Total Mean Cordiality of Umbrella, Butterfly and Dumbbell Graphs

Authors

  • R. Ponraj
  • S. Sathish Narayanan
  • A. M. S. Ramasamy

Keywords:

path, join of graphs, fan, complete graph, cycle.

Abstract

A Total Mean Cordial labeling of a graph G = (V,E) is a function f : V (G) →{0. 1. 2} such that for each edge xy assign the label [(f(x)+f(y))/2] where x, y ∈ V (G) and |evf (i) -evf (j)| ≤ 1, i, j ∈ {0. 1. 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). If there exists a total mean cordial labeling on a graph G, we will call G is Total Mean Cordial. In this paper, we investigate the Total Mean Cordial labeling behavior of fan, umbrella, dumbbell, and buttery graphs.

Key words and phrases. path, join of graphs, fan, complete graph, cycle.

1991 Mathematics Subject Classification. 05C78

Downloads

Published

2025-05-18

How to Cite

R. Ponraj, S. Sathish Narayanan, & A. M. S. Ramasamy. (2025). Total Mean Cordiality of Umbrella, Butterfly and Dumbbell Graphs. Jordan Journal of Mathematics and Statistics, 8(1), 59–77. Retrieved from https://jjms.yu.edu.jo/index.php/jjms/article/view/1071

Issue

Section

Articles