (11)

The recursive expression for moments of order statistics for Pareto distribution is obtained by setting λ = 0 in (11).

Corollary 4.The recursive expression for reciprocal moments of transmuted Pareto distribution are obtained by using

t =−1 in (9) and is

µ−r
K(p) =

ακ

ακ − r

[

µ−r
K(p−1)−

κ p−1λ c2αr

(κ − 1)p−1 (r+ 2α)

{

µ
−(r+2α)
K−1(p)

− µ
−(r+2α)
K−1(p−1)

}

]

. (12)

Corollary 5.The recursive expression for reciprocal moments of order statistics is obtained by using t = 0 and κ = 1 in

(9) and is

µ−r
p:n =

α (n− p+ 1)

α (n− p+ 1)+ p

[

µ−r
p−1:n −

nλ c2αr

(r+ 2α)(n− p+ 1)

{

µ
−(r+2α)
p:n − µ

−(r+2α)
p−1:n

}

]

. (13)

We will now obtain recursive expression for joint and ratio moments of gos for transmuted Pareto distribution.

4 Recursive Computation of Joint and Ratio Moments

The recursive relations for joint moments of gos for a transmuted Pareto distribution is obtained in the following theorem.

Theorem 2.The joint moments of gos for transmuted Pareto distribution can be recursively computed by using

µ
p,q
r,s:n,t,κ =

αγs

αγs − q

[

µ
p,q
r,s−1:n,t,κ −

λ c2αq

(q− 2α)

γs(κ−1)Cs−1

γsCs−1(κ−1)

×
{

µ
p,q−2α
r,s:n,t,κ−1 − µ

p,q−2α
r,s−1:n,t,κ−1

}]

, (14)

where µ r,s
p,q:n,t,κ = E

(

Y r
p:n,t,κY s

q:n,t,κ

)

and p < q.

Proof.The joint moments of gos for any distribution are related as; see [7];

µ
r,s
p,q:n,t,κ − µ

r,s
p,q−1:n,t,κ =

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)

× [1−G(y1)]
t

f
p−1

t [G(y1)] [1−G(y2)]
γq

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1, (15)

where µ
r,s
p,q:n,t,κ = E

(

Y r
p:n,t,κY s

q:n,t,κ

)

. The relation (15) can also be written as

µ
r,s
p,q:n,t,κ − µ

r,s
p,q−1:n,t,κ =

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)

× f
p−1

t [G(y1)] [1−G(y1)]
t

× [1−G(y2)] [1−G(y2)]
γq−1

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1.
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Using (6), we have

µ r,s
p,q:n,t,κ − µ r,s

p,q−1:n,t,κ =
sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

c

∫ ∞

y1

yr
1ys−1

2 g(y1)

× f
p−1

t [G(y1)] [1−G(y1)]
t [1−G(y2)]

γq−1

×
[

y2

α
g(y2)−λ

(

c

y2

)]

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1

or

µ
r,s
p,q:n,t,κ − µ

r,s
p,q−1:n,t,κ =

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

c

∫ ∞

y1

yr
1ys−1

2 g(y1)g(y2)

× [1−G(y1)]
t

f
p−1

t [G(y1)] [1−G(y2)]
γq−1

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1

− λ c2αsCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

c

∫ ∞

y1

yr
1ys−1

2 g(y1)

× [1−G(y1)]
t

f
p−1

t [G(y1)] [1−G(y2)]
γq−1

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1

or

µ r,s
p,q:n,t,κ − µ r,s

p,q−1:n,t,κ =
s

αγq

µ r,s
p,q:n,t,κ −

λ c2αsCq−1

γq (p− 1)!(q− p− 1)!

×
∫ ∞

c

∫ ∞

y1

yr
1ys−1

2 g(y1) [1−G(y1)]
t

× f
p−1

t [G(y1)] [1−G(y2)]
γq−1

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1

or

µ r,s
p,q:n,t,κ − µ r,s

p,q−1:n,t,κ =
s

αγq

µ r,s
p,q:n,t,κ −

λ c2αsγq(κ−1)Cq−1

(s− 2α)γqCq−1(κ−1)

×
(s− 2α)Cq−1(κ−1)

γq(κ−1) (p− 1)!(q− p− 1)!

∫ ∞

c

∫ ∞

y1

yr
1ys−1

2

×g(y1) [1−G(y1)]
t

f
p−1

t [G(y1)] [1−G(y2)]
γq−1

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1,

where γh(κ−1) = (κ − 1)+ (n− h)(t + 1) and Cq−1(κ−1) = ∏
q
h=1 γh(κ−1). Again using (15), we have

µ r,s
p,q:n,t,κ − µ r,s

p,q−1:n,t,κ =
s

αγq

µ r,s
p,q:n,t,κ −

λ c2αsγq(κ−1)Cq−1

(s− 2α)γqCq−1(κ−1)
[

µ
r,s−2α
p,q:n,t,κ−1 − µ

r,s−2α
p,q−1:n,t,κ−1

]

or

µ r,s
p,q:n,t,κ =

αγq

αγq − s

[

µ r,s
p,q−1:n,t,κ −

λ c2αs

(s− 2α)

γq(κ−1)Cq−1

γqCq−1(κ−1)

×
{

µ r,s−2α
p,q:n,t,κ−1 − µ r,s−2α

p,q−1:n,t,κ−1

}]

.

This is (14) and the proof is complete.

The relation (14) transforms to the relation for joint moments of gos from Pareto distribution, obtained by [10], for
λ = 0 as it should be.

Theorem 2 provides following corollaries.
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Corollary 6.Substituting −s in (14), the recursive expression for the ratio moments of gos for transmuted Pareto

distribution is

µ
r,−s
p,q:n,t,κ =

αγq

αγq + s

[

µ
r,−s
p,q−1:n,t,κ −

λ c2αs

(s+ 2α)

γq(κ−1)Cq−1

γqCq−1(κ−1)

×
{

µ
r,−(s+2α)
p,q:n,t,κ−1 − µ

r,−(s+2α)
p,q−1:n,t,κ−1

}]

. (16)

Corollary 7.Substituting t = −1 in (14), following recursive expression for (r,s)th moments of (p,q)th upper record

values for transmuted Pareto distribution is obtained

µ
r,s
K(p,q) =

ακ

ακ − s

[

µ
r,s
K(p,q−1)−

κq−1λ c2α s

(κ − 1)q−1 (s− 2α)

{

µ
r,s−2α
K−1(p,q)− µ

r,s−2α
K−1(p,q−1)

}

]

. (17)

Corollary 8.Substituting t = 0 and κ = 1 in (14), following recursive expression for joint moments of order statistics for

transmuted Pareto distribution is obtained

µ r,s
p,q:n =

α (n− q+ 1)

α (n− q+ 1)− s

[

µ
r,s
p,q−1:n −

nλ c2αs

(n− q+ 1)(s− 2α)

{

µ r,s−2α
p,q:n − µ

r,s−2α
p,q−1:n

}

]

. (18)

Corollary 9.Substituting t = −1 in (16), following recursive expression for the ratio moments of kth record value for

transmuted Pareto distribution is obtained

µ
r,−s

K(p,q) =
ακ

ακ + s

[

µ
r,−s

K(p,q−1)−
κq−1λ c2α s

(κ − 1)q−1 (s+ 2α)

{

µ
r,−(s+2α)
K−1(p,q) − µ

r,−(s+2α)
K−1(p,q−1)

}

]

. (19)

Corollary 10.Substituting t = 0 and κ = 1 in (16), the following expression for recursive computation of ratio moments

of order statistics for transmuted Pareto distribution is obtained

µ r,−s
p,q:n =

α (n− q+ 1)

α (n− q+ 1)+ s

[

µ
r,−s
p,q−1:n −

nλ c2αs

(n− q+ 1)(s+ 2α)

{

µ
r,−(s+2α)
p,q:n − µ

r,−(s+2α)
p,q−1:n

}

]

. (20)

The above relations are useful for recursive computation of moments.

5 Some Characterizations

Some characterizations of the transmuted Pareto distribution in terms of simple and joint moments of gos are given in the
following theorems.

Theorem 3.For a random variable X to have the density and distribution functions given in (4) and (5) respectively, the

simple moments of its gos should be related as

µ r
p:n,t,κ − µ r

p−1:n,t,κ =
r

αγp

µ r
p:n,t,κ −

λ c2αr

(r− 2α)

γp(κ−1)Cp−1

γpCp−1(κ−1)

×
[

µ r−2α
p:n,t,κ−1 − µ r−2α

p−1:n,t,κ−1

]

.

Proof.The necessary part of the Theorem is easily proved from Theorem 1. The sufficient condition is proved by
considering (7); with Ḡ(x) = 1−G(x); as

rCp−1

γp (p− 1)!

∫ ∞

c
yr−1

{

Ḡ(y)
}γp

f
p−1

t [G(y)]dy

=
rCp−1

γp (p− 1)!

∫ ∞

c
yy−1

{

Ḡ(y)
}γp−1

f
p−1

t [G(y)]

×
[

y

α
g(y)−λ

(

c

y

)2α
]

dy
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or

rCp−1

γp (p− 1)!

∫ ∞

c
yy−1

{

Ḡ(y)
}γp−1

f
p−1

t [G(y)]

[

Ḡ (y)−
{

y

α
g(y)−λ

(

c

y

)2α
}]

dy = 0.

Applying Müntz–Száz theorem; see [16]. We have; from above equation;

Ḡ(y) =

{

y

α
g(y)−λ

(

c

y

)2α
}

.

The above is (6) and hence the proof is complete.

Theorem 4.For a random variable X to have the density and distribution functions given in (4) and (5) respectively, the

joint moments of its gos should be related as

µ
r,s
p,q:n,t,κ − µ

r,s
p,q−1:n,t,κ =

s

αγq

µ
r,s
p,q:n,t,κ −

λ c2αsγq(k−1)Cq−1

(s− 2α)γqCq−1(k−1)
[

µ r,s−2α
p,q:n,t,κ−1 − µ r,s−2α

p,q−1:n,t,κ−1

]

.

Proof.The necessity is readily proved from Theorem 2. For sufficiency consider (15) as

µ
r,s
p,q:n,t,κ − µ

r,s
p,q−1:n,t,κ =

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)

×
[

Ḡ(y1)
]t

f
p−1

t [G(y1)]
[

Ḡ (y2)
]γq

× [ht {G(y2)}− ht {G(y1)}]q−p−1
dy2dy1,

Now, using above relation with (6) we have

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)
[

Ḡ(y1)
]t

f
p−1

t [G(y1)]

× [ht {G(y2)}− ht {G(y1)}]q−p−1
[

Ḡ(y2)
]γq

dy2dy1

=
sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)
[

Ḡ(y1)
]t

f
p−1

t [G(y1)]

× [ht {G(y2)}− ht {G(y1)}]q−p−1
[

Ḡ(y2)
]γq−1

×
{

y2

α
g(y2)−λ

(

c

y2

)2α
}

dy2dy1

or

sCq−1

γq (p− 1)!(q− p− 1)!

∫ ∞

−∞

∫ ∞

y1

yr
1ys−1

2 g(y1)
[

Ḡ(y1)
]t

f
p−1

t [G(y1)]

× [ht {G(y2)}− ht {G(y1)}]q−p−1
[

Ḡ(y2)
]γq−1

×
[

Ḡ (y2)−
{

y2

α
g(y2)−λ

(

c

y2

)2α
}]

dy2dy1

= 0.

Applying Müntz–Száz theorem; see [16]. We have; from above equation;

Ḡ (y2) =
y2

α
g(y2)−λ

(

c

y2

)2α

.

The above is (6) and hence the proof is complete.
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6 Conclusion

This paper deals with obtaining some recursive expressions to compute the simple and joint moments of gos for a
transmuted Pareto distribution. These expressions can be used to recursively compute the higher moments from the lower
moments. We have also given the recursive expressions for the simple and joint moments of the specific cases of gos.
The simple and joint moments are also used to obtain some characterization results. We have found that the recursive
expressions for simple and joint moments of gos for the Pareto distribution appear as a special case. These relations are
also useful in studying certain properties of the transmuted Pareto distribution.
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1 Introduction

Fuzzy set is an idea proposed by Zadeh [35] in 1965. Since then, this concept has been widely acknowledged by
researchers and utilized in diverse branches of mathematics as well as real life applications. At a later point, Kramosil
and Michálek [18] presented fuzzy metric spaces as an extension for the probabilistic metric spaces with the perspective
of fuzzy sets. Their notion was later modified by George and Veeramani [8] so that Hausdorff topology can be studied on
this space. Grabiec [13] pioneered the investigation of fixed-point theory on fuzzy metric spaces. Consequently,
researchers studied fixed-point theory intensively on this abstract spaces and its generalized spaces. A few fixed-point
theories on these spaces may be seen in [10], [9], [22], [23], [25], [26], and [33].

In fixed-point theory, one of the well-known contraction mappings is Kannan-type contractive mapping introduced by
Kannan [16,17]. There are several thoughts about the important of Kannan-type contractions, especially under the scope
of metric fixed-point theory. One of the reasons is the famous Banach contraction by Banach [3] requires continuous
mapping, but Kannan-type contractive mapping needs not to be continuous. Another reason is the relationship between
Kannan-type contractive mapping and the completeness of the metric spaces. Connell [7] gave an illustration of metric
space that is not complete and yet any Banach contractive mapping assigned on it have fixed point. However, this is not
the case for Kannan-type contraction mappings in metric spaces. Subrahmanyam [30] demonstrated that metric space is
complete implies and is implied by all Kannan-type contractive mappings in this space contain fixed points. Recent works
related to Kannan-type contractive mappings can found in [6], [11], [12], [20], and [36].

Aamri and El Moutawakil [1] proposed El Moutawakil-Aamri (E.A. for short) property for noncompatible
self-mapping on metric space in 2002. This (E.A.) property allows one to acquire fixed point results without the
completeness of the space. However, it requires a condition of closeness of range for fixed point to exist. Later,
Sintunavarat and Kumam [28] proposed a novel property, dubbed “common limit in the range” (CLR for short) that is
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more versatile compared to (E.A.) property, as it no longer needs the condition of closeness of range. These two
properties are studied extensively in different spaces (see [2], [4], [14], [19], [21], [29], [31] and [32]).

The objective of this research is to validate several common fixed-point theorems for generalized Kannan-type
contractive mappings equipped with a common limits in the range or (E.A.) properties on fuzzy metric spaces. This
manuscript is arranged into four main sections as follows: Section 1 presents introduction. Section 2 provides
preliminary definitions and notions. Section 3 contains primary findings and their proofs. Section 4 is the conclusion and
open problems.

2 Preliminaries

We recollect some terminologies from the fuzzy fixed point theory that will be employed in this manuscript.

Definition 1([16]). Let (X ,δ ) denoted as metric space and T : E →E be a self-mapping. Then, T is called a Kannan-type

contractive mapping if there exist k ∈ [0, 1
2
) satisfy

δ (T ξ ,T χ)≤ k[δ (ξ ,T ξ )+ δ (χ ,T χ)]

for all ξ ,χ ∈ X.

Definition 2([27]). A binary operation ∗ : [0,1]× [0,1]→ [0,1] is referred to as continuous t-norm if the conditions below

hold:

1.a ∗ 1 = a for every a in [0,1];
2.∗ is associative and commutative;

3.a ∗ b ≤ i∗ j provided a ≤ i and b ≤ j, where a, i,b, j ∈ [0,1];
4.∗ is continuous.

Definition 3([8]). Let E be a nonempty set, ∗ be a continuous t-norm and Γ be a fuzzy set defined on E ×E × (0,∞) such

that the following conditions hold:

1.0 < Γ (ϖ ,ω ,κ);
2.Γ (ϖ ,ω ,κ) = 1 ⇐⇒ ϖ = ω;

3.Γ (ϖ ,ω ,κ) = Γ (ω ,ϖ ,κ);
4.Γ (ϖ ,ϑ ,κ+ ς)≥ Γ (ϖ ,ω ,κ)∗Γ (ω ,ϑ ,ς);
5.Γ (ϖ ,ω , ·) : (0,∞)→ (0,1] is continuous,

for every ϖ ,ω ,ϑ ∈ E and any κ,ς > 0. Then, an ordered triple (E,Γ ,∗) is called a fuzzy metric space.

Lemma 1([13]). If (E,Γ ,∗) is a fuzzy metric space, then Γ (ϖ ,ω ,κ) is increasing for any pair of ϖ ,ω in E.

Definition 4([8]). Let (E,Γ ,∗) be a fuzzy metric space and {ϖn} be a sequence in E. Then,

1.{ϖn} is convergent provided there exists x ∈ E satisfies limn→∞ Γ (ϖn,x,κ) = 1 for any κ > 0;

2.{ϖn} is called Cauchy sequence provided that for any 0 < ε < 1 and κ > 0, there is n0 ∈ N satisfies Γ (ϖn,ϖm,κ) >
1− ε for every n,m ≥ n0;

3.(E,Γ ,∗) is complete whenever each Cauchy sequence in E is convergent.

Consider F , G : E → E where E is a nonempty set and consider an element ω ∈ E . We say that ω is a fixed point
of F if it satisfies Fω = ω . For the case where Fω = G ω , ω is called a coincidence point of F and G . Moreover, if
Fω = ω = G ω , then ω is known as the common fixed point of F and G .

Definition 5([15]). Let E be a nonempty set. Two self-mappings F ,G : E → E are weakly compatible if both F and G

commute at the coincidence point of F and G , for instance, Fω = G ω for some ω in E implies that FG ω = G Fω .

The following definitions are (E.A.) and CLR property defined on two and four self-mappings. It is notable that
definitions below are written under the framework of fuzzy metric space instead of the space where they originally defined.

Definition 6([1]). For a fuzzy metric space (E,Γ ,∗), a pair (F ,T ) of self-mappings satisfy the (E.A.) property if there is

a sequence {ϖn} ⊂ E such that

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = 1

for some z ∈ E and for all κ > 0.
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Definition 7([21]). For a fuzzy metric space (E,Γ ,∗), two pairs (F ,T ) and (G ,S ) of self-mappings satisfy the common

(E.A.) property if there are two sequences {ϖn},{ωn} ⊂ E such that

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ E and for all κ > 0.

Definition 8([28]). For a fuzzy metric space (E,Γ ,∗), a pair (F ,T ) of self-mappings satisfy the common limit in the

range of T property, denoted by (CLRT ) if there is a sequence {ϖn} ⊂ E such that

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = 1

for some z ∈ T E and for all κ > 0.

Definition 9([34]). For a fuzzy metric space (E,Γ ,∗), two pairs (F ,T ) and (G ,S ) of self-mappings satisfy the common

limit in the range of T and S property, denoted by (CLRT S ) if there are two sequences {ϖn},{ωn} ⊂ E such that

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ T E ∩S E and for all κ > 0.

Definition 10([24]). For a fuzzy metric space (E,Γ ,∗), assume F ,T , and S are three self-mappings of E. The pair

(F ,T ) satisfy the common limit in the range of S property, denoted by (CLR(F ,T ),S ), if there exists sequence {ϖn}⊂ E

such that

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = 1

for some z ∈ T E ∩S E and for all κ > 0.

Remark.Using condition (2) in Definition 3, Definition 6 can be expressed in a way similar to its metric counterpart, that
is, the pair (F ,T ) satisfies the (E.A.) property if there is a sequence {ϖn} ⊂ E such that for some z ∈ E ,

lim
n→∞

Fϖn = lim
n→∞

T ϖn = z.

This is applicable to Definitions 7, 8, 9, and 10 as well.

By setting F = G and T = S in Definition 7 and Definition 9, one can obtain Definition 6 and Definition 8,
respectively. Moreover, we can see that Definition 9 implies Definition 10, but this is not the case for converse. This is
shown in the examples below.

Example 1.Suppose (E,Γ ,∗) is a fuzzy metric space where E = [0,∞), Γ is a fuzzy set on E ×E × (0,∞) and ∗ is a
continuous t-norm. In addition, consider F ,G ,T ,S : E → E expressed as:

F (ϖ) =
7ϖ

8
,

G (ϖ) = ϖ2,

T (ϖ) =
ϖ

8
,

S (ϖ) = 5ϖ2.

We have T E ∩S E = [0,∞). Define sequences {ϖn}= { 1
n
} and {ωn}= { 1

n2 } for every n ∈ N. Considering that

lim
n→∞

Fϖn = lim
n→∞

T ϖn = lim
n→∞

G ωn = lim
n→∞

S ωn = 0

and 0 ∈ T E ∩S E , both (F ,T ) and (G ,S ) satisfy the (CLRT S ) property. Moreover, (F ,T ) satisfy (CLR(F ,T ),S )
property.
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Example 2.Suppose (E,Γ ,∗) is a fuzzy metric space where E = [0,∞), Γ is a fuzzy set on E ×E × (0,∞) and ∗ is a
continuous t-norm. Furthermore, consider F ,G ,T ,S : E → E expressed as:

F (ϖ) = ϖ + 2,

G (ϖ) =
ϖ + 1

2
,

T (ϖ) = 3ϖ ,

S (ϖ) = ϖ + 3.

We have T E = [0,∞) and S E = [3,∞) which implies T E ∩S E = [3,∞). Consider a sequence {ϖn} = { n+1
n
}. It is

clear that
lim
n→∞

Fϖn = lim
n→∞

T ϖn = 3

and 3 ∈ T E ∩S E . Thus, the pair (F ,T ) satisfy the (CLRF ,T ),S ) property.

If we let sequence {ωn}= { 1
n
}, we get

lim
n→∞

G ωn =
1

2
and lim

n→∞
S ωn = 3

which means that limn→∞ G ωn 6= limn→∞ S ωn. This concludes both (F ,T ), (G ,S ) do not satisfy (CLRT S ) property.

The function below will be utilized in our later results.

Definition 11.A mapping ψ : [0,1]× [0,1]→ [0,1] is called as Ψ -function if:

1.ψ(u,v) is monotonically nondecreasing in both u and v variables;

2.ψ(u,v) is lower semicontinuous in both u and v variables;

3.ψ(v,v)> v for every v ∈ (0,1);
4.ψ(1,1) = 1 and ψ(0,0) = 0.

Ψf is denoted as the collection of all Ψ -functions. Examples of Ψ -functions are ψ(u,v) = k
√

u+l
√

v

k+l
where k, l ∈ R+,

ψ(u,v) =
√

uv, and ψ(u,v) = min{u,v} for all u,v ∈ [0,1].

3 Main Results

Theorem 1.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfying the following

condition:
Γ (Fϖ ,G ω ,κ)+ h(1−max{Γ (T ϖ ,G ω ,κ),Γ (S ω ,Fϖ ,κ),Γ (T ϖ ,S ω ,κ)})

≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

(1)

for any ϖ ,ω ∈ E and κ > 0 where h≥ 0,κ,κ1,κ2 > 0 with κ =κ1+κ2, p,q > 0 with p+q∈ (0,1) and ψ ∈Ψf . Assume

that both pairs (F ,T ) and (G ,S ) satisfy the (CLRT S ) property, then the pairs (F ,T ) and (G ,S ) have a coincidence

point in E.

Proof.Given that both pairs (F ,T ), (G ,S ) satisfy the (CLRT S ) property, there exist sequences {ϖn} and {ωn} in E

such that for all κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ T E ∩S E . This means that

lim
n→∞

Fϖn = lim
n→∞

T ϖn = lim
n→∞

G ωn = lim
n→∞

S ωn = z.

As z ∈ T E , one can find an element u ∈ E satisfy z = T u. We will show that Fu = T u. Assume Fu 6= T u, which
means, 0 < Γ (Fu,T u,κ) < 1 for some κ > 0. Using inequality (1), for all κ > 0, we yield

Γ (Fu,G ωn,κ)+ h(1−max{Γ (T u,G ωn,κ),Γ (S ωn,Fu,κ),Γ (T u,S ωn,κ)})

≥ ψ

(

Γ

(

T u,Fu,
κ1

p

)

,Γ

(

S ωn,G ωn,
κ2

q

))

.
(2)
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Let κ1 =
pκ

p+q
,κ2 =

qκ
p+q

and r = p+ q. Clearly, we have
κ1
p
= κ2

q
= κ

r
and 0 < r < 1. Then, from (2) we can obtain the

following:
Γ (Fu,G ωn,κ)+ h(1−max{Γ (T u,G ωn,κ),Γ (S ωn,Fu,κ),Γ (T u,S ωn,κ)})

≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,Γ
(

S ωn,G ωn,
κ

r

))

.

By taking the limit as n → ∞, we yield

Γ (Fu,z,κ)+ h(1−max{Γ (T u,z,κ),Γ (z,Fu,κ),Γ (T u,z,κ)})

≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,Γ
(

z,z,
κ

r

))

= ψ
(

Γ
(

T u,Fu,
κ

r

)

,1
)

.

Since z = T u, the inequality above can be rewritten as

Γ (Fu,T u,κ)+ h(1−max{1,Γ (z,Fu,κ),1}) ≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,1
)

Γ (Fu,T u,κ)+ h(1− 1)≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,1
)

Γ (Fu,T u,κ)≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,1
)

.

By Ψ -function’s properties and Lemma 1, we yield

Γ (Fu,T u,κ)≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,1
)

≥ ψ
(

Γ
(

T u,Fu,
κ

r

)

,Γ
(

T u,Fu,
κ

r

))

> Γ
(

T u,Fu,
κ

r

)

> Γ (T u,Fu,κ)

= Γ (Fu,T u,κ)

which leads to a contradiction. As a result, Γ (Fu,T u,κ) = 1 for each κ > 0. By the condition (2) from Definition 3, we
yield Fu = T u = z. This implies that point u is a coincidence point of the pair (F ,T ).

Additionally, since z ∈ S E , one can find an element v ∈ E satisfy z = S v. We will show that G v = S v. Assume
G v 6= S v, which means, 0 < Γ (G v,S v,κ)< 1 for some κ > 0. Using inequality (1), for each κ > 0, it follows that

Γ (Fϖn,G v,κ)+ h(1−max{Γ (T ϖn,G v,κ),Γ (S v,Fϖn,κ),Γ (T ϖn,S v,κ)})

≥ ψ

(

Γ

(

T ϖn,Fϖn,
κ1

p

)

,Γ

(

S v,G v,
κ2

q

))

.
(3)

Again let κ1 =
pκ

p+q
,κ2 =

qκ
p+q

and r = p+ q. Then, from (3) we can obtain the following:

Γ (Fϖn,G v,κ)+ h(1−max{M(T ϖn,G v,κ),Γ (S v,Fϖn,κ),Γ (T ϖn,S v,κ)})

≥ ψ
(

Γ
(

T ϖn,Fϖn,
κ

r

)

,Γ
(

S v,G v,
κ

r

))

.

By taking the limit as n → ∞, we yield

Γ (z,G v,κ)+ h(1−max{Γ (z,G v,κ),Γ (S v,z,κ),Γ (z,S v,κ)})

≥ ψ
(

Γ
(

z,z,
κ

r

)

,Γ
(

S v,G v,
κ

r

))

= ψ
(

1,Γ
(

S v,G v,
κ

r

))

.

Since z = S v, the inequality above can be rewritten as

Γ (S v,G v,κ)+ h(1−max{Γ (S v,G v,κ),1,1})≥ ψ
(

1,Γ
(

S v,G v,
κ

r

))

Γ (S v,G v,κ)+ h(1− 1)≥ ψ
(

1,Γ
(

S v,G v,
κ

r

))

Γ (S v,G v,κ)≥ ψ
(

1,Γ
(

S v,G v,
κ

r

))

.
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Due to Ψ -function’s properties and Lemma 1, we yield

Γ (S v,G v,κ)≥ ψ
(

1,Γ
(

S v,G v,
κ

r

))

≥ ψ
(

Γ
(

S v,G v,
κ

r

)

,Γ
(

S v,G v,
κ

r

))

> Γ
(

S v,G v,
κ

r

)

> Γ (S v,G v,κ)

which leads to a contradiction. As a result, Γ (G v,S v,κ) = 1 for each κ> 0. By using the condition (2) from Definition 3,
we yield G v = S v = z. So v is a coincidence point of the pair (G ,S ).

Remark.It is possible to obtain Theorem 2.2 in Choudhury et al. [5] if we let F = G , T = S and
max{Γ (T ϖ ,G ω ,κ),Γ (S ω ,Fϖ ,κ),Γ (T ϖ ,S ω ,κ)} = max{Γ (T ϖ ,G ω ,κ),Γ (S ω ,Fϖ ,κ)} in our Theorem 1
above. In addition to that, they require the fuzzy metric space to be equipped with Hadzic type t-norm, whereas in our
result the t-norm for fuzzy metric space picked is arbitrary. Hence, our results improvises their results without t-norm
restriction and completeness on fuzzy metric space.

We deduce the subsequent corollary from Theorem 1.

Corollary 1.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfying the following

condition:
Γ (Fϖ ,G ω ,κ)+ h(1−max{Γ (T ϖ ,G ω ,κ),Γ (S ω ,Fϖ ,κ),Γ (T ϖ ,S ω ,κ)})

≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

(4)

for any ϖ ,ω ∈ E and κ > 0 where h≥ 0,κ,κ1,κ2 > 0 with κ =κ1+κ2, p,q > 0 with p+q∈ (0,1) and ψ ∈Ψf . Assume

that T E, S E are closed subsets of E and the pairs (F ,T ), (G ,S ) satisfy common (E.A.) property, then both pairs

(F ,T ) and (G ,S ) have a coincidence point.

Proof.As both pairs (F ,T ),(G ,S ) fulfill common (E.A.) property, we have some sequences {ϖn},{ωn} ⊂ E such that
for all κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z in E . This means that

lim
n→∞

Fϖn = lim
n→∞

S ωn = lim
n→∞

G ωn = lim
n→∞

T ϖn = z.

Given that T E is closed set, there is an element u ∈ E satisfy z = T u. Moreover, since S E is closed, we can identify
an element v ∈ E satisfy z = S v. Hence, z ∈ T E ∩S E . This concludes that both pairs (F ,T ),(G ,S ) satisfy the
(CLRT S ) property. The remaining of this proof follows from Theorem 1.

Theorem 2.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfying the following

condition:

Γ (Fϖ ,G ω ,κ) ≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

(5)

for all ϖ ,ω ∈ E and κ > 0 where t1, t2 > 0 with κ = κ1 +κ2, p,q > 0 with p+ q ∈ (0,1) and ψ ∈Ψf . Assume that both

pairs (F ,T ) and (G ,S ) satisfy the (CLRT S ) property, then both pairs (F ,T ) and (G ,S ) have a coincidence point.

Furthermore, if both pairs (F ,T ) and (G ,S ) are weakly compatible, this implies that mappings F ,T ,G ,S have a

unique common fixed point in E.

Proof.To show both pairs (F ,T ),(G ,S ) possess a coincidence point, consider h = 0 in (1) and the proof follows as in
Theorem 1.

For the rest of the Theorem, as (F ,T ) is weakly compatible and Fu = T u = z, it follows that T z = T Fu =
FT u = F z. We say that point z is the common fixed point of (F ,T ). Using (5) and Ψ -function’s property, for each
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κ > 0, we yield

Γ (F z,z,κ) = Γ (F z,G v,κ)≥ ψ

(

Γ

(

T z,F z,
κ1

p

)

,Γ

(

S v,G v,
κ2

q

))

= ψ

(

Γ

(

F z,F z,
κ1

p

)

,Γ

(

z,z,
κ2

q

))

= ψ(1,1)

= 1.

Thus, Γ (F z,z,κ) = 1 for each κ > 0, which means, F z = T z = z. So, z is a common fixed point of F and T .

Also, since (G ,S ) is weakly compatible and G v = S v = z, this implies that S z = S G v = G S v = G z. We say that
point z is a common fixed point of pair (G ,S ). Using (5) and Ψ -function’s property, for each κ > 0, it follows that

Γ (z,G z,κ) = Γ (F z,G z,κ) ≥ ψ

(

Γ

(

T z,F z,
κ1

p

)

,Γ

(

S z,G z,
κ2

q

))

= ψ

(

Γ

(

z,z,
κ1

p

)

,Γ

(

G z,G z,
κ2

q

))

= ψ(1,1)

= 1.

As a result, Γ (z,G z,κ) = 1 for every κ > 0, which means, G z = z =S z. Thus, z is a common fixed point of pair (G ,S ).
This shows that z is a common fixed point of mappings F ,G ,T ,S .

For the uniqueness, assume two common fixed points z1, z2 ∈ E are distinct, for instance, 0 < Γ (z1,z2,κ) < 1 for
some κ > 0. Using (5), for any κ > 0, we get

Γ (z1,z2,κ) = Γ (F z1,G z2,κ)

≥ ψ

(

Γ

(

T z1,F z1,
κ1

p

)

,Γ

(

S z2,G z2,
κ2

q

))

= ψ

(

Γ

(

z1,z1,
κ1

p

)

,Γ

(

z2,z2,
κ2

q

))

= ψ(1,1)

= 1

which is contradict to our assumption. Thus, z1 = z2 which proves the common fixed point is unique.

By substituting G with F and S with T in the theorem above, we deduce the subsequent corollary.

Corollary 2.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,T are self-mappings of E satisfying the following

condition:

Γ (Fϖ ,Fω ,κ) ≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

T ω ,Fω ,
κ2

q

))

for all ϖ ,ω ∈ E and κ > 0 where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+ q ∈ (0,1) and ψ ∈Ψf . Consider the

pair (F ,T ) satisfies (CLRT ) property, then the pair (F ,T ) has a coincidence point. Furthermore, if the pair (F ,T )
is weakly compatible, this implies that both mappings F and T have a unique common fixed point.

Theorem 3.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfying the following

condition:

Γ (Fϖ ,G ω ,κ) ≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

for all ϖ ,ω ∈ E and κ > 0 where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+ q ∈ (0,1) and ψ ∈Ψf . Assume that

T E and S E are closed subsets of E and the pairs (F ,T ) and (G ,S ) satisfy common (E.A.) property, then both pairs

(F ,T ) and (G ,S ) have a coincidence point. Furthermore, if both pairs (F ,T ) and (G ,S ) are weakly compatible,

this implies that mappings F ,T ,G ,S have a unique common fixed point.
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Proof.As both (F ,T ),(G ,S ) satisfy common (E.A.) property, there exist {ϖn},{ωn} ⊂ E such that for all κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ X . This means that

lim
n→∞

Fϖn = lim
n→∞

S ωn = lim
n→∞

G ωn = lim
n→∞

T ϖn = z.

As T E is closed, there is an element u ∈ E satisfy z = T u. Moreover, since S E is closed, there is an element v ∈ E

satisfy z =S v. Hence, z ∈T E ∩S E which means that both (F ,T ),(G ,S ) satisfy (CLRT S ) property. The rest of the
proof follows from Theorem 2.

By substituting G with F and S with T in Theorem above, we obtain corollary below.

Corollary 3.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,T are self-mappings of E satisfying the following

condition:

Γ (Fϖ ,Fω ,κ) ≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

T ω ,Fω ,
κ2

q

))

for all ϖ ,ω ∈ E and κ > 0 where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+q ∈ (0,1) and ψ ∈Ψf . Assume that the

pair (F ,T ) satisfies the (E.A.) property, then the pair (F ,T ) has a coincidence point. Furthermore, if the pair (F ,T )
is weakly compatible, then mappings F and T have a unique common fixed point.

We will present an example below to demonstrate our Theorem 2.

Example 3.Suppose that (E,Γ ,∗) is a fuzzy metric space with E = [2,8), ∗ is a product continuous t-norm, that is,
a ∗ b = ab for any a,b ∈ [0,1] and Γ (ϖ ,ω ,κ) = κ

κ+|ϖ−ω| for every ϖ ,ω ∈ E , κ > 0. Let F ,G ,T ,S : E → E define as

follows:

F (ϖ) =

{

2 if ϖ ∈ {2}∪ (7,8),

2.3 if ϖ ∈ (2,7],

G (ϖ) =

{

2 if ϖ ∈ {2}∪ (7,8),

2.5 if ϖ ∈ (2,7],

T (ϖ) =



















2 if ϖ ∈ {2},
4 if ϖ ∈ (2,7),

5 if ϖ ∈ {7},
ϖ+3

5
if ϖ ∈ (7,8),

S (ϖ) =



















2 if ϖ ∈ {2},
6 if ϖ ∈ (2,7),

7 if ϖ ∈ {7},
ϖ+3

5
if ϖ ∈ (7,8),

and ψ(u,v) =
√

uv where u,v ∈ E . One can easily validate that inequality (5) is satisfied for every ϖ ,ω in E and for all

κ > 0. Now, we pick sequences {ϖn}=
{

7+ 1
n

}

and {ωn}= {2}. It is clear that we have

lim
n→∞

Fϖn = lim
n→∞

T ϖn = lim
n→∞

G ωn = lim
n→∞

S ωn = 2.

Since 2 ∈ T E ∩S E , it implies that both pairs (F ,T ) and (G ,S ) satisfy (CLRT S ) property. Furthermore, it is
straightforward to verify that both pairs (F ,T ) and (G ,S ) are weakly compatible. Hence, each conditions of
Theorem 2 hold. Furthermore, 2 is the unique common fixed point of F ,G ,T and S . Figures 1, 2 and 3 provide a
visual representation of the inequality with specific assigned values.

Remark.It is obvious that Theorem 3 cannot be applied on example above because both T E , S E ⊂ E are not closed.

Before we proceed further, we present two lemmas that are needed the next results related to four mappings but only
two mappings satisfying (CLR) or (E.A.) property, respectively.
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Fig. 1: Graphical view of inequality Γ (Fϖ ,G ω ,κ) ≥ ψ
(

Γ
(

T ϖ ,Fϖ , κ1
p

)

,Γ
(

S ω ,G ω , κ2
q

))

, where the orange

plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: κ = 5,κ1 = 3,κ2 = 2, p = 0.5, and q = 0.3.

Fig. 2: Graphical view of inequality Γ (Fϖ ,G ω ,κ) ≥ ψ
(

Γ
(

T ϖ ,Fϖ , κ1
p

)

,Γ
(

S ω ,G ω , κ2
q

))

, where the orange

plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: κ = 5,κ1 = 1,κ2 = 4, p = 0.5, and q = 0.3.

Lemma 2.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,T ,S are four self-mappings of E such that the

following conditions hold:

1.the pair (F ,T ) (or (G ,S )) satisfies the (CLRT ) (or (CLRS )) property;

2.FE ⊂ S E (or G E ⊂ T E);

3.S E ⊂ E closed;
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Fig. 3: Graphical view of inequality Γ (Fϖ ,G ω ,κ) ≥ ψ
(

Γ
(

T ϖ ,Fϖ , κ1
p

)

,Γ
(

S ω ,G ω , κ2
q

))

, where the orange

plane represents the left-hand side and the blue plane represents the right-hand side, with specific values assigned as
follows: κ = 30,κ1 = 5,κ2 = 25, p = 0.5, and q = 0.3.

4.{G ωn} converges for all sequences {ωn} in E provided {S ωn} converges (or {Fωn} converges for all sequences

{ωn} in E provided {T ωn} converges);

5.F ,G ,T and S satisfy inequality (5) for every ϖ ,ω ∈ E and any κ > 0.

Then, both pairs (F ,T ) and (G ,S ) satisfy the (CLRT S ) property.

Proof.As (F ,T ) satisfy (CLRT ) property, there is {ϖn} ⊂ E satisfy

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = 1

for some z ∈ T E . This means that
lim
n→∞

Fϖn = lim
n→∞

T ϖn = z.

Since FE ⊂ S E , for each ϖn, there is an element ωn ∈ E satisfy Fϖn = S ωn for every n ∈N. Thus, we yield

lim
n→∞

Fϖn = lim
n→∞

S ωn = z.

Since S E is closed, the convergent point z is in S E . Therefore we have z ∈ T E ∩S E and

Fϖn → z,T ϖn → z, and S ωn → z

as we let n → ∞. Due to condition (4), sequence {G ωn} converges, which means, there is a point θ ∈ E satisfy

lim
n→∞

G ωn = θ .

We claim that θ = z. Otherwise, let θ 6= z. This implies that 0 < Γ (θ ,z,κ) < 1 for every κ > 0. Using inequality (5), we
have

Γ (Fϖn,G ωn,κ)≥ ψ

(

Γ

(

T ϖn,Fϖn,
κ1

p

)

,Γ

(

S ωn,G ωn,
κ2

q

))

where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+q ∈ (0,1) and ψ ∈Ψf . Let κ1 =
pκ

p+q
,κ2 =

qκ
p+q

and r = p+q, the

inequality above can be rewrite as

Γ (Fϖn,G ωn,κ)≥ ψ
(

Γ
(

T ϖn,Fϖn,
κ

r

)

,Γ
(

S ωn,G ωn,
κ

r

))

.
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Let n → ∞,

Γ (z,θ ,κ) ≥ ψ
(

Γ
(

z,z,
κ

r

)

,Γ
(

z,θ ,
κ

r

))

= ψ
(

1,Γ
(

z,θ ,
κ

r

))

.

Due to the properties of Ψ -function and Lemma 1, it follows that

Γ (z,θ ,κ) ≥ ψ
(

1,Γ
(

z,θ ,
κ

r

))

≥ ψ
(

Γ
(

z,θ ,
κ

r

)

,Γ
(

z,θ ,
κ

r

))

> Γ
(

z,θ ,
κ

r

)

> Γ (z,θ ,κ)

which leads to a contradiction. As a result, Γ (w,z,κ) = 1 for any κ > 0 which means θ = z. Hence, we conclude

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

which means that both (F ,T ),(G ,S ) satisfy (CLRT S ) property.

Lemma 3.Supose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,T ,S are four self-mappings of E such that the

following conditions hold:

1.the pair (F ,T ) (or (G ,S )) satisfies (E.A.) property;

2.FE ⊂ S E (or G E ⊂ T E);

3.{G ωn} converges for all sequences {ωn} in E provided {S ωn} converges (or {Fωn} converges for all sequences

{ωn} in E provided {T ωn} converges);

4.F ,G ,T and S satisfy inequality (5) for every ϖ ,ω ∈ E and any κ > 0.

Then, both pairs (F ,T ), (G ,S ) satisfy common (E.A.) property.

Proof.The proof is similar to Lemma 2 so we omit here to avoid repetition.

Theorem 4.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfy the following

conditions:

1.the pair (F ,T ) (or (G ,S )) satisfies the (CLRT ) (or (CLRS )) property;

2.FE ⊂ S E (or G E ⊂ T E);

3.{G ωn} converges for all sequences {ωn} in E provided {S ωn} converges (or {Fωn} converges for all sequences

{ωn} in E provided {T ωn} converges);

4.mappings F ,G ,T and S satisfy

Γ (Fϖ ,G ω ,κ)≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

for every ϖ ,ω ∈ E and any κ > 0 where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+ q ∈ (0,1) and ψ ∈Ψf .

Then, both pairs (F ,T ) and (G ,S ) have a coincidence point. Furthermore, if both pairs (F ,T ) and (G ,S ) are

weakly compatible, this implies that mappings F ,T ,G ,S have a unique common fixed point.

Proof.By Lemma 2, both pairs (F ,T ),(G ,S ) satisfy (CLRT S ) property. Hence, there are {ϖn},{ωn} ⊂ E such that
for all κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ T E ∩S E . The remaining of this proof follows from Theorem 2.
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Theorem 5.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfy the following

conditions:

1.the pair (F ,T ) (or (G ,S )) satisfies the (E.A.) property;

2.FE ⊂ S E (or G E ⊂ T E);

3.{G ωn} converges for all sequences {ωn} in E provided {S ωn} converges (or {Fωn} converges for all sequences

{ωn} in E provided {T ωn} converges);

4.mappings F ,G ,T and S satisfy

Γ (Fϖ ,G ω ,κ)≥ ψ

(

Γ

(

T ϖ ,Fϖ ,
κ1

p

)

,Γ

(

S ω ,G ω ,
κ2

q

))

for every ϖ ,ω ∈ E and any κ > 0 where κ1,κ2 > 0 with κ = κ1 +κ2, p,q > 0 with p+ q ∈ (0,1) and ψ ∈Ψf .

Then, both pairs (F ,T ) and (G ,S ) have a coincidence point. Furthermore, if both pairs (F ,T ) and (G ,S ) are

weakly compatible, this implies that mappings F ,T ,G ,S have a unique common fixed point.

Proof.In view of Lemma 3, both (F ,T ) and (G ,S ) satisfy common (E.A.) property. Hence, there are {ϖn}, {ωn} ⊂ E

such that for all κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = lim
n→∞

Γ (G ωn,z,κ) = lim
n→∞

Γ (S ωn,z,κ) = 1

for some z ∈ E . The remaining of this proof follows from Theorem 3.

Theorem 6.Suppose that (E,Γ ,∗) is a fuzzy metric space and F ,G ,S ,T are self-mappings of E satisfy inequality (5)
for every for every ϖ ,ω ∈ E and any κ > 0. Assume the pair (F ,T ) satisfy (CLR(F ,T ),S ) property, then both pairs

(F ,T ) and (G ,S ) have a coincidence point. Furthermore, if both pairs (F ,T ) and (G ,S ) are weakly compatible,

this implies that mappings F ,T ,G ,S have a unique common fixed point.

Proof.Consider the pair (F ,T ) satisfy (CLR(F ,T ),S ) property, we have a sequence {ϖn} ∈ E such that for each κ > 0,

lim
n→∞

Γ (Fϖn,z,κ) = lim
n→∞

Γ (T ϖn,z,κ) = 1

for some z ∈ T E ∩S E . This means that
lim
n→∞

Fϖn = lim
n→∞

T ϖn = z.

As z ∈S E , there is an element u in E satisfy z =S u. We will show that G u=S u. Assume G u 6=S u, which means,
0 < Γ (G u,S u,κ)< 1 for some κ > 0. Using inequality (5), for any κ > 0, it leads to

Γ (Fϖn,G u,κ)≥ ψ

(

Γ

(

T ϖn,Fϖn,
κ1

p

)

,Γ

(

S u,G u,
κ2

q

))

. (6)

Let κ1 =
pκ

p+q
,κ2 =

qκ
p+q

and r = p+ q. Then, we obtain

Γ (Fϖn,G u,κ) ≥ ψ
(

Γ
(

T ϖn,Fϖn,
κ

r

)

,Γ
(

S u,G u,
κ

r

))

.

As we let n → ∞, it follows that

Γ (S u,G u,κ)≥ ψ
(

Γ
(

z,z,
κ

r

)

,Γ
(

S u,G u,
κ

r

))

= ψ
(

1,Γ
(

S u,G u,
κ

r

))

.

Due to properties of Ψ -function and Lemma 1, we yield

Γ (S u,G u,κ)≥ ψ
(

1,Γ
(

S u,G u,
κ

r

))

≥ ψ
(

Γ
(

S u,G u,
κ

r

)

,Γ
(

S u,G u,
κ

r

))

> Γ
(

S u,G u,
κ

r

)

> Γ (S u,G u,κ)
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which leads to a contradiction. Therefore, Γ (S u,G u,κ) = 1 for any κ > 0, which means, G u = S u = z. So u is a
coincidence point of pair (G ,S ).

Moreover, since z ∈ T E , we can find an element v in E satisfy z = T v. We will validate that Fv = T v. Assume
Fv 6= T v, which means, 0 < Γ (Fv,T v,κ)< 1 for some κ > 0. Using inequality (5), for all κ > 0, it leads to

Γ (Fv,G u,κ)≥ ψ

(

Γ

(

T v,Fv,
κ1

p

)

,Γ

(

S u,G u,
κ2

q

))

. (7)

Again let κ1 =
pκ

p+q
,κ2 =

qκ
p+q

and r = p+ q. Then, we obtain

Γ (Fv,G u,κ)≥ ψ
(

Γ
(

T v,Fv,
κ

r

)

,Γ
(

S u,G u,
κ

r

))

= ψ
(

Γ
(

T v,Fv,
κ

r

)

,1
)

.

Since G u = z = T v, by Ψ -function’s properties and Lemma 1, it follows that

Γ (Fv,T v,κ)≥ ψ
(

Γ
(

T v,Fv,
κ

r

)

,1
)

≥ ψ
(

Γ
(

T v,Fv,
κ

r

)

,Γ
(

T v,Fv,
κ

r

))

> Γ
(

T v,Fv,
κ

r

)

> Γ (T v,Fv,κ)

= Γ (Fv,T v,κ)

which leads to a contradiction. As a result, Γ (Fv,T v,κ) = 1 for any κ > 0, for instance, Fv = T v = z. So v is a
coincidence point of the pair (F ,T ).

As (F ,T ) is weakly compatible and Fv =T v, these lead to T z=T F v=FT v=F z. We say that z is a common
fixed point of (F ,T ). Using inequality (5) and the property of Ψ -function, for any κ > 0, we obtain

Γ (F z,z,κ) = Γ (F z,G u,κ)≥ ψ

(

Γ

(

T z,F z,
κ1

p

)

,Γ

(

S u,G u,
κ2

q

))

= ψ

(

Γ

(

F z,F z,
κ1

p

)

,Γ

(

z,z,
κ2

q

))

= ψ(1,1)

= 1.

Thus, Γ (F z,z,κ) = 1 for all κ > 0,that is, F z = z = T z. Therefore, z is a common fixed point of the pair (F ,T ).
Also, as the pair (G ,S ) is weakly compatible and G u = S u, this implies that S z = S G u = G S u = G z. We say

that z is a common fixed point of the pair (G ,S ). Using inequality (5) and the property of Ψ -function, for any κ > 0, we
obtain

Γ (z,G z,κ) = Γ (F z,G z,κ) ≥ ψ

(

Γ

(

T z,F z,
κ1

p

)

,Γ

(

S z,G z,
κ2

q

))

= ψ

(

Γ

(

z,z,
κ1

p

)

,Γ

(

G z,G z,
κ2

q

))

= ψ(1,1)

= 1.

Thus, Γ (z,G z,κ) = 1 for any κ > 0, which means, G z = z = Sz. So z is a common fixed point of the pair (G ,S ). This
shows that z is a common fixed point of mappings F ,G ,T ,S .

For the uniqueness, consider two common fixed points z1, z2 are distinct, which means that 0 < Γ (z1,z2,κ) < 1 for
some κ > 0. By inequality (5), for every κ > 0, we have

Γ (z1,z2,κ) = Γ (F z1,G z2,κ)

≥ ψ

(

Γ

(

T z1,F z1,
κ1

p

)

,Γ

(

S z2,G z2,
κ2

q

))

= ψ

(

Γ

(

z1,z1,
κ1

p

)

,Γ

(

z2,z2,
κ2

q

))

= ψ(1,1)

= 1
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which is contradict with our assumption. Thus, z1 = z2 which proves the common fixed point is unique.

4 Conclusion and Open Problem

Our paper generalized Kannan-type contractive mappings equipped with (CLR) or (E.A.) properties on fuzzy metric
spaces and established several common fixed-point results of these mappings. Researchers can investigate the existence of
fixed points for Kannan-type contractive mappings on more general setting, for example, fuzzy b-metric spaces, controlled
fuzzy b-metric spaces, fuzzy bipolar metric spaces and etc. Additionally, Choudhury and Das [6] used h-coupled Kannan
type mapping and obtained a common coupled fixed points for two mappings on partially ordered fuzzy metric space.
This raise a question whether our results for four mappings able to expand to partially order fuzzy metric space. As
mentioned in Section 1, Subrahmanyam [30] proved that the fixed point of Kannan-type contractive mappings implies the
completeness for metric space. Therefore, we will end this paper with an open problem: Does the existence of fixed point
for Kannan-type contractions imply the completeness on fuzzy metric space?
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[22] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3)(2004), 431–439.
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1 Introduction

Fuzzy logic was established by [17], defining what is a fuzzy set and establishing most of the operations and properties.
Later on, [4] extended the concept of a classical entropy to present what is known as the fuzzy entropy (FE).
In the following, we will define a fuzzy set and the fuzzy entropy:

Definition 1 A fuzzy set A defined on a universe of discourse X is given by [17] as:

A = {〈x,µA(x)〉|x ∈ X}, (1)

where, µA(x) ∈ [0,1] is the membership function of A, it describes the degree of belongingness of an element x to the set

A.

Its quite important to note that, considering the elements x1,x2, ...,xn ∈ X , the ∑n
i=1 µA(xi) is not necessary equals to 1.

Hence, µA(x) is not a probability.
The measure which quantify fuzzy information gained from a fuzzy set or is referred to as fuzzy entropy. In other words,
a fuzzy entropy measures the average amount of knowledge or information from fuzzy data.Its different than the classical
entropy which depend of a probabilistic concept, where FE is define on the basis of membership function.
[4] defined a fuzzy entropy ( denoted by HDT (x) ) on the basis of shannon’s entropy ([14]),

HDT (x) =−n
n

∑
i=1

[

µA(xi) log(µA(xi))+ (1− µA(xi)) log(1− µA(xi))
]

. (2)

They presented a set of axioms needed to be satisfied by any measure to be considered as an entropy; say H(x) of a fuzzy
set A. The axioms are

1.H(x) = 0 i f f A is a non-fuzzy set (crisp set), i.e. µA(xi) = 0 or 1 ∀xi ∈ A.
2.H(x) is maximum iff µA(xi) = 0.5,∀xi ∈ A.

∗ Corresponding author e-mail: m.altalib@yu.edu.jo, maltalib@pmu.edu.sa. ORCID: 0000-0002-7238-8839.
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3.H(x)≥ H∗(x), where H∗(x) is the entropy of A∗ a sharpened version of A.
4.H(x) = Hc(x), where Hc(x) is the entropy of Ac; the complement set of A. Ac = {〈x,1− µA(x)〉|x ∈ X}.

Many researchers and many articles studied fuzzy entropies and proposing modified and generalized versions of
such entropies. [11], defined what is known now as a Hybrid entropy, where the fuzzy entropy is considered to be a
generalization of the classical entropy (see, [2],[7]). This kind of entropy dealt with efficiencies of the total entropy which
was proposed by [4].
In the same article, [11] introduced a higher order fuzzy entropy which measures the uncertainty associated with any
subset with r combination. The entropy of order r of a fuzzy set A is

Hr(x) =−1

t

n

∑
i=1

µ(Sr
i ) log(µ(Sr

i ))+ (1− µ(Sr
i )) log(1− µ(Sr

i )),

where, S denotes the Shannon function, and µ(Sr
i ) is the degree of membership through the function S.

[3] introduced a generalization of fuzzy entropy of order α based on Renyi’s entropy of a fuzzy set A as

HBP(x) =
1

n(α − 1)
log [µα

A (xi)+ (1− µA(xi))
α ] ; α 6= 1;α > 0. (3)

[9], [10] Introduced a fuzzy entropy based on the exponential behavior of information gain, of a fuzzy set A as

HPP(x) =
1

n(
√

e− 1)

n

∑
i=1

[

µA(xi)e
(1−µA(xi))+(1− µA(xi))e

µA(xi)−1
]

, (4)

Later on, [16] generalized the exponential fuzzy entropy of order–α , of a fuzzy set A is given as

HVS(x) =
1

n(e(1−0.5α)− 1)

n

∑
i=1

[

µA(xi)e
(1−µα

A (xi))+(1− µA(xi))e
(1−(1−µA(xi))

α )−1
]

; α > 0. (5)

[1] proposed a fuzzy entropy of order α with a promising application in decision making. The measure of a fuzzy set
A is given by

HNT (x) =
n

∑
i=1

[

µ
α/2

A (xi)(1− µA(xi))
α/2

µA(xi)e−α(1−µA(xi))+(1− µA(xi))e−αµA(xi)

]1/α

; α > 0. (6)

The reader may refer to [5], [6], [8] for more details.

2 Transmuted Fuzzy entropy

2.1 Quadratic Transmuted Fuzzy entropy

As noted earlier, generalizing fuzzy entropies is a common custom in fuzzy theory. Adding extra parameter(s) to an
existing fuzzy entropy make it more flexible and hence secure all information from losing due fuzziness.
In a similar fashion, [15] introduced the quadratic transmuted family of distributions, where it enhances an existing
distribution by adding additional variable, for solving drawbacks in financial mathematics field. The cd f for a distribution
in the quadratic transmuted family is

F(x) = (1+λ )G(x)−λ G2(x), x ∈ R,

where λ ∈ [−1,1], and G(x) is the cd f of baseline distribution.
Motivated by this family of distributions, we propose the Quadratic Transmuted Fuzzy Entropy (QTFE) defined below,
also we study and prove that QTFE satisfies the axiomatic properties of [4].

Definition 2 For a fuzzy entropy H(x) of the Fuzzy set A, the transmuted fuzzy entropy of A is given by

HT
Q(x) = (1+λ )H(x)−λ H2(x), x ∈ A,λ ∈ [−1,1]. (7)

Theorem 1. The Quadratic Transmuted Fuzzy Entropy HT
Q(x) is a fuzzy measure and satisfies The axiomatic properties

[4].
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Proof. The set of four axiomatic properties are checked as follows

• HT
Q(x) = 0 i f f A is a non-fuzzy set (crisp set), i.e. µA(xi) = 0 or 1 ∀xi ∈ A.

When, µA(xi) = 0 or 1 ,∀xi ∈ A then it straight forward that H(x) = 0. Hence, HT
Q(x) = 0. on the other hand, when

HT
Q(x) = 0, then (1+λ )H(x)−λ H2(x) = 0, i.e.,

H(x)×
[

(1+λ )−λ H(x)
]

= 0,

hence at least one of the factors is zero

H(x) = 0 or (1+λ )−λ H(x) = 0,∀x ∈ A.

If H(x) = 0, then µA(xi) = 0 or 1 ∀xi ∈ A, as H(x) is a fuzzy entropy and satisfies this axiomatic property.

Now, when (1+λ )−λ H(x) = 0, so, H(x) = 1+λ
λ

. This conclusion is false, as it means that the fuzzy entropy is always
constant and ranges between [0,2].

• H(x) is maximum iff µA(xi) = 0.5,∀xi ∈ A.
by differentiating HT

Q(x) with respect to µA(xi), we get

∂HT
Q(x)

∂ µA(xi)
= (1+λ )

∂H(x)

∂ µA(xi)
− 2λ H(x) · ∂H(x)

∂ µA(xi)

=
∂H(x)

∂ µA(xi)

[

(1+λ )− 2λ H(x)
]

=
∂H(x)

∂ µA(xi)

[

1+λ ·
(

1− 2H(x)
)

]

Let, 0 ≤ µA(xi)< 0.5.

Notice that
∂H(x)

∂ µA(xi)
is always greater than 0 as H(x) satisfies this particular axiomatic property, since its a fuzzy measure.

i.e., the statement 1+λ ·
(

1− 2H(x)
)

should be positive in order to have
∂HT

Q (x)

∂ µA(xi)
> 0.

Case 1: λ ≥ 0,H(x)≤ 0.5. The statement is valid.
Case 2: λ ≤ 0,H(x)≥ 0.5. The statement is valid.
Case 3: λ ≥ 0,H(x)≥ 0.5.
Now, we have

0 ≥(1− 2H(x))≥−1

0 ≥λ · (1− 2H(x))≥−λ >−1, (multipling by λ )

1 ≥1+λ · (1− 2H(x))≥ 1−λ > 0, (adding 1 )

hence, 1+λ · (1− 2H(x))≥ 0, The statement is valid.
Case 4: λ ≤ 0,H(x)≤ 0.5.

1 ≥(1− 2H(x))≥ 0

−1 <λ ≤ λ · (1− 2H(x))≤ 0, (multipling by λ )

0 <1+λ ≤ 1+λ · (1− 2H(x))≤ 1, (adding 1 )

hence, 1+λ · (1− 2H(x))≥ 0, The statement is valid.

Hence,
∂HT

Q (x)

∂ µA(xi)
> 0 when 0 < µA(xi)≤ 0.5.

Now, let, 0.5 < µA(xi)≤ 1.0,
∂H(x)

∂ µA(xi)
is always less than 0 as H(x) satisfies this particular axiomatic property, since its a fuzzy measure. On the other

hand and as explained earlier, the statement 1+λ ·
(

1− 2H(x)
)

is positive. i.e.,

∂H(x)

∂ µA(xi)

[

1+λ ·
(

1− 2H(x)
)

]

Hence,
∂HT

Q (x)

∂ µA(xi)
< 0.

Thus, HT
Q(x) is a concave function which has a global maximum at µA(xi) = 0.5.
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• HT
Q(x)≥ H∗(x), where H∗(x) is the entropy of A∗ a sharpened version of A.

As shown in the last point, HT
Q(x) is increasing on the interval [0,0.5) and decreasing on the interval (0.5,1]. It

follows that µ∗
A(xi); the membership function entropy of A∗, is less the µA(xi) in the interval [0,0.5) and its greater than

µA(xi) in the interval (0.5,1]. Hence, HT
Q(x)≥ H∗(x)

• HT
Q(x) = HT

Q

c
(x), where HT

Q

c
(x) is the entropy of Ac; the complement set of A.

HT
Q(x) = (1+λ )H(x)−λ H2(x) = (1+λ )Hc(x)−λ Hc2(x),

as H(x) is a fuzzy entropy. So,

(1+λ )Hc(x)−λ Hc2(x) = HT
Q

c
(x).

Hence the theorem is proved, the QTFE satisfies the axiomatic properties, i.e., HT
Q(x) is indeed a fuzzy entropy.

2.2 Cubic Transmuted Fuzzy Entropy

[12] and [13] introduced the idea of the cubic transmuted distribution function, The cd f for a distribution in the cubic
transmuted family is

F(x) = (1+λ1)G(x)+ (λ2 −λ1)G
2(x)−λ2G3(x), x ∈ R,

where λ1 ∈ [−1,1], λ2 ∈ [−1,1] and −2 < ∑2
i λi < 1. G(x) is the cdf of baseline distribution.

On the basis of the defined family of distribution, we define the Cubic Transmuted Fuzzy Entropy (CTFE).

Definition 3 For a fuzzy entropy H(x) of the Fuzzy set A, the Cubic Transmuted Fuzzy Entropy of A is given by

HT
C (x) = (1+λ1)H(x)+ (λ2 −λ1)H

2(x)−λ2H3(x), (8)

where, λ1,λ2 ∈ [−1,1], and −2 < ∑2
i λi < 1, x ∈ A.

Theorem 2. The Cubic Transmuted Fuzzy Entropy HT
C (x) is a fuzzy measure and satisfies The axiomatic properties [4].

Proof. The axiomatic properties are checked as follows,

• HT
C (x) = 0 i f f A is a non-fuzzy set (crisp set), i.e. µA(xi) = 0 or 1 ∀xi ∈ A.

When, µA(xi) = 0 or 1 ∀xi ∈ A then H(x) = 0. and hence HT
C (x) = 0. on the other hand, when HT

C (x) = 0, then

(1+λ1)H(x)+ (λ2 −λ1)H
2(x)−λ2H3(x) = 0, i.e.,

H(x)×
[

(1+λ1)+ (λ2 −λ1)H(x)−λ2H2(x)
]

= 0,

hence at least one of the factors is zero

H(x) = 0 or (1+λ1)+ (λ2−λ1)H(x)−λ2H2(x) = 0,∀x ∈ A.

If H(x) = 0, then µA(xi) = 0 or 1 ∀xi ∈ A, as H(x) satisfies this axiomatic property.
Now when (1 + λ1) + (λ2 − λ1)H(x)− λ2H2(x) = 0, this will give a specific value of the entropy dependent on the
choice of λ1 and λ2. And hence this factor is not zero.

• HT
C (x) is maximum iff µA(xi) = 0.5,∀xi ∈ A.

by differentiating HT
C (x) with respect to µA(xi), we get

∂HT
C (x)

∂ µA(xi)
= (1+λ1)

∂H(x)

∂ µA(xi)
+ 2(λ2 −λ1)H(x) · ∂H(x)

∂ µA(xi)
− 3λ2H2(x) · ∂H(x)

∂ µA(xi)

=
∂H(x)

∂ µA(xi)

[

(1+λ1)+ 2(λ2−λ1)H(x) ·−3λ2H2(x) ·
]

=
∂H(x)

∂ µA(xi)

[

1+λ1 · (1− 2H(x))+λ2H(x) · (2− 3H(x))
]
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Let, 0 ≤ µA(xi)< 0.5,

Notice that
∂H(x)

∂ µA(xi)
is always greater than 0 as H(x) a fuzzy measure and hence it satisfies this axiomatic property, i.e., the

statement 1+λ1 · (1− 2H(x))+λ2H(x) · (2− 3H(x)) should be positive in order to have
∂HT

Q (x)

∂ µA(xi)
> 0.

Case 1: λ1,λ2 ≥ 0,H(x)≤ 0.5. The statement is valid.
Case 2: λ1,λ2 ≥ 0,0.5 ≤ H(x)≤ 2/3. The statement is valid.
Case 3: λ1,λ2 ≤ 0,H(x)≤ 2/3. The statement is valid.
Case 4: λ1,λ2 ≥ 0,H(x)≥ 2/3.
we have

0 ≥ (1− 2H(x))≥−1 , 0 ≥ H(x)(2− 3H(x))≥−1

0 ≥ λ1 · (1− 2H(x))≥−λ1 >−1 , 0 ≥ λ2 ·H(x)(2− 3H(x))≥−λ2 > 0

hence,
0 ≥ λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x))>−1,

then,
1 ≥ 1+λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x))> 0

hence, The statement is valid.
Case 5: λ1,λ2 ≤ 0,H(x)≤ 0.5.
we have

1 ≥ (1− 2H(x))≥ 0 , 1 ≥ H(x)(2− 3H(x))≥ 0

−1 < λ1 ≥ λ1 · (1− 2H(x))≥ 0 , − 1 ≥ λ2 ≥ λ2 ·H(x)(2− 3H(x))< 0

hence,
−1 ≥ λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x))< 0,

then,
0 < 1+λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x))

hence, The statement is valid.
Case 6: λ1,λ2 ≤ 0,0.5 ≤ H(x)≤ 2/3.
we have

1 ≤ (1− 2H(x))≤ 0 , H(x)(2− 3H(x))≥ 0

1 > λ1 ≥ λ1 · (1− 2H(x))≥ 0 , − 1 ≤ λ2 ≤ λ2 ·H(x)(2− 3H(x))< 0

1 > λ1 ≥ λ1 · (1− 2H(x))≥ 0 , 0 ≤ 1+λ2 ≤ 1+λ2 ·H(x)(2− 3H(x))< 1

then,
0 < 1+λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x))

hence, The statement is valid, and hence
∂HT

C (x)

∂ µA(xi)
> 0.

Now, let, 0.5 < µA(xi)≤ 1.0,
∂H(x)

∂ µA(xi)
is always less than 0 as H(x) satisfies this particular axiomatic property, since its a fuzzy measure. On the other

hand and as shown above, the statement 1+λ1 · (1− 2H(x))+λ2 ·H(x)(2− 3H(x)) is positive. Hence,
∂HT

C (x)

∂ µA(xi)
< 0.

Thus, HT
C (x) is a concave function which has a global maximum at µA(xi) = 0.5.

• HT
C (x)≥ H∗(x), where H∗(x) is the entropy of A∗ a sharpened version of A.

As shown in the last point, HT
C (x) is increasing on the interval [0,0.5) and decreasing on the interval (0.5,1]. It

follows that µ∗
A(xi); the membership function of A∗, is less the µA(xi) in the interval [0,0.5) and its greater than µA(xi) in

the interval (0.5,1]. Hence, HT
C (x)≥ H∗(x).

• HT
C (x) = HT

C

c
(x), where HT

C

c
(x) is the entropy of Ac; the complement set of A.

HT
C (x) = (1+λ1)H(x)+ (λ2 −λ1)H

2(x)−λ2H3(x),

as H(x) is a fuzzy entropy; i.e., H(x) = Hc(x). So,

(1+λ1)H
c(x)+ (λ2 −λ1)H

2c
(x)−λ2H3c

(x) = HT
C

c
(x).

Hence the theorem is proved, the Cubic Transmuted Fuzzy entropy satisfies the axiomatic properties, i.e., HT
C (x) is a fuzzy

measure.
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2.3 k-Transmuted Fuzzy Entropy

[12] have introduced the k-Transmuted families of distributions, a generalization of transmuted families, defined as

F(x) = G(x)+ [1−G(x)]
k

∑
i=1

λiG
i(x),

where, λi ∈ [−1,1] and −k < ∑k
i λi < 1. G(x) is the cdf of baseline distribution.

Based on this family of distribution we define the kTransmuted Fuzzy Entropy.

Definition 4 For a fuzzy entropy H(x) of the Fuzzy set A, the k-Transmuted Fuzzy Entropy of A is given by

HT
k (x) = H(x)+ [1−H(x)]

k

∑
i=1

λiH
i(x), x ∈ A. (9)

Where, λi ∈ [−1,1] and −k < ∑k
i λi < 1, k=2,3,. . . .

It follows that we have another version of cubic Transmuted Fuzzy Entropy, given as

HT
3 (x) = H(x)+ [1−H(x)]

3

∑
i=1

λiH
i(x),

which after simplifying turned out to be equivalent to CTFE.
Lets define a Quartic Transmuted Fuzzy Entropy; a k-TFE at k = 4, denoted by HT

4 (x) given by

HT
4 (x) = H(x)+ [1−H(x)]

4

∑
i=1

λiH
i(x). (10)

Theorem 3. The k–Transmuted Fuzzy Entropy HT
k (x) is a fuzzy measure and satisfies The axiomatic properties [4].

The proof is straight forward as done in the previous theorems.

3 Transmuted entropies of well known fuzzy measures

Fuzzy entropy literature is rich in many versions and generalizations of FE, among many of these measures, we
presented the most known and applied measures in equations (2) - (6). The Quadratic, Cubic and K–Transmuted Fuzzy
entropies of fourth order are generalizations of the fuzzy measures mentioned above are found by applying equation (7),
(8) and (10), respectively.
Table 1 presents the values of Deluca and Terminin 1972 performance at different values of µA(xi) (refereed to as
Normalized Values) alongside its Transmuted Fuzzy entropies.

µA(xi) HDT HDT
Q HDT

C HDT
4

0 1.71×10−6 3.08×10−6 8.56×10−7 8.56×10−7

0.1 0.325 0.501 0.279 0.284

0.2 0.501 0.700 0.488 0.501

0.3 0.611 0.801 0.622 0.640

0.4 0.673 0.849 0.696 0.716

0.5 0.693 0.863 0.719 0.740

0.6 0.673 0.849 0.696 0.716

0.7 0.611 0.801 0.622 0.640

0.8 0.501 0.700 0.488 0.501

0.9 0.325 0.501 0.279 0.284

1.0 1.71×10−6 3.08×10−6 8.56×10−7 8.56×10−7

Table 1: Normalized Values of HDT (A) and its respected transmuted generalizations
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All transmuted fuzzy entropies are performing better than the original entropy, as we expected. There is a significant
increase in the values of the generalized entropies in comparison with De-Luca and Termini measure. QTFE enhances the
performance of the entropy measure more than the others.
The difference in performance between QTFE and CTFE, k–TFE is noticeable. But does this remark going against what
we believe in?, introducing more parameters will end up in a better performance of a measure?
In fact, parameter λ in QTFE is acting as an additional parameter to the measure, but in the cases of CTFE and k–TFE,
more λ ’s is not considered more parameters, it is just a division of one parameter.
As shown below in Table 2, TFE is performing better than the original measure, with best performance for QTFE.

µA(xi) HPP HPP
Q HPP

C HPP
4

0 4.19×10−7 7.54 ×10−7 2.09×10−7 2.09×10−7

0.1 0.370 0.558 0.332 0.338

0.2 0.651 0.833 0.670 0.689

0.3 0.846 0.950 0.880 0.899

0.4 0.962 0.991 0.975 0.982

0.5 1.000 1.000 1.000 1.00

0.6 0.962 0.991 0.975 0.982

0.7 0.846 0.950 0.880 0.899

0.8 0.651 0.833 0.670 0.689

0.9 0.370 0.558 0.332 0.338

1.0 4.19×10−7 7.54 ×10−7 2.09×10−7 2.09×10−7

Table 2: Normalized Values of HPP(A) and its respected transmuted generalizations

µA(xi) HBP HBP
Q HBP

C HBP
4

0 2.00×10−7 3.60×10−7 1.00×10−7 1.00×10−7

0.1 0.198 0.325 0.147 0.149

0.2 0.385 0.575 0.349 0.356

0.3 0.545 0.743 0.542 0.557

0.4 0.654 0.835 0.674 0.693

0.5 0.693 0.863 0.719 0.740

0.6 0.654 0.835 0.674 0.693

0.7 0.545 0.743 0.542 0.557

0.8 0.385 0.575 0.349 0.356

0.9 0.198 0.325 0.147 0.149

1.0 2.00×10−7 3.60×10−7 1.00×10−7 1.00×10−7

Table 3: Normalized Values of HBP(A) and its respected transmuted generalizations
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µA(xi) HV S HV S
Q HV S

C HV S
4

0 1.26×10−7 5.99×10−7 1.66×10−7 1.66×10−7

0.1 0.837 0.494 0.274 0.278

0.2 0.985 0.791 0.608 0.626

0.3 0.999 0.936 0.851 0.871

0.4 0.999 0.989 0.969 0.977

0.5 1.000 1.000 1.000 1.000

0.6 0.999 0.989 0.969 0.977

0.7 0.999 0.936 0.851 0.871

0.8 0.985 0.791 0.608 0.626

0.9 0.837 0.494 0.274 0.278

1.0 1.26×10−7 5.99×10−7 1.66×10−7 1.66×10−7

Table 4: Normalized Values of HVS(A) and its respected transmuted generalizations

µA(xi) HNT HNT
Q HNT

C HNT
4

0 3.16×10−4 5.69×10−4 1.58×10−4 1.58×10−4

0.1 0.346 0.527 0.303 0.308

0.2 0.527 0.726 0.520 0.534

0.3 0.677 0.852 0.701 0.721

0.4 0.784 0.919 0.819 0.840

0.5 0.824 0.940 0.859 0.879

0.6 0.784 0.919 0.819 0.840

0.7 0.677 0.852 0.701 0.721

0.8 0.527 0.726 0.520 0.534

0.9 0.346 0.527 0.303 0.308

1.0 3.16×10−4 5.69×10−4 1.58×10−4 1.58×10−4

Table 5: Normalized Values of HNT (A) and its respected transmuted generalizations

We state the following based on Table 1 and Table2;

HDT < HDT
C < HDT

4 < HDT
Q ,

HPP < HPP
C < HPP

4 < HPP
Q .

In the later tables we studied three generalized fuzzy entropies of order α , and we a reached similar conclusion, In Table
3

HBP < HBP
C < HBP

4 < HBP
Q .

Also, in Table 4

HVS < HVS
C < HVS

4 < HVS
Q .

And in Table 5

HNT < HNT
C < HNT

4 < HNT
Q .

4 Conclusion

The proposed generalized entropy named Transmuted Fuzzy entropy is another form of generalized entropies. we
presented 3 different measures; QTFE, CTFE and k–TFE with performance much better than the original FE, where
QTFE presented the best enhancement.
As TPD was first introduced in financial mathematics and later applied in modeling lifetime and survival data, we are
intrigued to apply TFE, and specially QTFE in these fields in future research.
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Abstract: We consider a linear quadratic differential game on an infinite time horizon with two types of an information structure.

The game models are considered in both information structures: the open loop design and feedback design. The Newton solver for

computing the stabilizing solution of the associated Nash-Riccati equations has been established. Moreover, a convergent linearized

iterative method depending on a negative constant is introduced for each information structure. The linearized iteration has a linear

convergence rate, however there are cases where the iteration is faster than Newton’s method. Numerical experiments are implemented

to explain the computational advantages of the introduced solvers.
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1 Introduction

There is a correlation between the behaviour of economic agents and their profits on a market. Game theory has used to
model and investigate the equilibrium of a market. The market price is defined via a dynamic system equation. Typical
applications of game models are in different branches in economics [10,13] and specially in modelling the energy markets
[17], gas network optimization [1].

The Nash equilibrium theory is an effective instrument for the analysis of the equilibrium states in game models. We
analyze the problem of computation the optimal strategies to the Nash equilibrium in linear quadratic differential games.
Considering a linear dynamics upon the quadratic cost, the problem lead us to solve the coupled Riccati-like differential
equations.

Nash equilibrium (or optimal) strategies for differential games are studied in many papers and applications. Nash
equilibrium strategies depending on a special solution of coupled algebraic Riccati equations [10] - [13].

The Nash equilibrium and its applicability in the machine learning classification via support vector machines was
investigated recently in many papers, for example [5,14]. It is important to find the corresponding equilibrium fast and
effective.

We consider a dynamic system of the type

ẋ = Ax+B1u1 +B2u2 , x(0) = x0 . (1)

In Equation (1) the state vector is denoted by x, the initial vector is x0 ∈ Rn×1 , and matrices A,B1,B2 belong to
Rn×n ,Rn×m1 ,Rn×m2 , where Rp×q denotes a set of p×q matrices with real entries. Control vectors are u1,u2. Each player
has to choose its control in order to increase its profit. If for all nonnegative vectors x0,u1,u2 the state function x(t) takes
only nonnegative values, then system (1) is a positive one. Moreover, system (1) is positive if and only if matrices B1 and
B2 are nonnegative ones and the matrix (-A) is a Z-matrix [2].

We consider an infinite time horizon game model for a positive system in two cases: (a) with an open loop information
design and (b) with a feedback information one. The Newton method and its computer realization for computing the

∗ Corresponding author e-mail: i−ivanov@feb.uni-sofia.bg

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

DOI: https://doi.org/10.47013/17.2.10


294 First Author : An iterative method for Nash equiliblium

Nash equilibrium for the same problem was presented and analyzed in [3]. The Newton algorithm solves a Lyapunov
matrix equation at each iteration step via Kronecker product, which approach increase double the size of computational
problem [3]. In this paper we explore a problem to find Nash equilibrium strategies for a two-player infinite horizon linear
quadratic differential game in these two cases. We propose new faster iterations to determine the stabilizing solution
of the corresponding Nash-Riccati equations. Based on the stabilizing solution the optimal controls of each player are
established. The computational algorithm of the new iteration needs to compute only two matrix inverses of each iteration
step. Numerical experiments are implemented to explain the computational advantages of the introduced solvers.

1.1 A feedback design game model

The theory of the Nash equilibrium in a feedback design was established in [15,16] and computationally investigated in
[2,3,8]. The goal of each player is to maximize the corresponding cost function. Cost functionals J1,J2 for players are
defined

Ji(F1,F2,x0) = +

∫ ∞

0
xT

(

Qi +
2

∑
j=1

FT
j Ri j Fj

)

xdt , (2)

for i = 1,2. Matrices Qi and Ri j are symmetric ones with Qi ∈ Rn×n and Ri j ∈ Rm j×m j and i, j = 1,2. The following

additional requirements are assumed:
(a) Q1,Q2 ,R12, and R21 are symmetric and nonnegative matrices;

(b) R−1
ii is nonpositive, i = 1,2.

Moreover, to compute a feedback Nash equilibrium point one has to solve the couple of Nash-Riccati equations [2]:

0 = R1(X1,X2) :=−AT X1 −X1 A−Q1 +X1 S1 X1 + X1 S2 X2 +X2 S2 X1 −X2 S12 X2 , (3)

0 = R2(X1,X2) := −AT X2 −X2 A−Q2+X2 S2 X2 +X2 S1 X1 +X1 S1 X2 −X1 S21 X1 , (4)

where the matrix coefficients are computed via:
(a) Si = Bi R−1

ii BT
i , Si = ST

i ≤ 0 , i = 1,2;

(b) S12 = B2R−1
22 R12R−1

22 BT
2 ,

S12 = ST
12 ≥ 0, (R12 = RT

12) ;

(c) S21 = B1R−1
11 R21R−1

11 BT
1 ,

S21 = ST
21 ≥ 0, R12 = RT

12,R21 = RT
21 .

We derive a faster iteration to calculate an n× n stabilizing solution (X̃1, X̃2) of (3)-(4). The closed loop matrix A−
S1X̃1 − S2X̃2 of system (1) is a stable one. Thus, the feedback Nash equilibrium is defined by F̃j = −R−1

j j BT
j X̃ j , j = 1,2

and optimal functional’s value is J j(F̃1, F̃2,x0) = xT
0 X̃ j x0 , j = 1,2 [15,16].

1.2 An open loop design game model

In addition, we define the cost functionals J1,J2 for the players in a game with an open loop design

Ji(u1,u2,x0) = +

∫ ∞

0

(

xT Qix+
2

∑
j=1

uT
j Ri j u j

)

dt . (5)

The matrix coefficients in (5) are the same as (2). Players choose their own strategies u1,u2 based on the information
for the initial state x0 [2]. The Nash equilibrium point of the game is a solution of the couple Nash-Riccati equations:

0 = L1(X1,X2) :=−AT X1 −X1 A−Q1 +X1 S1 X1 + X1 S2 X2 , (6)

0 = L2(X1,X2) :=−AT X2 −X2 A−Q2 +X2 S2 X2 +X2 S1 X1 . (7)

A solution (X∗
1 ,X

∗
2 ) has a property the closed loop matrix (A− S1X∗

1 − S2X∗
2 ) is stable. Moreover, the Nash optimal

strategy (u∗1,u
∗
2) in the game is given by u∗j = −R−1

j j BT
j X∗

j x∗, j = 1,2 and x∗ solves the closed loop equation ẋ = (A−
S1X∗

1 − S2X∗
2 )x , x(0) = x0.
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1.3 Notations and facts

A matrix Q = (qi j) is nonnegative one in the element wise ordering if qi j ≥ 0 . A real square matrix A is called a Z-matrix
if there exists a real number σ and real nonnegative matrix Q, such that A = σ I −Q. A square Z-matrix has nonpositive
off-diagonal elements. If σ > ρ(Q), the matrix A is a nonsingular M-matrix. Note ρ(Q) is the spectral radius of Q.

The described two player linear-quadratic differential game is applied to positive differential system (1). We need
some properties for nonnegative matrices and especially for M-matrices.

According to theory of nonnegative matrices the following allegations are equivalent for a given Z-matrix (-A):
(a) (−A) is a nonsingular M-matrix;
(b) A is stable .

Lemma 1.[4]. For a Z-matrix A, the following items are equivalent:

(a) A is a nonsingular M-matrix;

(b) A−1 ≥ 0;

(c) Au > 0 for some vector u > 0;

(d) All eigenvalues of A have positive real parts.

Lemma 2.[6]. Let A = (ai j) ∈ Rm×m be an M-matrix. If the elements of B = (bi j) ∈ Rm×m satisfy the relations bii ≥
aii , ai j ≤ bi j ≤ 0 , i 6= j , i, j = 1, ...,m then B also is an M-matrix.

The paper is organized as follows. In section 2, we consider the linearized process to modify the Newton method to
compute the feedback Nash equilibrium. The convergence proof is derived. In section 3, we slightly modify the introduced
iteration to a game with an open loop design. In section 4, we present some numerical illustrations of the proposed
iteration. Finally, we finish the paper with some conclusions.

2 Linearized iteration applied to a feedback equilibrium

We discuss how to compute the feedback Nash equilibrium. The Newton iteration is defined and investigated in [2,8]
(i = 1,2):

−A(k)T
X
(k+1)
i −X

(k+1)
i A(k)+∑

j 6=i

[

W
(k)
i j X

(k+1)
j +X

(k+1)
j W

(k)
i j

T
]

= Q
(k)
i , (8)

where

A(k) = A− S1 X
(k)
1 − S2 X

(k)
2 ,

W
(k)
12 = X

(k)
1 S2 −X

(k)
2 S12 ,

W
(k)
21 = X

(k)
2 S1 −X

(k)
1 S21 , (9)

Q
(k)
i = Qi +X

(k)
i SiX

(k)
i +∑

j 6=i

[X
(k)
i S jX

(k)
j +X

(k)
j S jX

(k)
i ] .

The linearized process was effectively applied to construct iterative methods for solving the algebraic Riccati equation
associated with M-matrices [7,9].

At each step of Newton iteration (8) it is necessary to find a solution of a Lyapunov matrix equation. We propose

a linearized modification for the Newton method. We take X
(0)
1 = X

(0)
2 = 0, and negative constant γ , and construct two

matrix sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 via:

F
(p)
1 = γIn +A− S1 X

(p)
1 − S2X

(p)
2 ,

T
(p)

1 = γIn −AT +X
(p)
1 S1 +X

(p)
2 S2 ,

Y
(p)
i F

(p)
1 = T

(p)
1 X

(p)
i −Qi(X

(p)
1 ,X

(p)
2 ) (10)

F
(p)
2 = γIn +AT −Y

(p)
1 S1 −Y

(p)
2 S2 ,

T
(p)

2 = γIn −A+ S1Y
(p)
1 + S2Y

(p)
2

F
(p)
2 X

(p+1)
i = Y

(p)
i T

(p)
2 −Qi(Y

(p)
1 ,Y

(k)
p ) (11)
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where
Qi(Zi,Z j) = Qi +ZiSiZi +Z jSi jZ j ,

with (i, j = 1,2; j 6= i) .
We remark that the standard properties for the matrices of the above matrix sequences in the following Lemma:

Lemma 3.The matrix sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 are obtained applying iteration (10) - (11) with initial zero

matrices X
(0)
1 = 0 ,X

(0)
2 = 0 , and γ < 0. Then, the following equalities are satisfied for p = 0, . . . ,∞:

(i) (Y
(p)
i −X

(p)
i )F

(p)
1 = (X

(p)
i −Y

(p−1)
i )(γIn −A+ S1 X

(p)
1 + S2X

(p)
2 )

+ (X
(p)
j −Y

(p−1)
j )S jX

(p)
i +Y

(p)
i S j(X

(p)
j −Y

(p−1)
j )

− (X
(p)
j −Y

(p−1)
j )Si jX

(p)
i −Y

(p)
j Si j(X

(p)
j −Y

(p−1)
j ) ,

(ii)F
(p)
2 (X

(p+1)
i −Y

(p)
i ) = (γIn −AT +Y

(p)
1 S1 +Y

(p)
2 S2)(Y

(p)
i −X

(p)
i )

+Y
(p)
i S j(Y

(p)
j −X

(p)
j )+ (Y

(p)
j −X

(p)
j )

× S jX
(p)
i +(X

(p)
j −Y

(p)
j )Si jX

(p)
i +Y

(p)
j Si j(X

(p)
j −Y

(p)
j ) .

Moreover, if the couple (X̃1, X̃2) is an exact solution of (3)-(4) the identities can be verified (i=1,2):

(iii) (Y
(p)
i − X̃i)F

(p)
1 = (γIn −AT )(X

(p)
i − X̃i)+ X̃iSi(X

(p)
i − X̃i)

+ X̃iS j(X
(p)
j − X̃ j)+ (X

(p)
j − X̃ j)S jX̃i + X̃ jS j(X

(p)
i − X̃i)

+ (X̃ j −X
(p)
j )Si jX̃ j +X

(p)
j Si j(X̃ j −X

(p)
j ) ,

(iv) F
(p)
2 (X

(p+1)
i − X̃i) = +(Y

(p)
i − X̃i)(γIn −A)

+ (Y
(p)
i − X̃i)SiX̃i +(Y

(p)
j − X̃ j)S jX̃ j

+(Y
(p)
i − X̃i)S jX̃ j + X̃iS j(Y

(p)
j − X̃ j)

+ (X̃ j −Y
(p)
j )Si jX̃ j +Y

(p)
j Si j(X̃ j −Y

(p)
j ) .

Based on the proved Lemma, we confirm the convergence of the proposed iteration (10) - (11) in the following
Theorem:

Theorem 1.Assume matrices A,S1,S2, and Q1 ,Q2 are coefficients of the set of matrix equations R j(X1,X2) = 0, j=1,2.

There exists a negative γ < 0, such that −(γIn +A) is an M-matrix and γIn −A ≤ 0.

The sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 obtained via (10) - (11) satisfy the properties:

(i) X̃i ≥ X
(p+1)
i ≥ Y

(p)
i ≥ X

(p)
i for p = 0,1, . . ., i=1,2 for any exact nonnegative solution X̃1, X̃2 of Ri(X1,X2) = 0,

i=1,2. ;

(ii) The matrices (−F
(p)
1 ) and (−F

(p)
2 ) are M-matrices for any positive p.

(iii) The matrix sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 converge to the stabilizing nonnegative solution X̂1, X̂2 to couple of

Nash-Riccati equations (3)-(4).

Proof.We provide a proof by mathematical induction on the number p of the iteration step. In the beginning, we prove

theorem’s statements for p = 0. We take X
(0)
1 = X

(0)
2 = 0, and construct the couple of sequences {X

(p)
i ,Y

(p)
i }∞

p=0, i = 1,2

applying recursive equations (10) - (11) with X
(0)
1 = 0 ,X

(0)
2 = 0 and γ < 0.

For p = 0 we have F
(0)
1 = γIn +A, i.e. (γIn +A)−1 ≤ 0. This means that (−F

(0)
1 ) and (−F

(0)
2 ) are M-matrices. and

Q1(X
(0)
1 ,X

(0)
2 )≥ 0. Thus Y

(0)
j ≥ 0;Y

(0)
j ≥ X

(0)
j , j = 1,2.

In the second step, we formulate the inductive hypothesis, i.e. we assume that the statements are true for the a positive

value of p. We assume that X
(p)
i ≥Y

(p−1)
i ≥ X

(p−1)
i ≥ 0 for some integer p and i=1,2. It is true that X

(p)
i −Y

(p−1)
i ≥ 0, and

Y
(p−1)
i −X

(p−1)
i ≥ 0. In addition, (−F

(p)
1 ) and (−F

(p)
2 ) are M-matrices.

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 17, No. 2, 293-301 (2024 ) / 297

The next is the induction step, where we prove the statements for p+1. We have to prove inequalities X
(p+1)
i ≥Y

(p)
i ≥

X
(p)
i ≥ 0 and (−F

(p+1)
1 ) and (−F

(p+1)
2 ) are M-matrices.

Applying Lemma 3 (i), we get

Y
(p)
i −X

(p)
i =W

(p)
i (F

(p)
1 )−1 ,

where

W
(p)
i := (X

(p)
i −Y

(p−1)
i )(γIn −A+ S1 X

(p)
1 + S2X

(p)
2 )

+ (X
(p)
j −Y

(p−1)
j )S jX

(p)
i +Y

(p)
i S j(X

(p)
j −Y

(p−1)
j )− (X

(p)
j −Y

(p−1)
j )Si jX

(p)
i

−Y
(p)
j Si j(X

(p)
i −Y

(p−1)
i ) .

We note the following S1 ≤ 0 ,S2 ≤ 0 ,γIn − A ≤ 0 ,S12 ≥ 0 ,S21 ≥ 0 . Thus W
(p)
i ≤ 0. Therefore Y

(p)
i − X

(p)
i ≥ 0,

because (F
(p)
1 )−1 ≤ 0 for i = 1,2.

Further on, according to Lemma 3 (ii) we have

X
(p+1)
i −Y

(p)
i = (F

(p)
2 )−1 H(p) ,

where

H(p) := (γIn −AT +Y
(p)
1 S1 +Y

(p)
2 S2)(Y

(p)
i −X

(p)
i )+Y

(p)
i S j(Y

(p)
j −X

(p)
j )

+ (Y
(p)
j −X

(p)
j )S jX

(p)
i +(X

(p)
j −Y

(p)
j )Si jX

(p)
i +Y

(p)
j Si j(X

(p)
i −Y

(p)
i ) .

With similar arguments we arrive at the conclusion X
(p+1)
j −Y

(p)
j ≥ 0 , j = 1,2.

We compute (i=1,2) X
(p+1)
i via (11) and Y

(p+1)
i via (10). Consider the matrices

F
(p+1)
1 = γIn + A− S1 X

(p+1)
1 − S2X

(p+1)
2 and F

(p+1)
2 = γIn + AT −Y

(p+1)
1 S1 −Y

(p+1)
2 S2. According to Lemma 2 and

properties X
(p+1)
i ≥ X

(p)
i and Y

(p+1)
i ≥ X

(p+1)
i , i = 1,2 we derive the conclusion (−F

(p+1)
1 ) and (−F

(p+1)
2 ) are

M-matrices and therefore (F
(p+1)
1 )−1 ≤ 0 and (F

(p+1)
2 )−1 ≤ 0.

Thus, the sequences {X
(p)
i ,Y

(p)
i }∞

p=0 , i = 1,2 are monotone increasing. We have to prove that they are bonded above.

Consider any exact nonnegative solution (X̃1, X̃2) of R j(X1,X2) = 0, j=1,2. We shall prove that the solution is an upper
bound of the matrix sequences.

For p = 0, we have X̃i ≥ X
(0)
i = 0, and according to Lemma 3 (iii)

(Y
(0)
i − X̃i)F

(0)
1 =−(γIn −AT ) X̃i − X̃iSiX̃i − X̃iS jX̃ j − X̃ jS jX̃i − X̃ jS jX̃i + X̃ jSi jX̃ j ≥ 0 ,

we infer Y
(0)
i − X̃i ≤ 0, i = 1,2.

Moreover, for p > 0 we have

(Y
(p)
i − X̃i)F

(p)
1 = (γIn −AT )(X

(p)
i − X̃i)+ X̃iSi(X

(p)
i − X̃i)+ X̃iS j(X

(p)
j − X̃ j)

+ (X
(p)
j − X̃ j)S jX̃i + X̃ jS j(X

(p)
i − X̃i)+ (X̃ j −X

(p)
j )Si jX̃ j +X

(p)
j Si j(X̃ j −X

(p)
j ) ≥ 0 ,

we have Y
(p)
i − X̃i ≤ 0, i = 1,2.

We evaluate the matrix difference X
(p+1)
i − X̃i, i = 1,2. Applying Lemma 3 (iv) we obtain:

F
(p)
2 (X

(p+1)
i − X̃i) = (Y

(p)
i − X̃i)(γIn −A)+ (Y

(p)
i − X̃i)SiX̃i +(Y

(p)
j − X̃ j)S jX̃ j

+(Y
(p)
i − X̃i)S jX̃ j + X̃iS j(Y

(p)
j − X̃ j)

+ (X̃ j −Y
(p)
j )Si jX̃ j +Y

(p)
j Si j(X̃ j −Y

(p)
j ) ≥ 0 .

Thus, X
(p+1)
j − X̃ j ≤ 0, j = 1,2.

The matrix sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 of nonnegative matrices converge to the couple of nonnegative matrices

(X̂1, X̂2). By taking the limits in (10) - (11) it follows that the couple of matrices is a solution to Nash-Riccati equations
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(3)-(4). Moreover, the limit matrix has the property X̂i ≤ X̃i, i = 1,2 (in the element wise ordering). The matrix −A+

S1 X̂1 + S2 X̂2 is an M-matrix because (−F
(p)
1 ) is an M-matrix for all positive p. Therefore, the matrix A− S1 X̂1 + S2 X̂2 is

stable. The solution (X̂1, X̂2) is a stabilizing one.

Corollary 1The stabilizing solution (X̂1, X̂2) of Nash-Riccati equations (3)-(4) derived in Theorem 1 is the minimal one

to (3)-(4).

3 Linearized iteration applied to a open loop design

In this section, we change iteration formula (10) - (11) to obtain a new iteration to compute the stabilizing solution of the
set of Nash-Riccati equations in case of a game with open loop design. In formula (10) - (11), we change the matrices
Qi(Zi,Z j), i, j = 1,2; j 6= i as follows:

Qi(Zi,Z j) = Qi +ZiSiZi +Z jS jZi , (12)

with i, j = 1,2; j 6= i .
Applying Theorem 1, we derive a proof for the convergence of iteration (10) - (11) in the next Theorem:

Theorem 2.Assume matrices A,S1,S2 , and Q1,Q2 are coefficients of the set of matrix equations Li(X1,X2) = 0, i=1,2

defined with (6) - (7). There exists negative γ < 0, such that −(γIn +A) is an M-matrix and γIn −A ≤ 0.

The sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 constructed by (10) - (11) with Qi(Zi,Z j) defined in (12) fulfill the properties:

(i) X̃i ≥ X
(p+1)
i ≥ Y

(p)
i ≥ X

(p)
i for p = 0,1, . . ., i=1,2 for any exact nonnegative solution X̃1, X̃2 of Li(X1,X2) = 0,

i=1,2. ;

(ii) The matrices (−F
(p)
1 ) and (−F

(p)
2 ) are M-matrices for any positive p.

(iii) The matrix sequences {X
(p)
i ,Y

(p)
i }∞

p=0, i=1,2 converge to the stabilizing nonnegative solution (X̂1, X̂2) to couple

of Nash-Riccati equations Li(X1,X2) = 0, i=1,2. In fact the matrix A− S1 X̂1 − S2 X̂2 is stable.

4 Results

In this section, we apply the proposed iterations to compute the stabilizing solution of the couple Nash-Riccati equations
which help to find the Nash equilibrium point for the games with feedback information structure and the open loop
information stricture. Experiments are provided with different matrix coefficients of Nash-Riccati equations (3)-(4) and
(6)-(7). In addition, we present the comparative analysis between Newton method (8) and proposed linearized iterations
in the considered two cases. All experiments are executed with MATLAB R2018b on a Laptop with 1.50 GHz Intel(R)
Core(TM) and 8 GB RAM, running on Windows 10. The stop criterion for each iteration is

max
(

‖R1(X
(k)
1 ,X

(k)
2 )‖2,‖R2(X

(k)
1 ,X

(k)
2 )‖2

)

≤ tol or max
(

‖L1(X
(k)
1 ,X

(k)
2 )‖2,‖L2(X

(k)
1 ,X

(k)
2 )‖2

)

≤ tol, where ‖.‖2 is

the spectral matrix norm and tol = 0.1e− 10.
Moreover, the property of symmetry for matrices S1,S2 give us possibility to improve the computational scheme of

iteration (10)-(11) in order to decrease the computations for each iteration step and accelerate the algorithm based on
(10)-(11).

Example 1.Consider the matrix coefficients of system (1) and cost functions J1,J2:

A =







−4 1 1 0.5
1 −5 0.8 1
1 1 −4 1

0.9 1 2 −6






, B1 =







5
0
2
0






, B2 =







1 0 0 1
0.8 1 0 0.2
0.3 1 1 0
0.6 0 0 1






,

Q1 = diag [5; 0; 0.5; 3] , Q2 = diag [50; 4; 5; 0] , R11 = −90 ∈ R1×1; R21 = 200 ∈ R1×1 , R12 = diag [400; 200; 500;
300] , and

R22 =







−400 0 0 −10
0 −100 0 0
0 0 −200 0

−10 0 0 −400






.

We compute the matrix coefficients S1 ≤ 0 ,S2 ≤ 0 ,S12 ≥ 0 , and S21 ≥ 0 .
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The proposed iteration

(10)-(11)

γ It CPU time

seconds

-10 219 0.55

-5 118 0.30

-1 73 0.18

-1.25 42 0.105

-0.5 no result

Table 1: Results for Example 2 with tol = .1e− 10.

To compute the stabilizing solution of the couple of Nash-Riccati equations (3)-(4) we apply linearized iteration (10)
- (11). After 118 iteration steps with γ =−5 we obtain the stabilizing solution (X̂1 , X̂2). The matrices are nonnegative and
symmetric:

X̂1 =







1.1055 0.3416 0.4615 0.2485
0.3416 0.1767 0.2514 0.1449
0.4615 0.2514 0.4074 0.2194
0.2485 0.1449 0.2194 0.3415






, X̂2 =







8.8338 2.0633 2.6256 1.2793
2.0633 1.2650 1.2269 0.5980
2.6256 1.2269 2.1363 0.8011
1.2793 0.5980 0.8011 0.3741






.

The closed loop matrix A− S1X̂1 − S2X̂2 has the eigenvalues
−1.1274 ,−4.7929 ,−5.6682 ,−6.8395.

To compute the stabilizing solution of the couple of Nash-Riccati equations (6)-(7) we apply linearized iteration (10) -
(11) with the matrices Qi(Zi,Z j), i, j = 1,2; j 6= i defined by (12). Matrices X̂1 , and X̂2 are nonnegative and nonsymmetric:

X̂1 =







0.7775 0.1567 0.2067 0.1260
0.1569 0.0678 0.1007 0.0726
0.2079 0.1011 0.1990 0.1195
0.1279 0.0734 0.1202 0.2938






, X̂2 =







7.5325 1.4131 1.7341 0.8439
1.4048 0.9198 0.7526 0.3661
1.7156 0.7499 1.4809 0.4807
0.8248 0.3617 0.4765 0.2154






.

The closed loop matrix has the eigenvalues −1.3124 ,−4.8023 ,−5.6708 ,−6.8395.

Example 2.Consider the same matrix coefficients as in Example 1. We compare the Newton iteration and the proposed
linearized iteration to compute the stabilizing solution of (3)-(4).

The Newton method computes the solution for 6 iteration steps and CPU time of 0.21 seconds for 100 runs. Results
from experiments with proposed iteration are given in Table 1. The execution CPU time for 100 runs is given. The
convergence of the proposed method is proved in Theorem 1. The proposed iteration executes smaller number of iteration
steps (It=42) for γ =−1.25. For this value of γ the proposed method is faster than Newton method which has a quadratic
convergence rate. In addition, the method does not converge for γ = −0.5. Weakness of the method that one has to find
a properly value of a which gives speed of the method. In addition, we check the conditions of Theorem 1 for choosing
values of γ .

Example 3.Define the matrix coefficients of system (1) and cost functions J1,J2 as follows (n=8).

A0 =







−24 0 0 2
20 −25 0 0
0 16 −25 0

1.5 0 18 −24






, B10 =







0.7
0.9
0.9
0.8






, B20 =







2.8 0 0 0
0 5 0 0
0 0 4 1.5
0 0 3 8






,

A = diag[A0,A0] , B1 = diag[B10,B10] , B2 = diag[B20,B20] ,

R11 =−1.9 ∈ R1×1 , R21 = 20 ∈ R1×1 ,

v = diag[40,30,20,10,40,60,70,80] , R12 = diag[v] ,

R22 = diag[−150,−1, ...,−1,−120]∈ Rn×n ,

Q1 = diag[4,1, ...,1,1.5]∈ Rn×n ,

Q2 = 0.5Q1 .
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The proposed iteration

(10)-(11)

γ It CPU time

seconds

-20 101 0.32

-16 88 0.297

-15 85 0.292

-12 75 0.254

Table 2: Results for Example 3 with tol = .1e− 10.

We compare the Newton iteration and the proposed linearized iteration to compute the stabilizing solution to set of
matrix equations (3)-(4). Results are given in Table 2 The execution CPU time for 100 runs is given. The Newton method
computes the stabilizing solution of (3)-(4) for 7 iteration steps and CPU time of 0.97 seconds for 100 runs.

Example 4.Define the matrix coefficients of system (1) and cost functions J1,J2 as follows (n=16) using notations from
Example 3;
A = 2diag[A0,A0,A0,A0] ,
B1 = diag[B10,B10,B10,B10] ,
B2 = diag[B20,B20,B20,B20] ,R12 = diag[v,v] .

The Newton method computes the stabilizing solution of (3)-(4) for 4 iteration steps and CPU time of 1.774 seconds
for 10 runs. Moreover, new iteration (10)-(11) finds the stabilizing solution for 22 iteration steps, CPU time of 0.047
seconds for 10 runs and γ =−20.

5 Conclusion

The computation of the stabilizing solution of the Nash-Riccati equations is important for applications. In this paper,
we applied a linearized process to modify Newton’s method to compute the stabilizing solution for a set of Nash-Riccati
equations. Moreover, we have proposed fast iterative methods to find this solution. Here, we were presented a convergence
proof to effective iteration scheme (10)- (11). The computational simplicity of the algorithm leads to the efficiency of the
proposed iteration and it makes the new iteration an alternative method for computing the stabilizing solution. Related
discussions are expected to lead to new computational algorithms to similar problems. Based on the considered examples
we may conclude that the proposed iteration is an effective solver for these examples. As a future research the linearized
process may be extended to construct a new iteration to find the Nash equilibrium strategies of an N-player infinite horizon
linear quadratic differential game.
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1 Introduction

The theory of wavelets and continuous wavelet transforms has garnered increased interest due to the limitations of Fourier
transform in providing complete information about a signal. In particular, Fourier transform can not be a suitable tool for
non stationary signals, in which frequency changes with respect to time. Hence appears the importance of the wavelet and
the continuous wavelet transform CWT. For an overview of CWT, we refer the reader to [5,27]. Motivated by the works
of [31,14,1], we consider in this paper, time-frequency localization problems in the case of continuous Laguerre wavelet
transform CLWT. The interest of studing Laguerre transform comes from Heisenberg group which replace the euclidean
space in quantium mechanics. Roughly speaking, Fourier Laguerre transform is non other than the Fourier transform of
radial functions in this occurence. Studying the uncertainty principle for FL was subject of several works by the authors
and many more, one can cite for instance [9,10,20,22,26]. However studying the uncertainty principle for CLWT still
less aborded. Note that the harmonic analysis associated to CLWT was initiated in [23], where the Plancherel and the
inversion formulas were established for CLWT. Recently Mejjaoli and Trimèche in [16,15] considered such problems in
the case of two-wavelets in Laguerre occurence. In this paper, we improve the litterature by giving uncertainty inequalities
for CLWT.

The uncertainty principle is one of the most interesting result which gives us an overview on the positioning of a
function and its Fourier transform. This principle states, in quantum mechanics, that an observer cannot determine
simultaneously the values of position and momentum of a quantum particule with precision. A precise quantitative
formulation of the uncertainty principle, usually called Heisenberg inequality [11,30] is stated for f ∈ L2(R), as follows:

∫

R
x2 | f (x)|2 dx .

∫

R
ξ 2
∣

∣

∣

̂f (ξ )
∣

∣

∣

2

dξ ≥ 1

4

(

∫

R
| f (x)|2 dx

)2

, (1)

where ̂f is the Fourier transform, given for suitable functions by

̂f (ξ ) =
1√
2π

∫

R
f (x) e−iξ xdx.
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Another version of the uncertainty principle concems with concentration of f and its Fourier transform. We reference
two results: the first one was studied by Faris [17] and Price [18,19] in the classical Fourier setting, known as the local
uncertainty principle. The second one goes to Benedicks and Amrein-Berthier. Benedicks [3] first introduced this theorem,
stating that if a function f has a subset S of finite measure as its support, and its Fourier transform f̂ has a subset Σ of finite
measure as its support, then f must be the null function. A stronger formulation of this principle was provided by Amrein
and Berthier in [2] for the classical Fourier occurence. In this paper we prove the analogue of all previous uncertainty
principle theorems when considering the CLWT.

Our paper is structured as follows.
In section 2, we start by giving some useful background evoking Laguerre hypergroup K and Fourier Laguerre transform
FL. Section 3 summarizes key facts about basic Laguerre wavelet theory. Section 4 is devoted to our main results. First,
we prove Heisenberg-type uncertainty inequalities, analogous of inequality (1), considering the product of dispersions
with both position and scale as variables, for the CLWT. Second, we prove two theorems dealing with concentration
in the support of a given function and its CLWT. The first is a local uncertainty principle and the second deals with a
Benedicks-Amrein-Berthier’s uncertainty principle.

2 Laguerre hypergroup and Fourier Laguerre transform

Laguerre hypergroup emerges as the fundamental manifold of the radial function space in the (2n + 1)-dimensional
Heisenberg group Hn, where the multiplication operator is given by

(z1, t1).(z2, t2) = (z1 + z2, t1 + t2 − Im(z1z2)).

A function f on Hn is considered radial if it remains invariant under the action of the unitary group U (n) via u.(z, t) =
(u.z, t). For additional details we refere the reader to [6,28,29]. Let α ≥ 0. The Laguerre hypergroup K= [0,+∞)×R is
equiped with the convolution product ∗α . This product is defined for two bounded Radon measures µ1 and µ2 on K as:

< µ1 ∗α µ2, f >=

∫

K×K
T α

x,t f (y,s)dµ1dµ2,

where T α
x,t is the generalized translation operator on K given, for α = 0, by

T α
x,t f (y,s) =

1

2π

∫ 2π

0
f (
√

x2 + y2 + 2xycosθ , t + s+ xysinθ )dθ (2)

and, for α > 0, by
T α

x,t f (y,s) =

α

π

∫ 2π

0

∫ 1

0
f (
√

x2 + y2 + 2xyr cosθ , t + s+ xyr sinθ )r(1− r2)α−1drdθ . (3)

Remark that if µ1 and µ2 are equal to Dirac measure at (x, t) and (y,s) ∈K then

(δ(x,t) ∗α δ(y,s))( f ) = T α
x,t f (y,s).

We find in [23] that (K,∗α) has a commutative hypergroup structure in the sense of Jewett. The involution is defined by
the homeomorphism i(x, t) = (x,−t) and the Haar measure is given by

dmα(x, t) =
x2α+1

πΓ (α + 1)
dxdt. (4)

e = (0,0) is the unit element of (K,∗α) since δ(x,t) ∗α δ(0,0) = δ(0,0) ∗α δ(x,t) = δ(x,t). In the case of Laguerre hypergroup,

the dual space, the space of all bounded functions χ : K → C satisfying for (x, t) ∈ K, χ̃(x, t) = χ(x,−t) = χ(x, t), is
described by

{ϕλ ,m ; (λ ,m) ∈ R∗×N}∪{ϕρ ; ρ ≥ 0},
where

ϕρ = jα (ρ x) and ϕλ ,m(x, t) = eiλ t
L

(α)
m (|λ |x2). (5)

Note that jα is the normalized Bessel function of order α and L
(α)
m is the Laguerre function given on R+ by

L
(α)
m (x) = e−

x
2

Lα
m(x)

Lα
m(0)

, (6)
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where Lα
m is the Laguerre polynomial of order α and degree m,

Lα
m(x) =

m

∑
k=0

(−1)k Γ (m+α + 1)

Γ (k+α + 1)

1

k!(m− k)!
xk. (7)

Topologically, the dual space can be identified to the Heisenberg fan, the set

⋃

m∈N
{(λ ,µ) ∈ R2; µ = |λ |(2m+α + 1)}

⋃

{(0,µ) ∈ R2; µ ≥ 0}.

The subset {(0,µ) ∈ R2; µ ≥ 0} is usually disregarded since it has zero Plancherel measure. Therefore, it is natural to
concentrate on the characters ϕλ ,m. For (λ ,m) ∈R×N, ϕλ ,m is the unique solution to the problem

{

D1u = iλ u,

D2 u =−4|λ |(m+
α + 1

2
)u,

(8)

with the initial condition

u(0,0) = 1,
∂u

∂x
(0, t) = 0 for all t ∈ R,

where, for all α ≥ 0,










D1 =
∂

∂ t

D2 =
∂ 2

∂x2
+

2α + 1

x

∂

∂x
+ x2 ∂ 2

∂ t2
.

(9)

For (λ ,m) ∈ K̂= R×N, the function ϕλ ,m satisfies, for all (x, t),(y,s) ∈K,

ϕλ ,m(x, t)ϕλ ,m(y,s) = T α
x,t ϕλ ,m(y,s). (10)

Furthermore, the Laguerre kernel is bounded function, and we have

∀(λ ,m) ∈ K̂, sup
(x,t)∈K

|ϕλ ,m(x, t)|= 1.

Denote Lp(K) = Lp(K,dmα) the space of measurable functions f satisfying

‖ f‖p,mα =

(

∫

K
| f (x, t)|pdmα(x, t)

)
1
p

<+∞.

The Fourier Laguerre transform of a function f in L1(K) is defined by

FL f (λ ,m) =
∫

K
f (x, t)ϕ−λ ,m(x, t)dmα (x, t). (11)

The FL is bounded operator from L1(K) to L∞(K̂) and it satisfies ‖FL f‖∞ ≤ ‖ f‖1,mα . Moreover, the Fourier Laguerre
transform can be inverted by

F
−1
L f (x, t) =

∫

K̂
f (λ ,m)ϕλ ,m(x, t)dγα (λ ,m), (12)

where dγα is the unique positive Radon measure on K̂ for which the Fourier Laguerre transform becomes an L2-isometry.
This measure is given by

dγα(λ ,m) = Lα
m(0)δm ⊗|λ |α+1dλ . (13)

To simplify we will denote, when needed, dγα to state dγα(λ ,m). FL transform satisfies the following Plancherel Formula

‖FL f‖2,γα = ‖ f‖2,mα , (14)

where

‖g‖p,γα =

(

∫

K̂
|g(λ ,m)|pdγα(λ ,m)

) 1
p

<+∞.
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By Riesz Thorin interpolation, we can expand the definition of FL f on Lp(K) for 1 ≤ p ≤ 2. Consequently, we obtain the

Hausdorff-Young inequality, for 1
p
+ 1

p′ = 1,

‖FL f‖p′,γα
≤ ‖ f‖p,mα . (15)

If f ∈ Lp(K) then, for all (x, t) ∈K, T α
x,t f ∈ Lp(K) and verifies

‖T α
x,t f‖p,mα ≤ ‖ f‖p,mα . (16)

Moreover
FL(T

α
x,t f )(λ ,m) = ϕλ ,m(x, t)FL f (λ ,m). (17)

The generalized convolution product of two functions f and g in L1(K) is defined by

f ⋆α g(x, t) =

∫

K
T α

x,t f (y,s).g(y,−s)dmα (y,s), (x, t) ∈K. (18)

Young’s inequality allows to extend the definition of ⋆α to Lp(K)× Lq(K), where p,q,r ≥ 1 and 1
r
= 1

p
+ 1

q
− 1. For

f ∈ Lp(K) and g ∈ Lq(K), where 1 ≤ p,q,r ≤ 2 with 1
r
= 1

p
+ 1

q
− 1, we get

‖ f ⋆α g‖r,mα ≤ ‖ f‖p,mα ‖g‖q,mα , (19)

and
FL( f ⋆α g) = FL( f )FL(g). (20)

3 Basic Laguerre wavelet theory

In this section, we gather some background related to CLWT. First and foremost, we shall adapt the definition of the
dilation operator in order to get formulas that can be compared to the classical Fourier Wavelets. We consider as in [21,

22] the dilated of (x, t) ∈K defined by δr(x, t) = (rx,r2t). For fr(x, t) = r−(2α+4) f (δ 1
r
(x, t)), we have

∫

K
fr(x, t) dmα(x, t) =

∫

K
f (x, t) dmα(x, t). (21)

We define, for a > 0, the dilation operator ∆a by

∆aψ(x, t) =
1

aα+2
ψ(

x

a
,

t

a2
) =

1

aα+2
ψ(δ 1

a
(x, t)). (22)

We can easily deduce the following properties.

Proposition 1.Let a > 0, we have

1.For all a,b > 0 ∆a∆b = ∆ab.

2.For all ψ ∈ L2(K), the function ∆a(ψ) belongs to L2(K) and satisfies

‖∆aψ‖2,mα = ‖ψ‖2,mα . (23)

3.For all ψ ∈ L2(K), the Fourier Laguerre of ∆a(ψ) is well defined and we have

FL∆aψ = ∆̂ 1
a
FL ψ , (24)

where

∆̂a f (λ ,m) = a−(α+2) f (δ ′
1
a

(λ ,m)),

and δ ′
r(λ ,m) = (r2λ ,m) is the dilated of (λ ,m) ∈ R×N.

4.Let h,g ∈ L2(K), we have

< ∆ah,g >L2(K)=< h,∆ 1
a
g >L2(K) .
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5.For all a > 0 and (x, t) ∈ K, ∆aT α
x,t = Tδa

(x, t)∆a, where T α
x,t is the translation operator associated to Laguerre

hypergroup given by (2) and (3).

Proof.1. For all a,b > 0,

∆a∆bψ(x, t) = ∆a

(

1

bα+2
ψ
( x

b
,

t

b2

)

)

=
1

(ab)α+2
ψ

(

x

ab
,

t

(ab)2

)

= ∆abψ(x, t).

2. The result is obvious by considering the substitutions y = x
a

and u = t
a2 .

3. Considering y = x
a

and u = t
a2 in (11), we get

FL∆a f (λ ,m) =

∫

K
f (y,u)ϕ−λ ,m(ay,a2u)aα+2 dmα(y,u).

Now using (5), we observe that aα+2ϕ−λ ,m(ay,a2u) = ϕ−a2λ ,m(y,u), which gives the wanted result.
4. By the same change of variables, we obtain

< ∆ah,g >= aα+2

∫

K
h(y,u)g(ay,a2u)dmα(y,u).

Hence, the result holds from (22).
5. The last point follows by remarking, in (2) and (3), that

f

(

√

x2 +
(y

a

)2

+ 2x
y

a
r cosθ ,

t

a2
+ s+ x

y

a
r sin θ

)

= f

(

√

(ax)2 + y2 + 2(ax)yr cosθ

a
,
t + a2s+(ax)yr sinθ

a2

)

.

Definition 1.Let ψ ∈ L2(K). We say that ψ is an admissible Laguerre wavelet on K if there exists a constant cψ satisfying,

for all m ∈ N and λ ∈ R,

0 < cψ =
∫ +∞

0
|FLψ(δ ′

a(λ ,m)|2 da

a
<+∞. (25)

According to [23], such admissible wavelet in Laguerre hypergroup exists. For instance, we cite the following function in
L2(K): ψ = F

−1
L (Θ), where

∀(λ ,m) ∈ K̂, Θ(λ ,m) = λ (m+
α + 1

2
)e−λ 2(m+ α+1

2 )2
. (26)

Now, let ψ be a Laguerre wavelet on K in L2(K). We consider the family ψa,x,t , of Laguerre wavelets on K, defined by

∀(x′, t ′) ∈K, ψa,x,t(x′, t ′) = T α
x,t(∆aψ(x′,−t ′)). (27)

By virtue of (16) and (23), we get immediately, for all a > 0 and (x, t) ∈K,

‖ψa,x,t‖2,mα ≤ ‖ψ‖2,mα . (28)

Definition 2.The continuous Laguerre wavelet transform CLWT, W L
ψ is defined for a regular function f on K by

∀(a,x, t) ∈ (0,+∞)×K, W L
ψ f (a,x, t) =

∫

K
f (x′, t ′)ψa,x,t(x′, t ′)dmα(x

′, t ′). (29)

We can also write

W L
ψ f (a,x, t) =< f ,ψa,x,t >L2(K)=< f ,T α

x,t ∆aψ >L2(K) . (30)

Moreover, relation (29) can be written as:

W L
ψ f (a,x, t) = f ⋆α ∆aψ(x, t). (31)
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By Young’s inequality, the CLWT can be defined for a function f ∈ Lp(K), where p ∈ [1,+∞], and an admissible wavelet

ψ ∈ Lp′(K), where p′ = p
p−1

. Consequently, for all (a,x, t) ∈ (0,+∞)×K,

|W L
ψ f (a,x, t)| ≤ a

2α+4
p′ −(α+2)‖ψ‖p′,mα

‖ f‖p,mα . (32)

Let U= (0,+∞)×K. For p ≥ 1, we equiped this space by the “affine” measure

dνα(a,x, t) =
da dmα(x, t)

a2α+5
. (33)

Denote by Lp(U) the space of measurable functions f on U that satisfies

‖ f‖p,να =

(

∫ +∞

0

∫

K
| f (a,x, t)|pdνα(a,x, t)

) 1
p

<+∞. (34)

According to (31) we assert that if ψ is an admissible Laguerre wavelet on K, and f ∈ L2(K) then the following
Plancherel’s formula for CLWT holds.

‖W L
ψ f‖2

2,να
= cψ‖ f‖2

2,mα
. (35)

Furthermore, we can deduce the following Parseval’s relation for f and g in L2(K),

cψ < f ,g >L2(K)=

∫ +∞

0

∫

K
W L

ψ f (a,x, t)W L
ψ g(a,x, t)dνα(a,x, t). (36)

According to (32) and (35), we derive from Riesz Thorin interpolation theorem that the definition of CLWT can be

extended to Lp(K) when 1 < p < 2. We get that W L
ψ f belongs to Lp′(U), where 1

p
+ 1

p′ = 1, and

‖W L
ψ f‖p′,να

≤ c

1
p′
ψ

(

a−(α+2)‖ψ‖∞,mα

)1− 2
p′ ‖ f‖p,mα . (37)

4 Main results : CLWT uncertainty inequalities

We shall introduce the following notations. For all (x, t) ∈K, the homogeneous norm on K is given by

|(x, t)|= |(x, t)|K = (x4 + 4t2)
1
4 . (38)

R×N is equiped with the quasinorm defined, for all (λ ,m) ∈ R×N, by

|(λ ,m)|= 4|λ |(m+
α + 1

2
). (39)

4.1 Heisenberg type inequalites for CLWT

From [9,26], the Heinsenberg inequality for FL states that for b ≥ 1 and f ∈ L2(K),

‖ |(x, t)|b f‖2,mα .‖ |(λ ,m)| b
2 FL f‖2,γα ≥C‖ f‖2

2,mα
. (40)

In the case of CLWT, Heisenberg type inequality dealing with dispersion on position (x, t), is given by the following
theorem.

Theorem 1.Let ψ be an admissible Laguerre Wavelet on K and b ≥ 1. Then for all f ∈ L2(K),

‖|(x, t)|bW L
ψ f‖2,να .‖|(λ ,m)| b

2 FL f‖2,γα ≥C
√

cψ‖ f‖2
2,mα

, (41)

where C is the same constant given in (40).
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Proof.By virtue of relations (31) and (20), we have

|FLW L
ψ f (λ ,m)|2 = |FL f (λ ,m)|2|FL∆aψ(λ ,m)|2.

Relation (24) and the admissible condition (25) lead to

∫ +∞

0
|FL∆aψ(λ ,m)|2 da

a2α+5
= cψ . (42)

Therefore, using Fubini’s theorem, we get

∫ +∞

0

∫

K̂
|(λ ,m)|b|FLW L

ψ f (λ ,m)|2dγα
da

a2α+5
= cψ

∫

K̂
|(λ ,m)|b|FL f (λ ,m)|2dγα .

On the other hand, since f belongs to L2(K) then we deduce that the function W L
ψ f (a, ., .) belongs to L2(K). Applying

Heinsenberg type inequality (40) to W L
ψ f (a, ., .), we get, for all a ∈ (0,+∞),

(

∫

K
|(x, t)|2b|W L

ψ f (a,x, t)|2dmα(x, t)

)
1
2
(

∫

K̂
|(λ ,m)|b|FLW L

ψ f (λ ,m)|2dγα(λ ,m)

)
1
2

≥C

∫

K
|W L

ψ f (a,x, t)|2dmα(x, t).

Integrating with respect to
da

a2α+5
, the left hand side is given by

√
cψ

(

∫

U
|(x, t)|2b|W L

ψ f (a,x, t)|2dνα(a,x, t)

)
1
2
(

∫

K̂
|(λ ,m)|b|FL f (λ ,m)|2dγα(λ ,m)

)
1
2

,

and the right hand side is written as multiple of

∫ +∞

0

∫

K
|W L

ψ f (a,x, t)|2dmα(x, t)
da

a2α+5
.

Using Plancherel formula, this integral equals to

X =

∫ +∞

0

∫

K̂
|FLW L

ψ f (λ ,m)|2dγα(λ ,m)
da

a2α+5
.

Therefore, relation (42) leads to

X =
∫ +∞

0

∫

K̂
|FL f (λ ,m)|2|FL∆aψ(λ ,m)|2dγα(λ ,m)

da

a2α+5

= cψ

∫

K̂
|FL f (λ ,m)|2dγα(λ ,m)

= cψ ‖ f‖2
2,mα

.

Consequently

√
cψ

(

∫

U
|(x, t)|2b|W L

ψ f (a,x, t)|2dνα (a,x, t)

)
1
2
(

∫

K̂
|(λ ,m)|b|FL f (λ ,m)|2dγα

)
1
2

≥C cψ ‖ f‖2
2,mα

.

which allows to deduce inequality (41).

As an application, we proceed in similar way as in [1], we deduce the following result:

Corollary 1.For all s,β ≥ 1 and for all f ∈ L2(K), we have

‖|(x, t)|sW L
ψ f‖β

2,να
.‖|(λ ,m)|

β
2 FL f‖s

2,γα
≥C(

√
cψ)

1−β (s−1)‖ f‖s+β
2,mα

. (43)
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Proof.Let s,β > 1. For f ∈ L2(K), assume that

‖|(x, t)|sWL
ψ f‖β

2,να
, ‖|(λ ,m)|

β
2 FL f‖s

2,γα
<+∞.

Applying Hölder’s inequality, we have

‖|(x, t)|WL
ψ f‖2,να ≤ ‖|(x, t)|sWL

ψ f‖1/s

2,να
‖WL

ψ f‖1/s′
2,να

and

‖|(λ ,m)| 1
2 FL f‖2,γα ≤ ‖|(λ ,m)|

β
2 FL f‖1/β

2,γα
‖FL f‖1/β ′

2,γα
.

Therefore

‖|(x, t)|sWL
ψ f‖2,να ≥

‖|(x, t)|WL
ψ f‖s

2,να

‖WL
ψ f‖s−1

2,να

and

‖|(λ ,m)|
β
2 FL f‖2,γα ≥

‖|(λ ,m)| 1
2 FL f‖β

2,γα

‖FL f‖β−1
2,γα

.

Using Theorem 1, we derive that

‖|(x, t)|sWL
ψ f‖β

2,να
‖|(λ ,m)|

β
2 FL f‖s

2,γα
≥

C
√

ch‖ f‖2β s
2,mα

‖WL
ψ f‖β (s−1)

2,να
‖FL f‖s(β−1)

2,γα

.

Plancherel formula and relation (37) allow to deduce the wanted result.

Lemma 1.Let β ∈ R. We consider ψ , an admissible Laguerre wavelet, satisfying

∀(λ ,m) ∈ K̂, FLψ(λ ,m) = φ(|λ |). (44)

If f belongs to L2(K) then

‖aβW L
ψ f‖2

2,να
= M (|ψ̃ |2)(2β ).‖|λ |

β
2 FL f‖2

2,γα
, (45)

where φ̃(λ ) = φ(λ 2) and M is the Mellin transform defined by

M f (x) =

∫ +∞

0
tx f (t)

dt

t
.

Proof.

‖aβW L
ψ f‖2

2,να
=

∫ +∞

0
a−2β

∫

K̂
|FL f (λ ,m)|2|FL∆aψ(λ ,m)|2dγα(λ ,m)

da

a2α+5

=
+∞

∑
m=0

Lα
m

∫

R
|FL f (λ ,m)|2Ψ(λ )dγα(λ ,m),

where

Ψ(λ ) =

∫ +∞

0
a2β |FLδ ′

aψ(λ ,m)|2 da

a
.

Making a change of variable, we have

Ψ(λ ) = |λ |β
∫ +∞

0
u2β |φ̃ (u)|2 du

u
= |λ |β M (|φ̃ |2)(2β ).

Thus

‖a−βW L
ψ f‖2

2,να
= M (|φ̃ |2)(2β )

+∞

∑
m=0

Lα
m

∫

R
|λ |β |FL f (λ ,m)|2dγα(λ ,m).

This gives the wanted result.

Theorem 2.Let s,β ≥ 1 and h an admissible Laguerre wavelet verifying (44). Then, for all f belonging to L2(K), we have

‖aβW L
ψ f‖s

2,να
‖|(x, t)|sW L

ψ f‖β
2,να

≥C cψ M (|φ̃ |2)(2β ).‖|λ |
β
2 FL f‖2

2,γα
‖ f‖2

2,mα
. (46)

Proof.Theorem 2 holds from Lemma 1 and Corollary 1.
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4.2 Lp Local uncertainty principles for CLWT

This section is devoted to uncertainty principles of concentration type for CLWT in the Lp theory.

Theorem 3.If 1 < p ≤ 2, q = p
p−1

and , then for all nonzero f ∈ Lp(K) and for all measurable subset T ⊂ U such that

0 < να(T )<+∞, we have

(a) If 0 < s < 2α+4
q

,

∥

∥χTW L
ψ f
∥

∥

q,να
≤ C1(s,q,α) c

1
q− s

2α+4
ψ να (T )

s
2α+4 ‖|(x, t)|s f‖p,mα

, (47)

where C1(s,q,α) is a constant that depends on s, q and α .

(b) If s > 2α+4
q

,

∥

∥χTW L
ψ f
∥

∥

q,να
≤ C2(s,q,α) να(T )

1
q ‖ f‖

p
q (1− 2α+4

sq )
p,mα ‖ |(x, t)|s f‖

p
q
(2α+4)

sq
p,mα , (48)

where C2(s,q,α) is a constant that depends on s, q and α .

(c) If s = 2α+4
q

,

∥

∥χTW L
ψ f
∥

∥

q,να
≤C3(q,α)c

1
q− 2

q(2α+4)
ψ να(T )

2
q(2α+4) ‖ f‖1− 1

α+2
p,α

∥

∥

∥
|(x, t)|

2α+4
q f

∥

∥

∥

1
α+2

p,α
, (49)

where C3(q,α) =C1(
2
q
,q,α)(α + 2) (α + 1)

1
α+2−1.

Proof.(a) For all r > 0, we define Br = {(x, t) ∈K ; |(x, t)| ≤ r} . Denote by χBr and χBc
r

the characteristic functions.

Let f ∈ L
p
α(K),1 < p ≤ 2 and q = p

p−1
. It follows using Minkowski’s inequality,

∥

∥χTW L
ψ f
∥

∥

q,να
≤
∥

∥χTW L
ψ ( f χBr)

∥

∥

q,να
+
∥

∥χTW L
ψ ( f χBc

r
)
∥

∥

q,να
.

Therefore
∥

∥χTW L
ψ f
∥

∥

q,να
≤ να(T )

1
q
∥

∥W L
ψ ( f χBr)

∥

∥

∞,να
+
∥

∥W L
ψ ( f χBc

r
)
∥

∥

q,να
. (50)

Using relation (32), we get

∥

∥χTW L
ψ f
∥

∥

q,να
≤ να(T )

1
q a−(α+2)‖ψ‖∞,mα ‖ f χBr‖1,mα +

∥

∥W L
ψ ( f χBc

r
)
∥

∥

q,να
. (51)

Let 0 < s < 2α+4
q

. By Hölder’s inequality, we obtain

‖ f χBr‖1,mα
≤ ‖ |(x, t)|s f‖p,mα

∥

∥ |(x, t)|−sχBr

∥

∥

q,mα
. (52)

Considering (38), let’s examine polar coordinates in the Laguerre hypergroup structure:

{

x = ρ cos(θ )
1
2

t = ρ2

2
sin(θ )

, where ρ = |(x, t)|K.

The Jacobian is given by:
∣

∣

∣

∣

∣

cos(θ )
1
2 ρ sin(θ )

− ρ
2

sin(θ )cos(θ )−
1
2

ρ2

2
cos(θ )

∣

∣

∣

∣

∣

=
ρ2

2
cos(θ )−

1
2

and
∥

∥ |(x, t)|−sχBr

∥

∥

q

q,mα
=

1

2πΓ (α + 1)

∫ r

0

∫ π
2

− π
2

ρ−sq+2α+3 cos(θ )α dρdθ = A(s,q,α)q.

Therefore, we have

‖ f χBr‖1,mα
≤ A(s,q,α) r

2α+4
q −s ‖ |(x, t)|s f‖p,mα

, (53)
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where A(s,q,α) =

(

B(α+1
2

, 1
2
)

2πΓ (α + 1)(2α + 4− sq)

) 1
q

, B is the beta function.

On the other hand, by relation (32), we obtain

∥

∥W L
ψ ( f χBc

r
)
∥

∥

q,να
≤ c

1
q
ψ

(

a−(α+2)‖ψ‖∞,mα

)1− 2
q ‖ f χBc

r
‖p,mα

≤ c
1
q
ψ

(

a−(α+2)‖ψ‖∞,mα

)1− 2
q ‖ |(x, t)|s f‖p,mα

∥

∥ |(x, t)|−s χBc
r

∥

∥

∞,mα
.

Hence
∥

∥W L
ψ ( f χBc

r
)
∥

∥

q,να
≤ c

1
q
ψ

(

a−(α+2)‖ψ‖∞,mα

)1− 2
q

r−s ‖ |(x, t)|s f‖p,mα
. (54)

Combining the relations (51),(53) and (54), we deduce that

∥

∥χTW L
ψ f
∥

∥

q,να
≤ gα ,s(r) ‖ |(x, t)|s f‖p,mα

, (55)

where gα ,sis the function defined on (0,+∞) by

gα ,s(r) = c
1
q
ψ

(

a−(α+2)‖ψ‖∞,mα

)1− 2
q

r−s +A(s,q,α) a−(α+2)‖ψ‖∞,mα να(T )
1
q r

2α+4
q −s.

By minimization of the right-hand side of the relation (55) over r > 0, we get

∥

∥χTW L
ψ f
∥

∥

q,να
≤ C1(s,q,α) c

1
q− s

2α+4
ψ να (T )

s
2α+4 ‖|(x, t)|s f‖p,mα

,

where

C1(s,q,α) =

(

2α + 4

2α + 4− sq

) (

2α + 4

sq
− 1

)

sq
2α+4 (

a−(α+2)‖ψ‖∞,mα

)1− 2
q+

2s
2α+4

A(s,q,α)
sq

2α+4 .

(b) The inequality (48) holds if ‖|(x, t)|s f‖p,mα
=+∞. Assume that ‖|(x, t)|s f‖p,mα

<+∞.
From the hypothesis s > 3α + 2, we derive that the function

(x, t) 7−→ (1+ |(x, t)|ps)−
1
p

belongs to Lq(K). Hölder’s inequality leads to

‖ f‖1,mα
≤
∥

∥

∥
(1+ |(x, t)|ps)

1
p f

∥

∥

∥

p,mα

∥

∥

∥
(1+ |(x, t)|ps )−

1
p

∥

∥

∥

q,mα

. (56)

Since
∥

∥

∥
(1+ |(x, t)|ps)

1
p f

∥

∥

∥

p

p,mα

= ‖ f‖p
p,mα

+ ‖ |(x, t)|s f‖p
p,mα

then

‖ f‖1,mα
≤ N(s,q)

(

‖ f‖p
p,α + ‖ |(x, t)|s f‖p

p,mα

)
1
p
. (57)

where

N(s,q,α) =
∥

∥

∥
(1+ |(x, t)|ps)−

1
p

∥

∥

∥

q,mα

.

Using polar coordinates in the Laguerre hypergroup structure, we obtain

N(s,q,α) =





B(α+1
2

, 1
2
)B( q

p
− 2(α+2)

sp
, 2(α+2)

sp
)

2π spΓ (α + 1)





1
q

.

For r > 0, we consider fr(x, t) = r−(2α+4) f ( x
r
, t

r2 ). Then we have

‖ fr‖1,mα
= ‖ f‖1,mα

, (58)
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‖ fr‖p
p,mα

= r
−(2α+4)p

q ‖ f‖p
p,mα

, (59)

and

‖ |(x, t)|s fr‖p
p,mα

= r
p(s− 2α+4

q ) ‖ |(x, t)|s f‖p
p,mα

. (60)

Considering fr in relation (57), we conclude that for all r > 0, we get

‖ f‖q
1,mα

≤ N(s,q,α)q

(

r
−(2α+4)p

q ‖ f‖p
p,mα

+ r
p(s− 2α+4

q ) ‖ |(x, t)|s f‖p
p,mα

)

q
p

.

By minimizing the right-hand side of this inequality, we deduce

‖ f‖q
1,mα

≤ N(s,q,α)q(
sq

2α + 4
− 1)

2α+4
sq

(

sq

sq− (2α + 4)

)

‖ f‖p(1− 2α+4
sq )

p,mα ‖|(x, t)|s f‖p
(2α+4)

sq
p,mα . (61)

Then, according to relation (61), the function f belongs to L1(K), and we have

∥

∥χTW L
ψ f
∥

∥

q

q,να
≤ να(T )

∥

∥W L
ψ f
∥

∥

q

∞,να

≤ να(T )
(

a−(α+2)‖ψ‖∞,mα

)q

‖ f‖q
1,mα

.

Using the relation (61), we get

∥

∥χTW L
ψ f
∥

∥

q

q,να
≤ να(T ) C

q
2(s,q,α) ‖ f‖p(1− 2α+4

sq )
p,mα ‖ |(x, t)|s f‖p

(2α+4)
sq

p,mα ,

where

C
q
2(s,q,α) =

(

a−(α+2)‖ψ‖∞,mα

)q

N(s,q,α)q

(

sq

2α + 4
− 1

) 2α+4
sq
(

sq

sq− (2α + 4)

)

.

(c) Consider s = 2
q
(α + 2). Using the fact that for ε > 0,

|(x, t)|
2
q

ε
2
q

≤ 1+
|(x, t)|

2(α+2)
q

ε
2(α+2)

q

,

it follows that
∥

∥

∥
|(x, t)|

2
q f

∥

∥

∥

p,α
≤ ε

2
q ‖ f‖p,α + ε

2
q− 2

q (α+2)
∥

∥

∥
|(x, t)|

2
q (α+2)

f

∥

∥

∥

p,α
.

Optimizing in ε , we get:

∥

∥

∥
|(x, t)|

2
q f

∥

∥

∥

p,α
≤ (α + 2) (α + 1)

1
α+2−1 ‖ f‖1− 1

α+2
p,α

∥

∥

∥
|(x, t)|

2α+4
q f

∥

∥

∥

1
α+2

p,α
.

Together with (47) for s = 2
q
< 2α+4

q
, we get the wanted result.

Theorem 4.Let s, p be two real numbers such that 0 < s < 2α +4 and p ≥ 1. Then, for every function f ∈ Lp(K) and for

every measurable subset T ⊂ U such that 0 < να(T )<+∞, we have

∥

∥χTW L
ψ f
∥

∥

p,να
≤ C να(T )

1
p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

κ

2,να

(

‖h‖2,mα
‖ f‖2,mα

)1−κ
, (62)

where κ =
2(2α + 4)− s

(p+ 1)(2α + 4)
and C is a constant that depends on s, p and α .

Note here that
∣

∣

∣

∣

(
1

a
,x, t)

∣

∣

∣

∣

= (
1

a4
+ x4 + 4t2)

1
4 .
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Proof.One can assume that ‖ f‖2,mα
= 1, and ‖ψ‖2,mα

= 1. The general formula follows by making the substitution

f :=
f

‖ f‖2,mα

and ψ :=
ψ

‖ψ‖2,mα

.

For all r > 0, we put Vr =
{

(a,x, t) ∈ (0,+∞)×K ; |( 1
a
,x, t)| ≤ r

}

. Let 0 < s < 2α + 4. By Hölder’s inequality, we
obtain

∥

∥χTW L
ψ f
∥

∥

p,να
≤
∥

∥χT∩VrW
L
ψ f
∥

∥

p,να
+
∥

∥χT∩V c
r
W L

ψ f
∥

∥

p,να
.

Let 0 < s < 2α + 4. Using Hölder’s inequality and relation (32), we obtain

∥

∥χT∩VrW
L
ψ f
∥

∥

p,να
≤
∥

∥W L
ψ ( f )

∥

∥

p
p+1

∞,να

(

∫

U
χT (a,x, t)χVr(a,x, t)|W L

ψ f (a,x, t)|
p

p+1 dνα

)
1
p

≤ να (T )
1

p(p+1)
∥

∥χVrW
L
ψ f
∥

∥

1
p+1

1,να

≤ να (T )
1

p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

1
p+1

2,να

∥

∥

∥

∥

|(1

a
,x, t)|−sχVr

∥

∥

∥

∥

1
p+1

2,να

.

Making the change of variables







u = 1
a2

v = x2

w = 2t

, we get

∥

∥

∥

∥

|(1

a
,x, t)|−sχVr

∥

∥

∥

∥

2

2,να

=
∫

U
(u2 + v2 +w2)−

2s
4 χVr

uα+1vα

8πΓ (α + 1)
dudvdw.

Applying polar coordinates in R3, we find

∥

∥

∥

∥

|(1

a
,x, t)|−sχVr

∥

∥

∥

∥

2

2,να

=

∫ r

0
ρ−2s

∫ π
2

0

∫ π
2

− π
2

(ρ cos(θ )cos(ϕ))α+1(ρ sin(θ )cos(ϕ))α

8πΓ (α + 1)
ρ2 cos(ϕ)dρ dθ dϕ .

By a simple calculation, we get

‖|(1

a
,x, t)|−sχVr‖2,να = A1(s,α)r2α+4−s,

where A1(s,α) =

(

B(α+1
2

, α
2
+ 1)B(α + 3

2
, 1

2
)

16π (2α + 4− s)Γ (α + 1)

)
1
2

. Thus we obtain

∥

∥χT∩VrW
L
ψ f
∥

∥

p,να
≤ να(T )

1
p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

1
p+1

2,να

C
p+1
1 s

2α+4−s
p+1 . (63)

On the other hand, using Hölder’s inequality and relation (32), we conclude that

∥

∥χT∩V c
r
W L

ψ f
∥

∥

p,να
≤
∥

∥W L
ψ f
∥

∥

p−1
p+1

∞,να

(

∫

U
χT∩V c

r
(a,x, t)|W L

ψ f (a,x, t)|
2p

p+1 dνα(a,x, t)

)
1
p

≤ να(T )
1

p(p+1)

(

∫

U
χVc

r
(a,x, t)|W L

ψ f (a,x, t)|2dνα(a,x, t)

)
1

p+1

≤ να(T )
1

p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

2
p+1

2,να

r
−s

p+1 .

Hence

∥

∥χTW L
ψ f
∥

∥

p,να
≤ hα ,s(r) να(T )

1
p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

1
p+1

2,να

, (64)
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where hα ,s is the function defined on (0,+∞) by

hα ,s(r) = A1(s,α)p+1s
2α+4−s

p+1 +

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

1
p+1

2,να

r
−s

p+1 .

By minimizing the right-hand side of the inequality (64) with respect to r > 0, we obtain

∥

∥χTW L
ψ f
∥

∥

p,να
≤ C(s, p,α) να(T )

1
p(p+1)

∥

∥

∥

∥

|(1

a
,x, t)|sW L

ψ f

∥

∥

∥

∥

2
p+1− s

(p+1)(2α+4)

2,να

,

where

C(s, p,α) = (
2α + 4

2α + 4− s
) (

2α + 4− s

s
)

s
2α+4 A1(s,α)

s
p(2α+4) .

4.3 Benedicks-Amrein-Berthier’s uncertainty principle for CLWT

A strong formulation of Benedicks-Amrein-Berthier’s result for the Laguerre Fourier transform was established by the

second author in [20]. This result asserts that, for S ⊂ K, Σ ⊂ K̂ a pair of measurable subsets of finite measures
µα(S), µ̂α(Σ)<+∞, we can find a constant C(S,Σ) such that, for all f ∈ L2(K),

‖ f‖2
2,mα

≤C(S,Σ)

(

∫

K\S
| f (x, t)|2dmα(x, t)+

∫

K̂\Σ
|FL f |2dγα(λ ,m)

)

. (65)

The constant C(S,Σ) is called the annihilating constant, and (S,Σ) is termed a strong annihilating pair. In the context of
CLWT, we obtain the following result.

Theorem 5.Consider two measurable subsets S ⊂ K, Σ ⊂ K̂ with finite measures µα(S), µ̂α(Σ) < +∞. Let ψ be a

Laguerre wavelet on K in L2(K). For an arbitrary function f ∈ L2(K),the following uncertainty inequality holds.

cψ‖ f‖2
2,mα

C(S,Σ)
≤
∫ +∞

0

∫

K\S
|W L

ψ f (a,x, t)|2dνα(a,x, t)+ cψ

∫

K̂\Σ
|FL f (λ ,m)|2dγα , (66)

where C(S,Σ) is the annihilating constant given in (65).

Proof.We have, for all a > 0, W L
ψ f (a, ., .) ∈ L2(K) whenever f ∈ L2(K). This allows using (65) to get

‖WL
ψ f‖2

2,mα
≤C(S,Σ)

(

∫

K\S
|W L

ψ f (x, t)|2dmα(x, t)+

∫

K̂\Σ
|FLW L

ψ f |2dγα(λ ,m)

)

.

Integrating both sides with respect to
da

a2α+5
, we proceed similarly to the proof of Theorem 1. Consequently, (66) holds

using relations (35) and (42).
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