Numerical Solution of Fractional-Order Population Growth Model using Fractional-Order Muntz-Legendre Collocation Method and Pade-Approximants

Authors

  • E. Hengamian Asl
  • J. Saberi-Nadjafi
  • M. Gachpazan

Keywords:

Fractional-order Muntz–Legendre polynomials (FMLPs), Nonlinear fractional Volterra integro-differential equation, Population growth model, Caputo fractional derivative.

Abstract

This paper presents a numerical solution for a nonlinear fractional Volterra integro-differential equation to study the behavior solution of the population growth model. The technique applied based on the fractional-order Muntz–Legendre polynomials and the Pade approximants. Finally, some numerical examples are presented to show the efficiency and validity of the proposed method.

Key words and phrases. Fractional-order Muntz–Legendre polynomials (FMLPs), Nonlinear fractional Volterra integro-differential equation, Population growth model, Caputo fractional derivative.

2000 Mathematics Subject Classification. 26A33, 34A08, 74G10

Downloads

Published

2025-05-18

How to Cite

E. Hengamian Asl, J. Saberi-Nadjafi, & M. Gachpazan. (2025). Numerical Solution of Fractional-Order Population Growth Model using Fractional-Order Muntz-Legendre Collocation Method and Pade-Approximants. Jordan Journal of Mathematics and Statistics, 15(2), 157–175. Retrieved from https://jjms.yu.edu.jo/index.php/jjms/article/view/745

Issue

Section

Articles