Notes on Generalizations of Hopfian and Co-Hopfian Modules

Authors

  • Abderrahim El Moussaouy
  • M’hammed Ziane

Keywords:

Semi Hopfian modules, Semi co-Hopfian modules, Dedekind finite modules.

Abstract

A module M is called semi co-Hopfian (resp. semi Hopfian) if any injective (resp. surjective) endomorphism of M has a direct summand image (resp. kernel). We show that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly Hopfian module, then EndR(M) is strongly π-regular ring. As a consequence we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module and to semi co-Hopfian module. The semi Hopficity and semi co-Hopficity of modules over truncated polynomial rings are considered.

Key words and phrases. Semi Hopfian modules, Semi co-Hopfian modules, Dedekind finite modules.

2010 Mathematics Subject Classification. 16P40, 16D10, 16D40

Downloads

Published

2025-05-18

How to Cite

Abderrahim El Moussaouy, & M’hammed Ziane. (2025). Notes on Generalizations of Hopfian and Co-Hopfian Modules. Jordan Journal of Mathematics and Statistics, 15(1), 43–54. Retrieved from https://jjms.yu.edu.jo/index.php/jjms/article/view/763

Issue

Section

Articles